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The Natural History of Model Organisms

The big potential of the small 
frog Eleutherodactylus coqui
Abstract  The Puerto Rican coquí frog Eleutherodactylus coqui is both a cultural icon and a species with an 
unusual natural history that has attracted attention from researchers in a number of different fields within biology. 
Unlike most frogs, the coquí frog skips the tadpole stage, which makes it of interest to developmental biologists. 
The frog is best known in Puerto Rico for its notoriously loud mating call, which has allowed researchers to study 
aspects of social behavior such as vocal communication and courtship, while the ability of coquí to colonize new 
habitats has been used to explore the biology of invasive species. This article reviews existing studies on the 
natural history of E. coqui and discusses opportunities for future research.

Sarah E Westrick*, Mara Laslo AND Eva K Fischer

Introduction
On the Caribbean island of Puerto Rico the night 
is filled with high-pitched calls of “¡Ko-kee!” as 
the coquí común – the common or Puerto Rican 
coquí (Eleutherodactylus coqui) – sings its song 
across the island. This small but boisterous frog 
is a national symbol of Puerto Rico and has 
featured prominently in the island’s culture for 
thousands of years (Joglar, 1998). The indige-
nous Taíno people believe a goddess created the 
frog to forever call out the name of her lost love, 
Coquí (pronounced ko-kee or co-qui), who was 
taken from her by the god of chaos and disorder. 
The coquí frog remains as celebrated today as it 
was by the ancient Taíno people, and the Taíno 
symbol for the frog (Figure 1) appears in every-
thing from artwork and pottery to the marketing 
and branding many of Puerto Rican companies. 
Indeed, the coquí frog is so important to the 
identity of Puerto Ricans that they often express 
their nationality by saying “Soy de aquí como el 
coquí” (“I’m from here, like the coquí”).

However, in addition to being an important 
cultural symbol in Puerto Rico, E. coqui has 
also become an important species for scientific 
inquiry, and researchers from a number of fields 
have been drawn to the coquí frog as a result 
of its natural history, conspicuous behavior, and 
sheer abundance. This combination of traits has 
made the coquí frog an excellent model for the 
study of developmental biology, neuroethology 

(notably in the areas of mate attraction, commu-
nication, and auditory processing) and invasion 
biology. Here, we give an overview of the life 
history of the coquí frog, discuss its unique role 
in three major fields of biology, outline research 
with coquí in other areas (Box 1), and highlight 
open questions about the natural history of the 
coquí frog and its relatives.

Life history of the coquí
Common coquí are small, nocturnal, terrestrial 
frogs (Thomas, 1965). The snout-vent length 
of a coquí is up to 63 mm for adult females and 
50  mm for adult males. Coquí are gray brown, 
with natural variation in color and striping among 
populations (Figure  2A–C; Beard et  al., 2009; 
Woolbright and Stewart, 2008). This polymor-
phic variation is driven by local habitat matching 
and reduces predation risk by apostatic selec-
tion, where predators have a search image of 
the common morph, thus favoring survival of 
the rarer morphs (Woolbright and Stewart, 
2008). Coquí have clutches of 10–40 eggs that 
are fertilized internally and brooded on land 
(Elinson et al., 1990). Males guard eggs as they 
develop directly from egg to froglet, skipping the 
free-swimming tadpole stage observed in most 
frogs (Townsend, 1986; Townsend and Stewart, 
1985). The small size of coquí froglets makes 
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them vulnerable to predation by many inverte-
brates such as the giant crab spider (Olios spp.; 
Formanowicz et al., 1981).

Coquí are generalists occurring in a wide 
range of habitats, including forests, mountains, 
and urban areas in tropical regions of the Amer-
icas. Since E. coqui are terrestrial and lay eggs 
on land, they are not constrained by needing 
bodies of water for reproduction, provided suffi-
cient humidity (Beard and Pitt, 2012). Coquí 
show a shift in microhabitat preference during 
development. While adults can be found across 
the whole vertical spectrum, from leaf litter to 
canopies, juveniles are more often found in the 
understory and avoid leaf litter (Beard et  al., 
2003). At night, adult coquí prefer large-leafed 
plants that can support their weight for calling 
and foraging and will use large fallen leaves for 
nesting and diurnal retreat sites (Beard et  al., 
2003; Townsend, 1989). Coquí are primarily 
insectivores and opportunistic feeders of abun-
dant prey (Beard, 2007; Stewart and Wool-
bright, 1996; Woolbright and Stewart, 1987).

In their native Puerto Rico, coquí live at 
high densities. Estimates vary but can be as 
high as  ~50,000 frogs/hectare (Beard et  al., 
2008; Stewart and Woolbright, 1996; Wool-
bright et  al., 2006). Populations of coquí are 
estimated to consume up to  ~690,000 inverte-
brates/hectare each night (Beard et  al., 2008). 
Population densities are impacted by rainfall, 
the number of available territories, and disrup-
tive weather events such as hurricanes (Stewart 
and Pough, 1983; ). As habitat generalists living 
closely with humans, and liberated from water 
for reproduction thanks to terrestrial breeding, 
coquí have readily invaded other Caribbean and 
Pacific islands through accidental introductions 
(Figure 3 and detailed discussion below; Beard 

and Pitt, 2012; Stewart and Woolbright, 1996). 
Indeed, a single male brooding a clutch of eggs 
in a potted plant may be sufficient to establish a 
new population (Figure 3 photo inset).

Development
The direct-developing life cycle of coquí is 
dramatically different from the ancestral meta-
morphosing life cycle observed in most living 
frogs. Therefore, E. coqui is an important model 
for understanding the evolutionary origins and 
consequences of direct development. Direct-
developing frogs skip the free-swimming tadpole 
stage characteristic of most frogs, including 
Xenopus laevis, the most common model 
of amphibian development. Instead, direct-
developing frogs hatch as miniature adults 
(Figure 2D–H).

Direct development has evolved inde-
pendently multiple times in frogs (Duellman 
and Trueb, 1994; Gomez-Mestre et  al., 2012; 
Figure 4A), suggesting that this life history can 
be advantageous. This is likely because – espe-
cially when coupled with parental care as in coquí 
(see below) – direct-developing frogs are freed 
from the requirement of water for breeding.

Several immediate questions arise about this 
unique life history: Is early development and 
patterning (the process by which equivalent cells 
take on different identities) the same in direct-
developing and metamorphosing frogs? To 
what extent do direct-developing frogs repeat 
tadpole development within the egg? In coquí, 
the answer seems to be that development is a 
mix of conserved and novel features. This unique 
combination of developmental features has 
made coquí an important model for the evolu-
tion of development, as well as a model for the 
evolution of the amniote egg, a key innovation 
in the evolutionary diversification of vertebrates.

Early development
While fertilization in most frogs is external, fertil-
ization occurs internally in coquí (Townsend et al., 
1981; Townsend and Stewart, 1985). Because 
there is no independently feeding tadpole stage, 
the egg must contain all the nutrients needed to 
get the embryo to the juvenile froglet stage. As a 
result, coquí eggs are large: 3.5 mm as compared 
to the 1.3 mm eggs of Xenopus laevis.

Frogs in general have holoblastic, or complete, 
cleavage of the egg. Coquí maintain this complete 
cleavage, but the large egg shifts the cleavage 
furrows towards the animal pole (top), resulting 
in a larger vegetal (bottom) section (Figure  5). 

Figure 1. The indigenous Taíno symbol for coquí, 
which is ubiquitous in Puerto Rico. The frog-like hands 
seen in Taíno imagery are associated with ‘femaleness’ 
and the calls of coquí are associated with female 
fertility and children (Ostapkowicz, 2015).

https://doi.org/10.7554/eLife.73401
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This altered cleavage pattern in turn shifts other 
developmental events (such as germ layer forma-
tion and neurulation) towards the animal pole 
(Figure  5; Ninomiya et  al., 2001) and impacts 
the distribution of several early patterning RNAs 
(Beckham et al., 2003; Fang et al., 2000; Fang 
and Elinson, 1999).

Despite these differences, some early devel-
opmental features are conserved with metamor-
phosing frogs; germ cells are still located at the 
vegetal pole (Figure 5; Elinson et al., 2011) and 
neural crest cell migration is similar between E. 
coqui and metamorphosing frogs (Moury and 
Hanken, 1995). Xenopus is one of four model 
organisms (chick, mouse, zebrafish) that together 
have painted a picture of early vertebrate devel-
opment in the past sixty years. Thus, coquí offer 
an important comparison for understanding the 

evolution of early vertebrate, and especially 
amphibian, development. Coquí also represents 
a natural ‘experiment’ in understanding how 
alterations of early molecular patterning impact 
later development.

The changes in early development and molec-
ular organization of the coquí egg have prompted 
comparisons to the evolution of the amniote egg. 
The expansion of the vegetal region and shifting of 
the germ layers towards the animal pole is thought 
to also have occurred at the evolutionary transition 
from a membranous egg to the large amniote egg, 
a hypothesis supported by molecular data (Arendt 
and Nübler-Jung, 1999; Buchholz et al., 2007). 
Additionally, the covering of the yolk in E. coqui by 
dorsal structures, including muscles and skin, is a 
characteristic that may have been important in the 
evolution of amniotes (Elinson and Fang, 1998).

Box 1. Other notable coquí research

Fossil evidence
As one of the most speciose vertebrate genera, Eleutherodactylids have a long evolutionary 
history. In fact, a distal humerus of an Eleutherodactylid found in Puerto Rico appears to be 
the earliest known fossil frog from any Caribbean island, with an estimated age of ~29 Mya 
(Oligocene; Blackburn et al., 2020). Molecular phylogenies estimate the genus of 
Eleutherodactylus diverged ~57 Mya (Heinicke et al., 2007; Pyron, 2014) and were present 
in the islands of the Greater Antilles by the mid-Cenozoic (~30 Mya; Heinicke et al., 2007). E. 
coqui, specifically, are estimated to have diverged from their nearest common ancestor ~7.4-
12.8 Mya (Pyron, 2014; Hedges et al., 2015).
Extra tympanic hearing
Vocal communication is central to the lives of most frogs that – like coquí – use sound as 
their central mode of communication. Effective communication, therefore, requires effective 
detection and localization of (conspecific) sounds. Sound localization in many species relies 
on neural comparisons of detection timing between ears, making two observations in diverse 
frogs very surprising. First, even species with very tiny heads, including E. coqui, are capable 
of accurate sound localization. Second, some frogs and toads perform sound localization 
in the complete absence of external ears (i.e. eardrums or tympanic membranes). These 
perplexing observations led to the hypothesis that there must be accessory, extra tympanic 
pathways for hearings. Studies in E. coqui were some of the first to solve this puzzle by 
confirming the existence of accessory hearing via the body wall and lungs (Ehret et al., 1990; 
Narins et al., 1988).
Coquí in bioengineering
To make their impressive vocalizations, coquí frogs expand and contract their gular skin with 
remarkably high extensibility, elongating up to 400% for males (337% for females) with an 
ultimate tensile strength of 1.7 MPa, meaning the tissue is easily extensible. In comparison, 
the gular tissue of Xenopus laevis, which do not have vocal sacs, elongates up to 104% and 
requires much more force to extend with an ultimate tensile strength of ~6.3 MPa. This tissue 
has inspired research on the structure and molecular mechanisms of the coquí gular skin 
tissue compliance with implications for using biomimicry in development of more compliant 
biomaterials in regenerative medicine, such as 3D printed bladder tissues (Hui et al., 2020).
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Figure 2. Different aspects of coquí natural history. (A–C) Coquí vary in color and pattern across different localities. 
(D–H) Coquí are direct developers, skipping the tadpole stage in their early development from an egg to a froglet. 
Townsend-Stewart (TS) described coquí development in 15 stages. Scale bars are 1 mm. (I) Froglets are quite small 
when they hatch and are at risk of predation by invertebrates. (J) Coquí are particularly known for their noisy calls 
made with their elastic vocal sacs. (K–L) Male coquí sit on their terrestrial eggs to hydrate them and will guard their 
newly hatched froglets.

Image credits: (A, C) S Van Belleghem (B, K–L) K Harmon (D–H) M Laslo (I) C Brown, USGS (J) A Lopez.

A final parallel between E. coqui and amniote 
development involves the nutritional endoderm. 
In the typical 1–2 mm amphibian egg, the whole 
egg becomes an embryo. In contrast, the nutri-
tional endoderm is a novel coquí tissue made 
of cells that do not contribute to the embryonic 

intestine (as does regular endoderm) but do 
provide nutrition (Buchholz et  al., 2007). This 
tissue has been proposed as an intermediate 
step in the evolution of the large amniote egg, 
as nutritional endoderm is like extraembry-
onic tissues in amniotes in that some oocyte 

https://doi.org/10.7554/eLife.73401
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Figure 3. Distribution of the coquí. Native to Puerto Rico, E. coqui have successfully invaded many tropical islands 
and countries. Close to home, coquí have been introduced to other Caribbean islands, including the Culebra and 
Vieques Islands of Puerto Rico (Rivero and Joglar, 1979), St. Thomas and St. Croix in the Virgin Islands (MacLean, 
1982), and the Dominican Republic (Joglar, 1998). Farther afield, coquí were accidentally introduced to Florida 
in the 1970s (Austin and Schwartz, 1975; Wilson and Porras, 1983) and Hawai’i in the late 1980s (Velo-Antón 
et al., 2007), presumably as hitch-hikers on ornamental plants (photo inset). An intentional introduction of E. 
coqui was documented in Costa Rica, where six individuals were released in a private garden in 1998 and have 
since spread (Barrantes-Madriga et al., 2019). Floridian and some Hawaiian populations have been successfully 
eradicated due to inhospitable environmental conditions (Florida) and human effort (Hawai’i), but reintroductions 
remain a documented concern.

Image credit: RN Tischler.

material is used purely for nutrition and does 
not contribute to the embryo (Elinson, 2009). 
Therefore, coquí acts as a “missing link” or “tran-
sitional” model system to understand a possible 
evolutionary path between membranous eggs 
and the amniote egg.

Late development
Post-embryonic development (metamorphosis) is 
shifted prior to hatching in coquí (into the period 
we call embryogenesis in coquí). Because coquí 
skip the tadpole stage, there are two poten-
tial trajectories of embryonic development: (1) 
larval structures never form, and adult features 
form directly, or (2) larval features develop and 
are remodeled into the adult morphology prior 
to hatching. Both of these cases are found for 
different structures in E. coqui.

Limbs are perhaps the most dramatic adult 
feature to form directly and early in coquí relative 
to metamorphosing frogs. Although the basic 
sequence and pattern of limb bone formation 
is conserved between E. coqui and metamor-
phosing frogs (Hanken et al., 2001), expression 
patterns of limb development genes differ, or are 
completely absent (Gross et al., 2011; Kerney 
and Hanken, 2008). Another major difference 
in E. coqui limb development is the absence of 

physical ridge of ectoderm (the AER, or apical 
ectodermal ridge; Richardson et al., 1998) that 
promotes and maintains growth of the limb in all 
frogs and all other vertebrate models examined, 
with the exception of salamanders (Hanken, 
1986; Saunders, 1998; Saunders, 1948; Tarin 
and Sturdee, 1971). Although the physical 
structure is lacking in E. coqui, gene expression 
and transplantation studies suggest that major 
signaling centers are still present and function 
in coquí limbs as they do in other vertebrates 
(Gross et al., 2011; Hanken et al., 2001).

Several other adult features appear directly in 
the adult configuration. During metamorphosis, 
adult muscle must be recruited from satellite 
cell populations, whereas in E. coqui the adult 
muscle fibers appear directly (Hanken et  al., 
1997). Adult nervous system features important 
for terrestrial life also form directly, including the 
olfactory system (Jermakowicz et  al., 2004), 
the retina, and the optic tectum (Schlosser and 
Roth, 1997). In tadpoles, neurogenesis and 
proliferation of the spinal cord increase dramati-
cally after hatching. These developmental events 
occur in the coquí spinal cord earlier relative to 
other parts of the central nervous system, likely 
because they are linked to early limb develop-
ment (Schlosser, 2003).

https://doi.org/10.7554/eLife.73401
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Figure 4. Evolution of direct development and parental care type. (A) Phylogenetic tree 
showing that, across Anura, there have been 11 independent evolutionary occurrences of 
direct development. Evidence suggests that the clade that includes Eleutherodactylidae, 
Craugastoridae, and Hemiphractidae is one of the oldest direct developing lineages, having 
evolved ~71–108 MYA (see Heinicke et al., 2009 and Gomez-Mestre et al., 2012 more 
details on the evolution of direct development). Other instances of direct development 
appear to have emerged more recently. (B) Phylogenetic tree showing that, across the 
family Eleutherodactylidae, there is variation in parental care strategies, including maternal, 
paternal, and amphisexual. E. coqui sits within a larger clade with mostly paternal egg care; 
additionally, male coquí care for froglets. E. coqui is one of two Eleutherodactylid species 
known to show paternal egg and juvenile care (Furness and Capellini, 2019). Currently, 
data is too sparse and varied to determine what specific parental care strategy was used 
by the ancestor of Eleutherodactylids; however, parental care is generally associated with 
direct development and a terrestrial life history (Gomez-Mestre et al., 2012; Vági et al., 
2019). Phylogenetic clade relationships created from Pyron, 2014 time tree data. Direct 
development and behavior traits mapped on phylogenies with data from Furness and 
Capellini, 2019.

Some larval features form briefly, and then 
are remodeled in the final third of development, 
which has therefore been nicknamed “cryptic” 
metamorphosis (Callery and Elinson, 2000). 
Many tadpole-specific cranial cartilages and 
muscles are patterned, or outlined, by gene 
expression, but the tissues never actually form 
(Kerney et al., 2010). The lower jaw and parts of 
the skeleton that would support the gills appear 
in the mid-metamorphic arrangement (Hanken 
et al., 1992; Ziermann and Diogo, 2014). Inter-
estingly, some ancestral muscles important for 
aquatic feeding of the tadpole form appear 
briefly, although these muscles have no function 
in E. coqui (Hanken et al., 1997).

Finally, it is worth noting features of E. coqui 
development that are entirely novel and the typical 
tadpole-specific features that never form. The E. 
coqui tail is highly vascularized and may be used 
as a respiratory organ, a hypothesis supported 
by the observation that embryos undergoing 
accelerated development, including accelerated 
tail resorption, die if they cannot access air (ML, 
personal observation). The cement gland, which 
secretes a sticky mucus and allows tadpoles to 
secure themselves to substrate, and the lateral 
line, sensory cells that detect water movement 
and vibrations, never form (Schlosser et  al., 
1999). Altogether these observations inform our 
understanding of developmental modularity and 
constraint.

Endocrine regulation of development
Given their unique life history, E. coqui are 
also useful for understanding the evolution of 
endocrine regulation of development. Thyroid 
hormone (TH) controls the timing of post-
embryonic metamorphosis. Events normally 
under TH control in metamorphosing frogs 
appear to be a mixture of TH-independent and 
TH-dependent in E. coqui. For example, tail 
resorption and aspects of metabolism are regu-
lated by TH as in metamorphing frogs (Callery 
and Elinson, 2000; Elinson, 1994), but limb 
development and growth, dependent on TH in 
metamorphosing frogs, seems to have both an 
early TH-independent and a late TH-dependent 
period in coquí (Callery and Elinson, 2000; 
Elinson, 1994). The hypothesis that maternally 
derived TH (Elinson, 2013; Laslo et al., 2019) 
could influence the early TH-independent 
period has not yet been directly tested. Other 
aspects of endocrine regulation of develop-
ment appear to be conserved in E. coqui and 
metamorphosing frogs, including interactions 

https://doi.org/10.7554/eLife.73401
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Figure 5. A comparison of E.coqui (A, C, E) and X. laevis (B, D, F) development. (A–B) Drawings of embryos after 
the first horizontal division. This horizontal division divides the embryo into animal (top) and vegetal (bottom) cells. 
The cap of E. coqui animal cells is much smaller than the animal cells in the early X. laevis embryo. (C) Dorsal view 
of the E. coqui neurula, which is shifted towards the animal pole compared to the X. laevis neurula (D; dorsal and 
lateral views shown). (E–F) Morphologically equivalent limb bud stages of the coquí embryo (E) and the X. laevis 
embryo (F). The coquí embryo is atop a large yolk mass, while limb buds emerge from a free-swimming X. laevis 
tadpole. Scale bars are 1 mm.

Image credit: M Laslo.

https://doi.org/10.7554/eLife.73401
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Box 2. Outstanding questions about the natural history 
of Eleutherodactylus coqui

Developmental biology

•	 How does maternal nutritional and hormonal contribution impact early development and 
developmental timing (e.g., through yolk hormones)?

•	 How does heterochrony evolve and what are its genomic mechanisms (e.g., evolution of 
regulatory sequences or chromatin structure)?

•	 Do mechanisms mediating developmental plasticity in metamorphosing frogs also influ-
ence (plasticity in) developmental timing in coquí (e.g., glucocorticoids, thyroid hormone)?

•	 How does the mechanism of direct development in E. coqui compare to other direct-
developing frogs?

Neuroethology and social behavior

•	 What behavioral, neural, and molecular mechanisms govern (switching between) distinct 
call types (aggressive vs courtship vs defense) in males (e.g., are distinct neural activity 
and/or hormonal patterns associated with distinct call types)?

•	 How are trade-offs between alternative behavioral states (territorial vs parental) negoti-
ated at behavioral, physiological, and neural levels (e.g., do expression changes in shared 
or distinct gene sets mediate behavioral switching)?

•	 What are the neural and genomic molecular mechanisms mediating female mate choice 
of choice (e.g., what neural and hormonal changes are triggered by attractive male calls)?

Conservation/invasion biology

•	 How have invasive populations adapted to new environments despite low genetic diver-
gence (e.g., in antipredator behavior or physiology)?

•	 How can ongoing introductions and new populations be used to track rapid adaptation 
to novel environments (e.g., expansions to high elevation sites in Hawai’i)?

•	 Have coquí adapted physiologically and/or behaviorally following eradication efforts 
(e.g., increased resistance to citric acid)?

Integrative questions

•	 Proximate mechanisms of invasion

Are there genomic signatures of invasiveness? How does local adaptation take place in 
the face of low genetic diversity?
How do natural history traits like developmental mode and communication play facilitate 
invasion and in turn evolve in response to invasion?
How does the behavior of an invasive species contribute to ecosystem remodeling?
What are the genetic and molecular mechanisms of Bd resistance in coquí and are they 
advantageous in the face of novel pathogens?

•	 Parent-offspring interactions

What are the impacts of early life development and parental hormonal and nutritional 
contributions on later behavior in E. coqui?
What are the maternal contributions to offspring in absence of direct parental care by 
females?

continued on next page

https://doi.org/10.7554/eLife.73401
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What is the role of signaling (chemical or hormonal) between adults and embryos/
juveniles?

•	 Comparative studies across Eleutherodactylids

What can comparative genomic studies tell us about the development of alternative life 
history strategies?
How do neural mechanisms controlling behavior differ in species with different parental 
care strategies?
How does plasticity in development and behavior shape differences between species?

Video 1. Coquí are notorious in Puerto Rico for their 
loud vocalizations at night.

Video credit: K Harmon.

https://elifesciences.org/articles/73401/figures#video1

of TH and glucocorticoids, and the secretion of 
pituitary hormones by corticotropin-releasing 
hormone (Jennings et  al., 2015; Kulkarni 
et al., 2010).

E. coqui’s direct-developing life history 
continues to teach us about the evolution of 
development. Coquí have taught us how egg 
size impacts early development, how the amniote 
egg may have evolved, how the vertebrate limb 
development module evolves, and how endo-
crine regulation of development evolves. These 
frogs also represent an exciting model for 
hormonal contributions to development. Thyroid 
hormone is necessary for neural development in 
vertebrates; however, this is difficult to study in 
mammals because thyroid hormones cross the 
placenta.

Coquí share many of the traits that make 
Xenopus species good models for translational 
research, including large and easily manipulated 
eggs; however, because coquí lack the extended 
free-swimming larval period of Xenopus, coquí’s 
life cycle is more similar to the human develop-
ment than Xenopus’. Additionally, evolutionary 
life cycle transitions across the animal tree of 
life (in fish, echinoderms, and insects) and within 
frogs can benefit from understanding the mecha-
nism of direct development in coquí. Specifically, 
coquí is a valuable starting point for studies on 
the convergent evolution of direct development 
in frogs. Finally, previous studies have relied on 
a candidate gene approach. In the future, our 
understanding of development in E. coqui stands 
to benefit from modern sequencing technologies 
that allow an unbiased, exploratory approach to 
developmental questions. Because direct devel-
opment is an evolutionary shift in developmental 
timing, and metamorphosis is relatively well 
understood, coquí represents an ideal model to 
investigate the proximate mechanisms, including 
the role of maternal hormones, in these shifts in 
developmental timing (Box 2).

Social behavior

Vocal communication
Vocal communication is central to the lives of 
most frogs. Among many possible choices, 
researchers were attracted to E. coqui due to 
their remarkably loud calls and sheer abundance. 
This initial choice was fortuitous, and studies of 
vocal communication in E. coqui have provided 
key insights.

https://doi.org/10.7554/eLife.73401
https://elifesciences.org/articles/73401/figures#video1
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Box 3. Natural diversity in Eleutherodactylids

Eleutherodactylus is a highly speciose genus ubiquitous across Neotropical regions 
(Crawford and Smith, 2005). Estimates for the number of species included in the genus 
Eleutherodactylus vary widely, from 185 to over 700; at the time of writing an AmphibiaWeb 
search for “Eleutherodactylus” returned 202 hits (AmphibiaWeb, 2021; Duellman, 1993; 
Hedges et al., 2008). While there was a high rate of newly described or resurrected taxa 
of Eleutherodactylids in the late 1990s and early 2000s (e.g., Campbell and Savage, 2000; 
Duellman and Pramuk, 1999; Lynch, 2001; Savage and Myers, 2002), further phylogenetic 
studies are needed to evaluate taxonomic relationships and biogeography of this diverse 
genus (Crawford and Smith, 2005; Hedges et al., 2008).
The life history diversity of Eleutherodactylids makes this genus a prime candidate for 
comparative studies and advancement as a powerful ‘model clade' for integrative research 
(Jourjine and Hoekstra, 2021). Such work is embodied by research on Peromyscus mice 
(see Bedford and Hoekstra, 2015) and has potential in models like coquí and ricefish (see 
Hilgers and Schwarzer, 2019). For example, among Eleutherodactylus species there is broad 
variation in parental care strategies with species exhibiting uniparental care of eggs and/
or froglets or no care (Townsend, 1996; Figure 4B). However, the sex providing uniparental 
care differs across species (Townsend, 1996; Figure 4B). E. cooki and E. coqui both show 
paternal care of eggs, whereas E. cundalli shows maternal care, and E. johnstonei shows 
amphisexual parental care of eggs (either paternal or maternal but not biparental; Bourne, 
1998; Burrowes, 2000, p. 200; Townsend, 1996). Historically, E. planirostris was classified 
as exhibiting no parental care (Townsend, 1996) but recent observations suggest this 
species possibly has paternal care (Iturriaga and Dugo-Cota, 2018). Notably, E. cundalli 
mothers transport hatched froglets ‘piggy-back’ style (Diesel et al., 1995), as compared 
to the more common transportation of tadpoles (Weygoldt, 2009). Natural variation in 
Eleutherodactylidae provides an opportunity to understand the similarities and differences 
of these unique but analogous forms of parental care. In addition, most Eleutherodactylids 
are oviparous, but one species (E. jasperi) is ovoviviparous (Drewry and Jones, 1976), 
which opens the potential to investigate questions of development and maternal investment 
between closely related species. Finally, there is remarkable diversity in auditory tuning in this 
group (Lewis et al., 1992) providing fertile ground for comparative studies of multi-modal 
communication. The broad foundational knowledge about E. coqui provides an excellent 
starting point for integrative, comparative work.
Across Eleutherodactylidae, species vary in their International Union for Conservation of 
Nature (IUCN) Red List status. Unfortunately, like many amphibian genera (Alford and 
Richards, 1999), threats such as Bd and habitat destruction have decreased the population of 
most Eleutherodactylid species and many are considered endangered or critically endangered 
(IUCN, 2021). In contrast, E. coqui is one of only three known Eleutherodactylids that are 
increasing in population size (IUCN, 2021). The success of coquí as an invasive species may 
provide insights into why some amphibian species are thriving while others are struggling 
to maintain reproductive populations. Scientists across the Caribbean are working hard 
to conserve the biodiversity of this unique clade of frogs. For example, the non-profit 
organization El Proyecto Coquí (http://www.proyectocoqui.com/), led by Dr. Rafael L. Joglar 
at University of Puerto Rico at Ponce, works on conservation of amphibians and reptiles 
in Puerto Rico, with a particular focus on Eleutherodactylids, which, including the Puerto 
Rican coquí, are all often commonly referred to as coquí. Anyone interested in contributing 
to the conservation efforts of Puerto Rico can ‘adopt’ one of these beloved frogs through 
Conservación ConCiencia’s ‘Adopt-A-Coquí’ program (https://www.conservacionconciencia.
org/adopt-a-coqui).

https://doi.org/10.7554/eLife.73401
http://www.proyectocoqui.com/
https://www.conservacionconciencia.org/adopt-a-coqui
https://www.conservacionconciencia.org/adopt-a-coqui
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E. coqui have a rich vocal repertoire, adjusting 
their namesake call for distinct social and envi-
ronmental contexts. In the context of territory 
defense, males increase call rate and volume and 
vary the number of syllables in their call, some-
times using single ‘co’ notes and sometimes 
appending additional ‘co’ and ‘qui’ syllables (e.g., 
‘co-co-qui-qui’, ‘co-qui-qui-qui’, etc.; Narins and 
Capranica, 1976; Stewart and Rand, 1991; see 
Video  1). Vocal escalation progresses to phys-
ical attack if an intruder comes within less 50cm 
(Reyes-Campos, 1971). By contrast, during 
courtship males reduce call volume and occa-
sionally drop the ‘qui’ syllable (Townsend and 
Stewart, 1986; see below for additional details 
of courtship behavior).

Unlike in most frogs, female E. coqui also call. 
Female calls consist of one long note followed 
by a series of shorter notes that are of a distinct 
quality and quieter than male calls (Stewart 
and Rand, 1991). Females call to defend their 
daytime retreats and will physically attack 
intruders of both sexes (Stewart and Rand, 
1991). In the wild coquí of any sex are found 
together in retreats only during courtship, and 
aggressive calls in both sexes likely allow frogs to 
appropriately space themselves and avoid costly 
physical encounters (Stewart and Bishop, 1994).

In addition to varying call volume, rate, and 
syllable number, the ‘co’ and ‘qui’ syllables them-
selves have distinct functions: the ‘co’ syllable 
is specialized for aggressive interactions while 
the ‘qui’ syllable is important for mate attrac-
tion (Narins and Capranica, 1976; Narins and 
Capranica, 1978). These functional specializa-
tions are associated with differences in auditory 
sensitivity between sexes (Narins and Capranica, 
1976), a finding that was the first demonstration 
of sex differences in peripheral auditory tuning in 
a vertebrate.

Taken together these observations are exciting 
as they provide a mechanism by which males may 
simultaneously communicate specialized infor-
mation to male competitors and female mates, 
even in a noisy, complex sound environment. 
More recent studies further highlight coquí as 
an intriguing example of how selection may fine-
tune multi-functional communication systems by 
demonstrating behavioral and auditory tuning 
along an altitudinal gradient in E. coqui (Meen-
derink et  al., 2017; Meenderink et  al., 2010; 
O’Neill and Beard, 2011).

In brief, the complex interplay of note iden-
tity, loudness, and sequence alongside audi-
tory tuning and behavioral adaptations remain 
fertile ground for investigation of complex, 

multi-functional vocal communication systems 
in E. coqui. Excitingly, genomic technologies 
for quantification and manipulation can now be 
brought to bear on open questions concerning 
the mechanisms of both signal production and 
reception.

Courtship
Courtship in E. coqui is lengthy and involves a 
unique amplexus posture. Once a prospective 
mate arrives, the male leads the female to a nest 
site in his territory, moving 10-30cm ahead of the 
female and calling to encourage her to follow 
(Townsend and Stewart, 1986). This lead-and-
follow continues until the pair reaches and enters 
a nest site. Once inside, the female inspects the 
site and – if she accepts – backs herself under-
neath the male (Townsend, 1989; Townsend 
and Stewart, 1986).

Unlike many amphibians, males do not clasp 
females. Instead, a female will lay her legs over 
the top of the male’s legs in a “reverse hind leg 
clasp” (Townsend and Stewart, 1986). This 
unique posture is thought to facilitate internal 
fertilization, another coquí trait rare among frogs, 
with only 10 anuran species (0.13%) known to 
have internal fertilization (Sever et al., 2003).

Over the course of oviposition, the female 
moves out from under the male, such that he 
comes to rest on the newly laid clutch. While 
courtship generally commences in the early 
evening (peak calling in males is between dusk 
and midnight; Woolbright, 1985), oviposition 
does not occur until the next morning (Townsend 
and Stewart, 1986). Both the male and female 
generally remain in the nest until dusk of the 
following day (i.e. nearly 24  hours after court-
ship is initiated), at which time the male becomes 
aggressive, calling and biting to chase the female 
out of the nest. Data suggest that extended 
courtship is required for females to complete 
ovulation prior to oviposition (Townsend and 
Stewart, 1986). This research establishes great 
potential for studying connections between 
behavior and physiology in coquí.

Parental care
Parental care is exhibited by only ~10% of anurans 
(Wells, 2007), making both the parental care and 
the direct development from embryo to froglet 
in E. coqui notable. Indeed, these unique aspects 
of coquí’s life history may be linked because they 
eliminate the need for embryos and tadpoles to 
be in water. Reduced reliance on water for repro-
duction is favored because it reduces predation 

https://doi.org/10.7554/eLife.73401
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risk to embryos and juveniles and allows frogs 
to take advantage of more varied habitats. 
Male coquí provide care to their offspring for 
17–26 days until embryos hatch, often remaining 
with hatched froglets for an additional 1–6 days 
(Townsend et al., 1984). In the wild, males typi-
cally provide care to one clutch at a time and 
seldomly leave the nest during the brooding 
period (Townsend, 1989; Townsend et  al., 
1984). Care is critical for offspring survival and 
clutch failure is ~80% when males are removed 
due to desiccation, predation, and cannibalism 
(Townsend et al., 1984).

Parental care is likely energetically costly, both 
directly and indirectly, due to reduced opportu-
nities for foraging, territory defense, and mating 
(Townsend, 1989). The role of cannibalism high-
lights these trade-offs. Coquí males cannibalize 
the eggs of conspecifics (simultaneous resource 
acquisition and aggression/competition) who 
vigorously defend their brood (an additional cost 
of care; Townsend et al., 1984). However, fathers 
are also known to cannibalize their own eggs, 
presumably to recover energetic resources when 
brood failure is likely due to high egg mortality 
from extrinsic factors (e.g., fungal infection), 
depredation, or cannibalism by another coquí 
(Townsend et  al., 1984). As mechanistic links 
between parental behavior and infanticide have 
been demonstrated in mice (Wu et al., 2014) and 
suggested in other species (Fischer and O’Con-
nell, 2017), these observations provide a partic-
ularly intriguing starting point for work exploring 
mechanisms of behavioral trade-offs.

Based on the mating and parental behavior 
detailed above, E. coqui males can be classified 
as being in a territorial versus a parental state. 
These behavioral states are largely mutually exclu-
sive, begging the question of how alternative 
states are regulated. An early study showed that, 
as in many vertebrates, testosterone decreases 
during parental effort in E. coqui (Townsend and 
Moger, 1987).

More recent work has uncovered additional 
mechanisms mediating aggressive behavior, 
including a role for the nonapeptides arginine 
vasotocin and mesotocin (the amphibian homo-
logs of mammalian vasopressin and oxytocin, 
respectively), as well as serotonin. Increased vaso-
tocin or oxytocin increased aggressive calling 
behavior and the propensity for non-territorial 
satellite males to establish a new territory (Ten 
Eyck and Ten Eyck, 2020; Ten Eyck and Ten 
Eyck, 2017; Ten Eyck and ul Haq, 2012), while 
increased serotonin signaling decreased calling 

in male territory holders (Ten Eyck, 2008; Ten 
Eyck and Ten Eyck, 2020).

Interestingly, vasotocin treatment did not 
increase calling in parental (non-calling, non-
territorial) males, suggesting that the effects of 
vasotocin treatment are modulated by parental 
state (Ten Eyck and ul Haq, 2012). Nonapep-
tides are broadly implicated in vertebrate soci-
ality including parental care and aggression 
(Goodson, 2013; Goodson, 2008), and E. coqui 
provide opportunities to understand how these 
molecules mediate social behavioral trade-offs 
not only among species but also at the individual 
level. Given early indications that parental state 
influences the effects of neuromodulators on 
calling behavior, it will be interesting to explore 
the effects of these molecules on the different call 
types discussed above, which are produced for 
distinct purposes in different behavioral contexts.

In sum, coquí social behavior provides oppor-
tunities for exploring sensory processing, behav-
ioral trade-offs, and how and why unique life 
histories evolve. Existing studies address various 
aspects of these questions and set the stage for 
integration across behavioral contexts and levels 
of analysis. For example, previous studies have 
characterized differences in auditory tuning in 
males versus females (Narins and Capranica, 
1976) and the molecular correlates of calling in 
males (Ten Eyck, 2008; Ten Eyck and ul Haq, 
2012), and it would now be fruitful to disen-
tangle neural mechanisms of distinct call types, 
to explore neural and molecular mechanisms of 
vocalization in females, and to ask whether the 
same neuromodulators that influence calling 
behavior also modulate auditory sensitivity within 
and between sexes (see Box 2).

Biological invasion
While coquí are a beloved cultural symbol in their 
native Puerto Rico, they are much less celebrated 
– and even despised – where they have invaded 
in Central America, North America, and the 
Caribbean (Figure 3). With the notable exception 
of cane toads, Rhinella marina, in Australia (see 
Shine, 2010 for review), invasive amphibians are 
relatively rare. The generalist lifestyle of E. coqui 
and their independence from standing water for 
reproduction have contributed to coquí’s rapid 
dispersal and proliferation, as have both acci-
dental and intentional human transport (Everman 
et al., 2013; Kraus and Campbell III, 2002).

E. coqui are considered among the 100 worst 
invasive species in the world (Simberloff and 
Rejmanek, 2019), bringing with them a host of 

https://doi.org/10.7554/eLife.73401
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biological and economic problems. The Hawaiian 
invasion is both the most extensive and the best 
studied. Hawaiian populations reach densities of 
up to 91,000 frogs/hectare (Beard et al., 2009), 
two to three times higher than estimates for 
native populations in Puerto Rico (Woolbright 
et  al., 2006), and among the highest known 
for any amphibian worldwide. From a biolog-
ical perspective, the invasion of coquí presents 
several concerns, most notably competition 
with and predation on endemic species (Beard, 
2007; Choi and Beard, 2011). From an economic 
perspective, these small frogs are responsible for 
millions of dollars of damage each year (Kaiser 
and Burnett, 2006), decreasing property values 
(chorusing coquí produce sound pressures of 
up to 95  dB – similar to a motorcycle engine) 
and impacting multi-million-dollar floriculture 
industry (Beard and Pitt, 2005). Nonetheless, 
having coquí on their property decreases resi-
dents’ negative perceptions (Kalnicky et  al., 
2014) suggesting attitudes toward these noisy 
invaders may shift over time.

In view of biological and economic concerns, 
substantial resources have been invested in erad-
icating E. coqui in Hawai’i (reviewed Beard and 
Pitt, 2012). While eradication is likely no longer 
possible on the Big Island, smaller populations 
on O’ahu and Kauai were successfully eradicated 
(Beachy et  al., 2011), although reintroductions 
remain a constant concern. Hot water treatment 
is effective in greenhouse settings and treat-
ment with citric acid is approved by the USDA. 
The chytrid fungus Batrachochytrium dendro-
batidis (Bd) was proposed as a biological control 
agent, but this idea has been largely abandoned 
as coquí are somewhat resistant to the fungus 
(Langhammer et al., 2014; Rollins-Smith et al., 
2015) and due to concerns that Bd could spread 
to vulnerable amphibians outside Hawai’i (Beard 
and O’Neill, 2005). Notably, the above methods 
are possible in Hawai’i because the archipelago 
does not have any native amphibians, but are 
unlikely to translate well to other coquí invasions 
– for example in Costa Rica – where protection of 
endemic species is of central concern.

While the invasion of coquí presents serious 
biological and economic concerns, it also pres-
ents opportunities for basic and applied research 
(see Hanson et al., 2020 for a similar example in 
house sparrows, and the excellent body of work 
on cane toad invasion in Australia; e.g., Brown 
et al., 2015; DeVore et al., 2021; Rollins et al., 
2015; Selechnik et  al., 2017). Conservation-
centered questions abound and excellent 
research is being conducted in this area (Beard 

et  al., 2009; Beard and Pitt, 2005; Joglar, 
1998). Additionally, comparisons between inva-
sive and native Puerto Rican populations provide 
a largely untapped opportunity for exploration 
of local adaptation and examination of genomic 
and phenotypic traits that facilitate invasion. This 
research could shed light on why E. coqui have 
been so successful – both in their native and intro-
duced ranges – while some closely related species 
are imperiled. E. coqui’s relative resistance to Bd 
(Langhammer et al., 2014; Rollins-Smith et al., 
2015), which is driving many amphibian species 
to extinction, may provide particularly important 
insights. Finally, large, invasive populations allow 
for developmental and neurobiological studies 
that often require destructive sampling and would 
therefore not be ethical in most wild populations. 
Alongside explicit consideration of their natural 
history, study of model organisms outside the lab 
has the potential to provide new insights through 
the incorporation of critical environmental and 
ecological context.

Conclusion
Thanks to their unique natural history, coquí have 
attracted the interest of diverse research fields, 
including some outside the scope of this paper 
(Box 1).

Direct development from egg to froglet has 
made coquí an excellent model system for evolu-
tionary developmental biologists to examine how 
changes in maternal provisioning influence devel-
opment and speculate on the evolution of the 
amniotic egg. Studies of coquí development have 
uncovered new evolutionary features and probed 
how coquí have altered conserved develop-
mental processes in the transition from a biphasic 
life history to direct development. In turn, direct 
development has facilitated the coquí’s invasion 
potential, making these frogs a focus of conser-
vation research. Through direct development 
and parental care, coquí have reduced reliance 
on water which opens many ecological niches 
in comparison to water-bound amphibians and 
facilitated the invasion of coquí on many trop-
ical islands. Coquí’s impressively loud nocturnal 
choruses, in and outside their native range, have 
also attracted researchers in behavioral neuro-
science, yielding work that contributes to our 
understanding of auditory communication and 
adaptations for sensory processing.

Despite this rich history of research, there are 
still unexplored aspects of coquí natural history 
that are driving novel research. For instance, 
coquí have recently shown promise in advancing 

https://doi.org/10.7554/eLife.73401
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bioengineering due to incredibly extensibile gular 
skin tissue that allows them to produce their char-
acteristic vocalizations (Hui et al., 2020; Box 1).

Despite great interest in the natural history 
of coquí across diverse fields, there is little work 
bridging disparate disciplines. The time is ripe 
to leverage previous studies and emerging tech-
nologies to build a holistic understanding of this 
culturally, developmentally, behaviorally, and 
evolutionarily interesting species. In addition to 
discipline-spanning work, coquí are poised for 
integrative research spanning levels of biolog-
ical organization, from molecular mechanisms 
to ecosystem impacts. Recent and foundational 
studies provide the necessary framework for 
impactful application of genomic, transcriptomic, 
and genetic manipulation techniques: transcrip-
tomic approaches have already been success-
fully applied (Laslo, 2019), a genome is currently 
under construction (Vert Genome Project, https://​
vertebrategenomesproject.org/), and tools for 
genomic manipulation are particularly amenable 
in amphibians, which have large, externally devel-
oping embryos.

The intersection of traditionally distinct 
conservation, developmental, and neuroetho-
logical work provides fertile ground for impactful 
integrative studies; for example, linking devel-
opmental manipulations with adult behavioral 
outcomes, understanding the evolution and 
development of alternative life history strategies, 
understanding the impacts of maternal hormonal 
and nutritional contributions to offspring health 
and developmental timing in the absence of 
direct care, and exploring the role of develop-
mental mode and communication in invasion 
potential, to name just a few (see Box 2). More-
over, diversity across closely related Eleuthero-
dactylids provides opportunities to expand these 
questions into a powerful comparative frame-
work (Jourjine and Hoekstra, 2021; see Box 3).

Beyond the science, E. coqui are valuable 
and unique in their cultural importance. The 
cultural interest in this small, vocal frog provides 
an opportunity to engage diverse communities 
in STEM educational opportunities and citizen 
science efforts. Coquí are also well-positioned 
to welcome and include diverse stakeholders in 
scientific practice.

Given the geographic range of coquí, research 
involving these frogs can work towards the decol-
onization of scientific practice by partnering with 
local researchers and community members, 
particularly in Puerto Rico and Hawai’i. These part-
nerships are mutually beneficial as local scientific 
and lay communities have a unique knowledge of 

and relationship with their local flora and fauna 
but often lack the infrastructure and training 
opportunities that promote certain subdisciplines 
(for example, ready access to expensive, rapidly 
evolving genomic technologies).

Meaningful collaboration can improve the 
science by increasing diversity of experience 
and thought, and help increase opportunities 
where they are lacking. Collaborating with local 
scientists on coquí research in its native and inva-
sive range will help increase the representation 
of Puerto Rican and other Latinx countries in 
ecology, neuroscience, and conservation. Coquí 
provide an opportunity for Puerto Rican scien-
tists to do high-quality work close to home and 
in fields historically lacking Latinx representa-
tion (Lewis et  al., 2009; O’Brien et  al., 2020; 
Quirk, 2017; Rincón and Rodriguez, 2020). It is 
difficult to quantify the representation of Native 
Hawaiian and Pacific Islanders in STEM because 
Pacific Islanders are traditionally grouped 
together with Asian Americans, despite being a 
group with multiple racial and ethnic identities 
(Maramba, 2013). Participation is likely lower 
than Latinx (Levine, 2013; Maramba, 2013; NSF 
and NCSES, 2021), and the invasion of coquí in 
Hawai’i provides an opportunity for community 
engagement and for training Hawaiian scientists 
in their homelands on research questions with 
direct local application.

We hope that the broad base of scientific and 
cultural knowledge about the unique life history 
of E. coqui will inspire researchers to capitalize 
on the big potential of these small frogs to do 
integrative work in the lab, the field, and the 
community.
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