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Abstract: Nowadays, metal oxide semiconductors (MOS)-reduced graphene oxide (rGO) nanocom-
posites have attracted significant research attention for gas sensing applications. Herein, a novel
composite material is synthesized by combining two p-type semiconductors, i.e., Cu2O and rGO,
and a p-p-type gas sensor is assembled for NO2 detection. Briefly, polypyrrole-coated cuprous
oxide nanowires (PPy/Cu2O) are prepared via hydrothermal method and combined with graphene
oxide (GO). Then, the nanocomposite (rGO/PPy/Cu2O) is obtained by using high-temperature
thermal reduction under Ar atmosphere. The results reveal that the as-prepared rGO/PPy/Cu2O
nanocomposite exhibits a maximum NO2 response of 42.5% and is capable of detecting NO2 at a low
concentration of 200 ppb. Overall, the as-prepared rGO/PPy/Cu2O nanocomposite demonstrates
excellent sensitivity, reversibility, repeatability, and selectivity for NO2 sensing applications.

Keywords: reduced graphene oxide (rGO); cuprous oxide nanowires; polypyrrole; gas sensors;
NO2 sensing; p-type semiconductor

1. Introduction

NO2, as a major air pollutant, is responsible for acid rain and hazardous to human
respiratory tracts. According to the World Health Organization (WHO), the safety limit for
NO2 gas is 410 ppb per hour [1]. Hence, monitoring the trace amounts of NO2 is neces-
sary from health perspective and plays an important role in environmental pollution [2],
air quality, and industrial safety [3–7].

The two-dimensional graphene, discovered by Novoselov et al. in 2004 [8], is widely
employed as a promising sensing material due to its high specific surface area
(2.6 × 103 m2/g) [9–13], ultra-high room-temperature electron mobility (2.0× 105 cm2/Vs),
and chemical stability [14,15]. Additionally, graphene can be easily and cost-effectively
prepared by a wide range of techniques, such as mechanical peeling [8], chemical vapor
deposition [16,17], silicon carbide (SiC) epitaxial growth [18], redox method [19], and other
methods. It has been reported that the changes in the external chemical environment result
in significant differences in the sensing performance of graphene [20]. Schedin et al. have
first reported the performance of graphene-based gas sensors in 2007 [21], however, the as-
prepared sensors exhibited distinct disadvantages, such as slow as well as low response
and poor selectivity [22,23].

Similar to graphene, metal oxides (MO) can also be used as sensing materials; however,
MO-based sensors also possess some defects. The first MO-based commercial sensor ap-
peared in the 1960s [24]. Moreover, the operating temperature of MO-based sensors ranges
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from 150 to 400 ◦C and such a high operating temperature raises safety concerns, degrades
device stability and reduces the operating life [22,25–30]. Some efforts have been made to
achieve room-temperature sensing [24,31]. Currently, graphene-based nanocomposites are
the focus of research for sensing applications [32–35]. In particular, MO-graphene nanocom-
posites have garnered intensive attention because of their excellent sensing properties [14].
Cu2O, as a typical p-type semiconductor, is a promising candidate among different metal
oxides. Different morphologies of Cu2O, such as spherical, rod-like, lamellar, and tubular,
have been studied for sensing applications [36–40]. It is expected that the incorporation of
Cu2O between graphene nanosheets can enlarge the specific surface area, increase active
sites and enhance the adsorption capacity of graphene, improving the affinity for gas
molecules. Additionally, the presence of Cu2O can prevent the restacking of graphene
sheets and overcome inferior gas selectivity of graphene [41,42].

Compared with common polymers, conductive polymers possess a unique unlocalized
conjugated π-electron system [43]. The long-range conjugation not only greatly reduces the
gap between the bonding and antibonding bands, but also widens the distance between
two bands. It increases the number of orbitals in the band and reduces the gap between
orbitals, allowing the free movement of carriers within the band. Polypyrrole (PPy), as an
important conductive polymer [44], renders high chemical stability, high conductivity,
redox reversibility, good dispersion, simple preparation, and low cost [45,46], showing
great potential in sensing applications [46]. By introducing PPy into graphene-based
materials, the electrostatic repulsion between PPy nanoparticles can effectively prevent
the accumulation of graphene sheets, optimizing the sensing properties of graphene-
based materials.

The comparison of NO2 sensors, based on reduced graphene oxide (rGO) or Cu2O com-
posites, reveals that designing and fabricating sensing devices based on binary or ternary
components with excellent sensing properties is still a challenge (Table 1) [12,14]. Hence,
in this work, graphene-polypyrrole-coated copper oxide nanowires ternary components
were designed and prepared for room temperature for sensing applications. The PPy/Cu2O
were easily formed by the hydrothermal method using pyrrole as templates. Further as-
sembly of graphene oxide (GO) with PPy/Cu2O and reduction were carried out to form
ternary components by optimizing the preparation conditions, where the micro- and nano-
scale of each component was regulated and combined with the optimal composite ratio
to obtain the composite nanomaterials with specific properties. Moreover, the synergistic
reinforcement between different components leads to optimal performance. In general,
the as-prepared gas sensors via assembly techniques realize room-temperature sensing.
These sensors exhibit a maximum NO2 response of 42.5% and are capable of detecting NO2
at a low concentration of 200 ppb. In addition, the sensors show excellent repeatability
and selectivity.

Table 1. The comparison of various NO2 sensors based on rGO and Cu2O composites.

Material Response Concentration Working Temperature Reference

SnO2/graphene 0.25 (∆R/Ra) 10 ppm Room temperature [6]
rGO-SnO2 53.57 (Rg/Ra) 3 ppm 125 ◦C [22]
SnS2-rGO 9.8% (∆R/Ra) 0.6 ppm 80 ◦C [27]

rGO/In2O3 22.3 (Rg/Ra) 500 ppb 150 ◦C [28]
BiVO4/Cu2O 4.2 (Rg/Ra) 4 ppm 60 ◦C [29]

BiVO4/Cu2O/rGO 8.2 (Rg/Ra) 1 ppm 60 ◦C [30]
Au/Cu2O/ZnO 26% (∆R/Ra) 5 ppb Room temperature [31]
MoS2/graphene 69% (∆R/Ra) 10 ppm 200 ◦C [33]
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2. Experimental
2.1. Materials

All chemical reagents were of analytical grade and used as received without further pu-
rification. Pyrrole, acetic acid, ethanol, acetone, concentrated sulphuric acid, and hydrogen
peroxide were purchased from the Sinopharm Chemical Reagent Co., Ltd., Shanghai, China.
Copper acetate monohydrate was obtained from the Gretel Pharmaceutical Technology
Co., Ltd., Suzhou, China.

2.2. Synthesis of Polypyrrole-Coated Cu2O Nanowires

PPy-coated Cu2O nanowires were prepared by a one-step hydrothermal method [47,48],
where copper acetate monohydrate was used as a precursor and pyrrole acted as a reducing
and structure-directing agent under weak acidic conditions. Initially, 0.2 g of copper acetate
monohydrate were added in a certain amount of deionized water and ultrasonicated for
5–10 min for complete dissolution. Then, the pyrrole monomer (0.075 mL) was added into
a small amount of deionized water. After transient ultrasonication, it was slowly added to
the above solution and stirred with a glass rod. Then, 0.15 mL of acetic acid (1 mol/L) was
added to the above mixture to make sure the dissolution of pyrrole monomers. The result-
ing mixture was transferred to an autoclave and placed in an oven at 120 ◦C for 12 h. Finally,
the reaction solution was cooled down to room temperature and polypyrrole-coated copper
oxide nanowires were obtained by sequentially washing with deionized water, ethanol,
and acetone, followed by filtration and drying. The hydrothermal temperature of 120, 140,
and 160 ◦C was also used to investigate the influence of growth temperature on structure
and morphology.

2.3. Preparation of rGO/PPy/Cu2O Nanocomposites

GO was prepared by the modified Hummers method [49]. First, a certain amount of
PPy/Cu2O nanowires was added into ethanol and ultrasonicated for 30 min to obtain a
concentration of 2 mg/mL. A certain amount of 2 mg/mL GO solution was added into
the above solution, ultrasonicated for 30 min and magnetically stirred for 3–5 h. Finally,
the completely dispersed and uniformly mixed solution was filtered, washed, and dried to
obtain GO/PPy/Cu2O nanocomposite. The as-prepared GO/PPy/Cu2O nanocomposites
were placed in a tube furnace and heated at 350 ◦C for 1 h under the protection of Ar gas,
resulting in the reduction in GO and formation of rGO/PPy/Cu2O nanocomposites.

2.4. Fabrication of rGO/PPy/Cu2O-Based Gas Sensor

Herein, the interdigitated electrode for gas sensing was prepared by the lift-off pro-
cess [13]. First, a silicon wafer was heated at 90 ◦C in a mixture of concentrated H2SO4 and
H2O2 for a certain time to obtain a hydrophilic silicon substrate. Then, the photoresist was
applied to the silicon substrate. After a series of operations, we have obtained the planar
interdigital electrodes by using the self-designed mask plate after exposure, sputtering and
peeling. The as-prepared rGO/PPy/Cu2O nanocomposite was ultrasonically dispersed
in ethanol to obtain a suspension with a concentration of 1 mg/mL. The same amount
of dispersion was measured by a micropipette and applied to the interdigital electrode.
The two poles of the interdigital electrode were connected through the gas sensing material.
To observe it visually, SEM characterization of the device is shown in Figure 1. Finally,
the as-prepared sensor was vacuum-dried before further characterization.
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Figure 1. SEM image of the tested device.

2.5. Gas Sensor Sensitivity

In order to simulate the real detection environment, we have utilized compressed air
as a background and dilution gas during the gas sensitivity test. The test temperature was
set at 25 ◦C and mild test conditions were used, which are comparable to the practical
applications. Figure 2 shows a sketch of the gas sensing set-up. Prior to the test, the back-
ground gas was introduced for a certain time to remove the residual exhaust gas from the
gas path. Then, the desired concentration of NO2 gas was introduced at the beginning of
the test. The NO2 concentration (CN) can be given as:

CN =
5000 × FN

FN + FC
(1)
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Figure 2. Schematic illustration of the gas sensing system.

The concentration of the NO2 cylinder was 5000 ppm. FN (sccm) refers to the flow
rate of the NO2 gas and FC (slm) represents the flow rate of diluted gas (air).

When NO2 gas passed through the sensor, the hole concentration of as-prepared
rGO/PPy/Cu2O nanocomposite increased and the resistance decreased due to the ad-
sorption between NO2 gas and as-prepared rGO/PPy/Cu2O nanocomposite. The gas
sensitivity (S, %) can be calculated from the change in resistance using the I-T curve,
as given below:

S(%) =
Rg − Ra

Ra
× 100% =

∆R
Ra
× 100% (2)
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where Ra represents the resistance of sensor in air and Rg corresponds to the resistance
after the introduction of the NO2 gas.

3. Results and Discussion
3.1. Characterization of as-Prepared Nanocomposites

Scanning electron microscopy (SEM) is employed to explore the influence of different
growth temperatures on the morphology and microstructure of PPy/Cu2O nanowires.
As shown in Figure 3a, the length of copper oxide nanowires, grown at 120 ◦C, ranges
from tens to hundreds of microns. Additionally, a smooth surface with uniform thickness
is achieved (Figure 3b). However, when the growth temperature is increased to 140 ◦C,
the copper oxide nanowires started to bend and exhibited different lengths (Figure 3c).
One should note that the shorter copper oxide nanowires are not desirable for subsequent
preparation of conductive films. As shown in Figure 3d, the further increase in growth
temperature to 160 ◦C resulted in shorter copper oxide nanowires. Hence, the lower
growth temperature is more favorable for copper oxide nanowires. One should also
note that the growth temperature of <120 ◦C is not sufficient to produce copper oxide
nanowires. In addition, Cu2O with a completely linear structure can be obtained at these
reaction temperatures.
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Figure 3. SEM images of hydrothermally-prepared PPy/Cu2O nanowires at different temperatures:
(a,b) 120 ◦C; (c) 140 ◦C; and (d) 160 ◦C.

Furthermore, the graphene content also influences the morphology of resulting
nanocomposites. It can be readily observed that graphene facilitates the recombination and
coating of PPy/Cu2O nanowires. On the other hand, the excessive amount of graphene
leads to the stacking of graphene sheets, which is highly undesirable for sensing appli-
cations. SEM is utilized to observe the morphology and microstructure of as-prepared
rGO/PPy/Cu2O nanocomposites (Figure 4). Overall, the utilization ratio of graphene in-
creased with increasing graphene content in as-prepared rGO/PPy/Cu2O nanocomposites.
However, the excess of graphene will decrease the exposure of PPy-coated Cu2O nanowires
and result in uneven dispersion and stacking of graphene sheets.
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Figure 4. (a) SEM image of PPy-coated Cu2O nanowires, hydrothermally prepared at 120 ◦C, and as-
prepared rGO/PPy/Cu2O nanocomposites after high-temperature thermal reduction. The GO to
PPy/Cu2O mass ratio is (b) 0.08, (c) 0.1, (d) 0.12, (e) 0.15, and (f) 0.20.

The structure of as-prepared nanocomposites was confirmed by X-ray diffraction
(XRD). Figure 5 confirms the existence of Cu2O and graphene characteristic peaks. Herein,
the diffraction peaks at 2θ = 29.5◦, 36.4◦, 42.2◦, 61.3◦, and 73.5◦ correspond to (110), (111),
(200), (220), and (311) planes of the Cu2O (JCPDS card no. 05-0667) [50,51]. In the XRD
patterns of three hybrid structures, we can clearly see the diffraction peaks of Cu2O and the
(111) and (200) peaks exhibit a relatively high intensity. Similarly, the characteristic diffrac-
tion peaks of graphene oxide and reduced graphene oxide are observed at 2θ = 10.2◦ and
23.1◦, respectively. Since the relative quantity of Cu2O is much higher than rGO, the diffrac-
tion peaks of Cu2O are significantly stronger than the rGO. In addition, we have not
observed phases other than rGO and Cu2O. These results confirm that the rGO/PPy/Cu2O
nanocomposites have been successfully prepared after high-temperature reduction.
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Moreover, Raman spectroscopy is carried out to confirm that the graphene oxide is
successfully transformed into the reduced graphene oxide (rGO) [52–55]. Figure 6 shows
two characteristic Raman peaks at 1333 and 1582 cm−1, corresponding to D- and G-bands,
respectively. The D-band is related to defect scattering and electron/hole recombination
during oxidation and reduction processes. Overall, the intensity of D-band represents
the degree of disorder in graphene. On the other hand, the G-band is related to the bond
stretching of all pairs of sp2 atoms, indicating the integrity of sp2 hybridized structure.
In general, the reduction in graphene is analyzed by measuring the intensity ratio of D- to
G-bands (ID/IG).
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Figure 6 exhibits that the ID/IG ratio of GO/PPy/Cu2O and rGO/PPy/Cu2O nanocom-
posite is 1.133 and 1.153, respectively. Theoretically, when GO is reduced, the oxygen-
containing functional groups on the graphene sheets are removed [56], the ordering of
sp2 carbon network structure is increased, sp2 region is widened and the ID/IG ratio is
decreased. In fact, a large number of sp3 hybridized carbon atoms deoxidize to form a
new sp2 hybridized region, and the re-formed sp2 region is smaller than GO, minimizing
the average sp2 region of rGO, which is reflected by the enhancement of ID/IG. To fur-
ther illustrate the successful fabrication of rGO/PPy/Cu2O nanocomposites, we have
employed Fourier transform infrared spectroscopy (FTIR) to characterize the changes in
functional groups before and after high-temperature thermal reduction (Figure 7). The ab-
sorption peak near 3250 cm−1 can be attributed to N-H stretching vibrations of PPy and
O-H stretching vibrations of GO. The absorption peak at 1552 cm−1 can be assigned to
the vibrations of C=C skeleton, whereas the absorption peaks at 1323 and 1074 cm−1 can
be attributed to the stretching vibrations of C-N, confirming the existence of PPy in as-
prepared rGO/PPy/Cu2O nanocomposites. In the case of GO/PPy/Cu2O nanocomposite,
the absorption peaks at 1625 and 1716 cm−1 correspond to the vibrational absorption of
-COOH and C=O in carboxylic acids, respectively. One should note that the absorption
intensity of -COOH and C=O groups in the FTIR spectrum of rGO/PPy/Cu2O nanocom-
posites is weakened, whereas the absorption peak of C-O at 1040 cm−1 is disappeared,
indicating the reduction in oxygen-containing functional groups from the graphene surface
and confirming the successful transformation of GO into rGO.
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Furthermore, we have utilized X-ray photoelectron spectroscopy (XPS) to qualita-
tively analyze the elemental composition of as-prepared rGO/PPy/Cu2O nanocompos-
ites. Figure 8 shows the wide-range and high-resolution C 1s XPS spectra of GO and
rGO/PPy/Cu2O. The characteristic peaks of C-C/C=C (284.6 eV), C-O (286.9 eV), C=O
(287.8 eV), and COOH (289.0 eV) can be clearly observed in the high-resolution C 1s
spectrum (Figure 8b) [57]. The characteristic peak of C-N (285.5 eV) is observed in the high-
resolution C 1s spectrum of the as-prepared rGO/PPy/Cu2O nanocomposite (Figure 8d).
Compared with the graphene oxide, the intensity of C-O, C=O, and COOH peaks is weak-
ened in rGO/PPy/Cu2O nanocomposites due to the high-temperature thermal reduction
in GO.
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Figure 8. XPS spectra of rGO/PPy/Cu2O nanocomposite before and after high-temperature thermal
reduction: (a) wide-range and (b) high-resolution C 1s XPS spectra of GO, and (c) wide-range and (d)
high-resolution C 1s XPS spectra of rGO/PPy/Cu2O nanocomposites.
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Overall, SEM, XRD, Raman spectroscopy. FTIR and XPS confirm the successful
synthesis of rGO/PPy/Cu2O nanocomposites, confirming the elemental composition
and structure.

Figure 9 presents the response curves of PPy-coated Cu2O nanowires sensor and
rGO/PPy/Cu2O nanocomposite sensors, with different graphene contents, to NO2 flow
of 50 ppm. The mass ratio of GO to PPy/Cu2O nanowires was set at 0.08, 0.1, 0.12, 0.15,
and 0.2, and the resulting rGO/PPy/Cu2O nanocomposites are named as D0, E0, F0, G0,
and J0, respectively. Herein, the resistance response reached the maximum value within
300 sec after the introduction of NO2 gas. The gas-sensitive response values of D0, E0,
F0, G0, and J0 were found to be 25.0, 42.5, 35.9, 30.0, and 25.1%, respectively. The ratio
of 0.1 composite presents a maximum response, which is about 2.7 times of the sensor
based on pure PPy-coated Cu2O nanowires (15.7%). Additionally, the sensor recovered the
initial resistance level after ≈200 sec under the auxiliary irradiations of an ultraviolet lamp.
The experimental results reveal that the rGO/PPy/Cu2O-based sensor renders superior
gas sensing response, reaching the maximum response value of 42.5% at GO content of E0.
The further increase in graphene content leads to restacking of graphene sheets and loss of
excellent graphene properties, resulting in an inferior gas sensing response.
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Figure 9. The gas sensing response curves of rGO/PPy/Cu2O nanocomposites with different mass
ratios of GO to PPy/Cu2O nanowires to the NO2 flow of 50 ppm (D0: 0.08; E0: 0.1; F0: 0.12; G0: 0.15;
and J0: 0.20).

As graphene content of 0.1 (E0) endows superior gas sensing properties to the as-
prepared rGO/PPy/Cu2O nanocomposite, we have evaluated the sensing efficiency of E0-
based gas sensor under different concentrations of NO2 (Figure 10). The NO2 concentration
of 50, 5, 1 ppm, 500 ppb, and 200 ppb resulted in the response value of 44.0, 38.0, 32.7, 24.4,
and 20.3%, respectively. Under different gas concentrations, the quick response time of E0 is
≈ 300 s and the recovery time can be reduced to ≈150–200 s under auxiliary irradiation of
UV lamp [6]. One should note that the E0-based gas sensor rendered excellent gas sensing
response at low NO2 concentrations, which indicates the superior NO2 adsorption effect
of the as-prepared rGO/PPy/Cu2O nanocomposite, resulting in adsorption saturation
in a relatively small time and high gas sensitivity. The sensor response with respect to
NO2 concentration is mainly nonlinear [58,59] because of the Langmuir adsorption of
NO2 on the surface of active substance. As the concentration of the target gas increases,
the adsorption reaches saturation level and results in a decrease in response.
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Figure 10. The gas response curves of E0-based gas sensor under different NO2 concentrations.

From a practical viewpoint, sustainable reuse is of great significance for gas sensors.
Figure 11 shows the repeated gas sensing response evaluation of the E0-based gas sensor at
NO2 flow of 50 ppm, showing excellent repeatability with one cycle consisting of almost
600 s. First of all, the response reaches the saturation level after 300 s of NO2 gas injection.
Then, the NO2 gas is turned-off and background gas is turned-on at the same time. Under
the illumination of ultraviolet lamp, NO2 gas is gradually desorbed and blown away
by air. The sensor begins to gradually recover the initial resistance level. In this way,
three cycles of cyclic testing are carried out to detect the repeatability of the E0-based
gas sensor. Figure 11 confirms that the gas sensing response of the E0-based sensor at
50 ppm of NO2 gas is stable at ~43.0%. After three cycles, the response sensitivity does not
decrease significantly, which further confirms that the as-prepared E0-based gas sensor
possesses excellent response stability and repeatability. Under normal usage conditions,
the GO/PPy/Cu2O-based gas sensor demonstrates excellent stability with only a slight
decline in the response of 1.5% after 30 days, indicating good long-term stability.
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Furthermore, it is of utmost importance to assess the selectivity of adsorbed gas in
practical applications. Therefore, we have investigated the adsorption of different industrial
and laboratory gases, such as chloroform, formaldehyde, ethanol, acetone, and ethyl acetate,
by the E0-based gas sensor. The saturation vapor pressure of 1% is obtained by the bubbling
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method and the response of NO2 gas (50 ppm) is used as a comparison point to assess
sensor selectivity (Figure 12). Figure 12 shows that the response of E0-based sensor to other
gases is extremely low. For instance, formaldehyde exhibited the highest response of 2.5%
among the tested gases, which is much lower than the response of 50 ppm NO2 gas (42.5%).
One should note that the concentration of these gases is much higher than 50 ppm. Still,
the E0-based sensor demonstrated superior selectivity to the NO2 gas.
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3.2. Sensing Mechanism

Cu2O, rGO, and PPy have similar p-type nature [37,60]. When the composite material
is exposed to air, O2 molecules could be adsorbed on the material surface in the form
of adsorbed

O2(gas) + e− → O2
−(ads) (3)

After the introduction of NO2, NO2 molecules could be directly adsorbed on the
surface by capturing electrons from the material (Equation (4)). In addition, NO2 also gains
electrons from adsorbed oxygen ions (Equation (5)).

NO2(gas) + e− → NO2
−(ads) (4)

NO2(gas) + O2
−(ads) + 2e− → NO2

−(ads) + 2O− (5)

Figure 13 illustrates the gas sensing mechanism. After the above process [61], the hole
concentration of the device increases. Herein, p-type polypyrrole completes the process of
doping and de-doping by gas adsorption and desorption, respectively [62,63]. Meanwhile,
graphene and polypyrrole provide a large number of binding sites for gas adsorption.
The high charge mobility of conducting polymer, i.e., polypyrrole, and graphene facilitates
carrier transport and migration to the electrode for collection. These processes lead to the
rapid decrease in electron concentration within the rGO/PPy/Cu2O composites. In general,
hole-assisted carrier transport is responsible for the conduction of p-type semiconductors.
The hole concentration significantly increases with the decrease in electron concentration in
rGO/PPy/Cu2O composite due to NO2 adsorption, which increases sensor conductivity.
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Figure 13. Schematic illustration of the NO2 sensing mechanism of rGO/PPy/Cu2O-based sensor.

According to the principle of complementary feedback of gas sensor [64], the com-
bination of p-type semiconductors in gas sensors renders a synergistic influence on gas
sensing characteristics and temperature coefficients of both materials, reducing zero drift,
shortening initial relaxation time, and rendering superior selectivity and stability. Herein,
the interdigital electrode is equivalent to the parallel connection of a sensor and several
resistors, which reduces the initial resistance of the sensor. The decrease in initial resistance
of sensor increased the change in resistance, which corresponds to the response value. Dur-
ing the recovery stage of gas sensor, the newly adsorbed air molecules eliminate residual
NO2 molecules from the surface of rGO/PPy/Cu2O nanocomposite by introducing air and
auxiliary irradiations under an ultraviolet lamp [65], increasing the resistivity of p-type
semiconductor and recovering to the initial resistance.

4. Conclusions

In summary, PPy-coated Cu2O nanowires have been prepared by the hydrothermal
reaction and combined with graphene oxide to obtain rGO/PPy/Cu2O nanocomposites
after high-temperature thermal reduction. Moreover, a p-p-type gas sensor has been
fabricated using rGO/PPy/Cu2O nanocomposite as an electrode and room temperature
sensing is realized. The results revealed that the rGO/PPy/Cu2O-based gas sensor renders
better NO2 sensing performance than the PPy/Cu2O-based sensor, confirming the positive
influence of graphene addition. When the mass ratio of graphene to PPy-coated Cu2O
nanowires was 0.1, the rGO/PPy/Cu2O-based sensor demonstrated the highest response
value of 42.5% for NO2 gas (50 ppm). When the concentration of NO2 was as low as 200 ppb,
the rGO/PPy/Cu2O-based sensor still exhibited a response value of 20.3%. Moreover,
the rGO/PPy/Cu2O-based sensor has also rendered stable repeatability and excellent
selectivity at the NO2 concentration of 50 ppm.
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