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Abstract

The genus Chryseobacterium was formally established in 1994 and contains 112 species with validly published names. Most of 
these species are yellow or orange coloured, and contain a flexirubin-type pigment. The genomes of 83 of these 112 species 
have been sequenced in view of their importance in clinical microbiology and potential applications in biotechnology. The 
National Center for Biotechnology Information taxonomy browser lists 1415 strains as members of the genus Chryseobacte-
rium, of which the genomes of 94 strains have been sequenced. In this study, by comparing the 16S rDNA and the deduced 
proteome sequences, at least 20 of these strains have been proposed to represent novel species of the genus Chryseobacte-
rium. Furthermore, a yellow-coloured bacterium isolated from dry soil in the USA (and identified as Flavobacterium sp. strain 
B-14859) has also been reconciled as a novel member of the genus Chryseobacterium based on the analysis of 16S rDNA 
sequences and the presence of flexirubin. Yet another bacterium (isolated from a water sample collected in the Western Ghats 
of India and identified as Chryseobacterium sp. strain WG4) was also found to represent a novel species. These proposals need 
to be validated using polyphasic taxonomic approaches.

InTRoduCTIon
Chryseobacterium was circumscribed as a novel genus of the 
family Flavobacteriaceae by Vandamme et al. [1] to provide a 
separate taxonomic status for six members of the genus Flavo-
bacterium that appeared to be distantly related to the type 
species Flavobacterium aquatile. This characterization was 
based on DNA:rRNA hybridization and chemotaxonomic 
studies [1]. The name of the genus (chryseos=golden) was 
due to the fact that the bacteria produced yellow to orange-
coloured colonies on solid media [1], and it was reported that 
the pigment was flexirubin [1, 2]. [Flavobacterium] gleum, 
which was isolated by Holmes et al. [3] from human clinical 
specimens, was designated as the type species of Chryseobac-
terium [1]. With Chryseobacterium meningosepticum being 
distinct from other bacteria within the group [1], it appears 
that Chryseobacterium was destined to be heterogeneous 
since the time of its inception. The genus Elizabethkingia 
was later carved out of Chryseobacterium to accommodate  
C. meningosepticum [4]. Although there were a mere 18 

species of Chryseobacterium in 2006 [5], that number had 
risen to 58 by 2014 [6]. At the time of writing (January 2019), 
the list of prokaryotic names with standing in nomenclature  
( www. bacterio. net) contained 112 Chryseobacterium spp. 
with validly published names, representing every letter of 
the English alphabet except Q. Many of these species were 
reported to be multidrug resistant [5]. In view of their impor-
tance in clinical microbiology and potential applications in 
biotechnology, the genomes of 83 Chryseobacterium spp. 
have been sequenced and are available in National Center 
for Biotechnology Information (NCBI) ( www. ncbi. nlm. nih. 
gov/ genome/? term= Chryseobacterium). Despite this wealth 
of data, only a few systematic attempts have been made to 
compare these genomes [7–10]. Notable among these attempts 
is the quest to characterise antibiotic resistance and identify 
the genetic basis for the same [7, 8, 10]. Furthermore, using 
genome-based taxonomic analysis, it has been proposed that 
the genus Chryseobacterium be emended to include members 
of the closely related genus Epilithonimonas [11]. At the time 
of writing (January 2019), the NCBI taxonomy browser  

http://www.bacterio.net
https://www.ncbi.nlm.nih.gov/genome/?term=Chryseobacterium
https://www.ncbi.nlm.nih.gov/genome/?term=Chryseobacterium
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( www. ncbi. nlm. nih. gov/ Taxonomy/ Browser/ wwwtax. cgi? 
id= 59732) had listed 1415 strains as members of the genus 
Chryseobacterium. The genomes of 94 of these strains have 
also been sequenced and are available in NCBI ( www. ncbi. 
nlm. nih. gov/ genome/ genomes/ 13849?). However, very little 
is known about the sources or characteristics of these strains, 
and it is likely that many of them belong to one of the 112 
species already described. The objectives of this study were 
to extend the current knowledge about the diversity of Chry-
seobacterium spp., and provide insights into the taxonomic 
status of strains that are not yet assigned to a species within 
the genus.

METHodS
Phylogenetic analysis using CVTree3
Phylogenetic analysis using the web server CVTree3, which is 
an alignment- and parameter-free method that relies on the 
oligopeptide content (K-tuple length) of conserved proteins 
to deduce evolutionary relatedness [12], was performed as 
described previously [13].

Briefly, the deduced proteome sequences (excluding plasmid-
encoded proteins) of Chryseobacterium spp. were downloaded 
from UniProt ( www. uniprot. org/ proteomes/). The protein 
sequences were saved as multifasta files with the extension 
.faa. The multifasta files for each strain were uploaded on to 
the CVTree3 web server (http:// tlife. fudan. edu. cn/ cvtree/ 
cvtree/) and analysed by selecting all available K-tuple length 
options (from 3 to 9). Since the best K-values for bacteria were 
shown to be 5–6 [12], the proteome tree was visualised at K=6. 
The output from CVTree3 was saved as a Newick file, and the 
tree was rendered using the Interactive Tree Of Life (iTOL) 
web server version 4 (https:// itol. embl. de/).

Phylogenetic analysis using mega 7.0
Pairwise alignments of DNA sequences were performed using 
ClustalW with default parameters. The pairwise distance 
matrix derived from these alignments was used to construct 
a guide tree by the neighbour-joining method. Subsequent 
progressive alignment was based on the guide tree. Phylogeny 
was reconstructed using the maximum likelihood method 
(with 1000 bootstrap replicates) and the Tamura–Nei substi-
tution model in mega 7.0. The output from mega was saved 
as a Newick file, and the tree was rendered using iTOL.

PCR, cloning and sequencing
Bacterial genomic DNA was isolated using the snap-chill 
method. Briefly, a loopful of fresh bacterial culture was 
resuspended in 100 µl sterile ddH2O in a 1.5 ml microcentri-
fuge tube. The cell suspension was boiled in a water bath for  
10 min. The boiled cell suspension was incubated at −80 °C 
for 10 min. The frozen suspension was thawed and centi-
fuged (~18 600 g for 10 min at 4 °C) using a Hettich MIKRO  
220 R centrifuge. The supernatant was transferred to a sterile  
0.5 ml microcentrifuge tube and used in PCR after serial 
dilution. Amplification of the 16S rDNA was performed 
using the 27F (5′- AGAGTTTGATCMTGGCTCAG-3′) and 

1492R (5′- TACG GYTA CCTT GTTA CGACTT-3′) primers. 
PCR products (~1.5 kb) were gel purified using the GeneJET 
Gel Extraction Kit (Thermo Scientific) and ligated into the 
pTZ57R/T vector (InsTAclone PCR Cloning Kit, Thermo 
Scientific). Competent cells of Escherichia coli DH5α were 
prepared using the CaCl2 method and transformed with the 
ligated products. Transformants were selected on Luria–
Bertani (LB) agar plates containing ampicillin (100 µg ml−1) 
and recombinants were selected by blue-white screening. 
Recombinants were confirmed by plasmid purification 
(GeneJET Plasmid Miniprep Kit, Thermo Scientific) and 
restriction digestion. DNA inserts within pTZ57R/T were 
sequenced using the Sanger sequencing method.

Pigment extraction and analysis
Strain B-14859 was procured from the Agricultural Research 
Service Culture Collection (Peoria, Illinois, USA), which is 
the only known official source of the bacterium. This bacte-
rium was cultured using LB medium at 30 °C with aeration 
(shaking at 200 r.p.m.). Solid LB medium was prepared using 
2 % agar for culturing bacteria from glycerol stocks or plating 
broth cultures to test purity. Biochemical tests were performed 
based on the descriptions in the VetBact online resource  
( www. vetbact. org/) of the Faculty of Veterinary Medicine 
and Animal Science of the Swedish University of Agricultural 
Sciences. Liquid bacterial cultures were pelletted in sterile 
Oak Ridge tubes using a fixed angle rotor (JA20, ~12000 g 
for 10 min at 4 °C) in an Avanti J-25 centrifuge (Beckman 
Coulter, USA). Wet biomass (80 or 160 mg) was obtained 
from the pellets and resuspended in 1 ml acetone by gentle 
vortexing. The suspension was lysed using a VCX 750 Vibra-
Cell sonicator (Sonics and Materials, USA) for 10 min (30 % 
amplitude with 5 s on/off pulse). The yellow-coloured super-
natant was collected by centrifugation and scanned using a 
Cary 100 UV-Vis spectrophotometer (Agilent Technologies). 
Spectra in the 200–800 nm wavelength range were recorded.

RESuLTS And dISCuSSIon
Identification of novel species using 16S rdnA 
sequences
A total of 33 strains that were not yet assigned to a species 
within the genus Chryseobacterium were chosen for further 
analysis based on the availability of their genome sequences 
in the public databases. For 29 of these strains, 16S rDNA 
sequences were obtained from GenBank (Table 1). The closest 
homologues of these sequences were searched within the ‘16S 
ribosomal RNA sequences (Bacteria and Archaea)’ database 
of NCBI using blastn. The output was optimised by selecting 
the ‘Highly similar sequences (megablast)’ option. From 
this search, the top hits (those with the highest blastn score, 
having a query coverage of >90 %) for each sequence were 
recorded (Table 1). To characterise each strain further, the 
criteria proposed by Chun et al. [14] were used. If the identity 
of the top hit was ≥98.7 %, then the strain was inferred not 
to represent a novel species. For four strains (AG844, CBo1, 
ERMR1 : 04 and YR203), the top hits had 99–100 % identity 

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=59732
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=59732
https://www.ncbi.nlm.nih.gov/genome/genomes/13849?
https://www.ncbi.nlm.nih.gov/genome/genomes/13849?
http://www.uniprot.org/proteomes/
http://tlife.fudan.edu.cn/cvtree/cvtree/
http://tlife.fudan.edu.cn/cvtree/cvtree/
https://itol.embl.de/
http://www.vetbact.org/
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with blast scores >2600 (Table  1). It is very likely these 
strains belong to C. cucumeris, C. formosense, C. polytrichastri 
and C. vrystaatense, respectively.

A strain can be predicted to represent a novel species if the 
identity of the top hit is <98.7 % [14]. For five strains, the 
identities of the top hits were 97 % (with blast scores >2444). 
For nine strains, the identities of the top hits were 98 % (with 
blast scores >2499). Pending further confirmation, these 14 
strains were deemed to represent novel Chryseobacterium spp. 
(Table 1). For four other strains (Hurlbut01, Leaf394, SCN 
40–13 and YR221), 16S rDNA sequences were not available 
in GenBank (Table 1). It appears that the 16S rDNA genes of 
these strains were not covered during genome sequencing 
because even annotation using RAST (http:// rast. nmpdr. org/) 
did not reveal them. However, the unavailability of 16S rDNA 
sequences was not a major handicap since these strains could 
be characterised using their genomes or other phylogenetic 
markers.

Identification of novel species using deduced 
proteome sequences
Previously, Chun et al. [14] had shown that analysis of 16S 
rDNA sequences could be combined with whole genome 
comparisons to correctly identify and recognise novel 
species. On the same principles, proteome sequence-based 
analyses were performed using CVTree3 to check the 
relationships among 92 strains (including the 33 listed in 
Table 1) of Chryseobacterium spp. (Table 2). The phyloge-
netic tree (Fig. 1) derived from this analysis indicated that 
the genus Chryseobacterium is diverse and polyphyletic. In 
total, 16 of the 21 species previously analysed using whole 
genome sequences by Hahnke et al. [11] were present in this 
tree (Table 2 and Fig. 1). Although the methods of analyses 
are different, the branching patterns of these 16 species were 
similar in Fig. 1 and in the tree reported by Hahnke et al. 
[11]. For example, C. antarcticum, C. jeonii, C. koreense and 
C. solincola were located on a major branch in both trees. 
Chryseobacterium bovis, which was shown to cluster with 
Epilithonimonas tenax by Hahnke et al. [11], was found on 
a separate branch containing five other Chryseobacterium 
spp. (Fig.  1). Furthermore, C. angstadtii, C. kwangjuense 
and C. luteum occurred on yet another major branch, as did  
C. gallinarum, C. gleum and C. indologenes (Fig.  1).  
Hahnke et al. [11] showed that C. aquaticum and C. greenlan-
dense were closely related to each other and co-locate with  
C. formosense. A similar outcome was conspicuous in the 
proteome sequence-based tree (Fig. 1).

Strains AG844, CBo1 and ERMR1 : 04 were predicted not 
to represent novel species based on 16S rDNA sequence 
comparisons (Table 1). These strains had shorter branches 
and clustered with C. cucumeris, C. formosense and C. polytri-
chastri, respectively, in the proteome sequence-based tree 
(Fig. 1). Strain YR203 had a longer and distinct branch in 
the tree because the top hit for this strain (C. vrystaatense, 
Table 1) was not included in the analysis. Among other strains 
predicted not to represent novel species (Table  1), P1-3, St
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BLS98, HMWF035, JM1, MOF25P and StRB126 also had 
relatively short branches and clustered with C. gallinarum, 
C. oranimense, C. gambrini, C. olae, C. balustinum and  
C. jejuense, respectively (Fig. 1). However, although strain 
ISE14 was predicted to be closely related to C. lactis (Table 1), 
it actually had a longer branch and clustered with C. indolo-
genes (Fig. 1). Similarly, although strain MYb7 was predicted 
to be closely related to C. lactis (Table 1), it occurred in a 
cluster with strain HMWF028 and C. culicis (Fig. 1). Surpris-
ingly, strain PMSZPI clustered with C. gallinarum (Fig. 1), 
although it was predicted to be closely related to C. culicis 
(Table 1). These discrepancies could be due to misidentified 
strains and/or their sequences. Further analysis are required 
to establish the phylogenetic status and novelty of strains 
HMWF028, ISE14, MYb7 and PMSZPI.

All five strains (CF314, IHB B 17019, JAH, Leaf180 and 
Leaf404) that were deemed to represent new species based 

on the comparison of their 16S rDNA sequences (top hits 
having an identity of 97 %, blast scores >2444, Table 1) had 
relatively longer branches (Fig. 1). More importantly, all nine 
strains (52, FH1, FH2, FP211-J200, Leaf201, Leaf405, RU33C, 
RU37D and T16E-39) whose top hits had an identity of  
98 % (blast scores >2499, Table 1) also had longer branches  
(Fig. 1). Among these 14 strains, Leaf405 shared a branch with  
C. arachidis, T16E-39 shared a branch with C. piperi and was 
located close to CF314, IHB B 17019 shared a branch with 
C. wanjuense and was located close to RU37D, FP211-J200 
shared a branch with C. halperniae and was located close 
to FH1 (Fig. 1). Among the four strains lacking 16S rDNA 
sequences (Table 1), SCN 40–13 and YR221 appear to repre-
sent novel species based on the length and distinctness of 
the branches on which they are located in the tree (Fig. 1). 
Leaf394 shared a branch with Leaf404 and may also repre-
sent novel species. However, Hurlbut01 may not represent a 

Fig. 1. Phylogenetic tree based on proteome sequences. The tree was constructed using the neighbour-joining method by the web 
server CVTree3, and visualised at K=6. Numbers at the end of each branch refer to the serial numbers in Table 2. Black lines and text 
indicate Chryseobacterium spp. with validly published names (n=58). Green line and text indicate strains that were predicted not to 
represent novel species (n=11). Red lines and text indicate strains that were predicted to represent novel species (n=23). The proteome 
of Flavobacterium columnare ATCC 49512 (UniProt Proteome ID: UP000005638) was used as the outgroup, which does not appear in the 
figure. The tree was scaled based on branch length values. The bar allows the estimation of branch lengths (e.g. strain SCN 40–13 has 
a branch length of 0.2235, which is approximately 2.235 times the length of the bar).
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novel species and is closely related to C. aquaticum (Fig. 1). 
Using whole genome comparisons, Tetz and Tetz [47] had 
proposed C. mucoviscidosis to be a novel species. The deduced 
proteome sequence-based tree provides further credence to 
this proposal, and shows that C. mucoviscidosis is related to 
C. gambrini (Fig. 1).

Characterization of strain nRRL B-14859
It has been more than two decades since Hou [76] identified 
and described a Gram-negative, non-motile, rod-shaped 
bacterium that produced yellowish-brown colonies. This 
bacterium (referred to as strain NRRL B-14859, also known 
as strain DS5) was identified as a member of the genus Flavo-
bacterium [76]. This strain was shown to produce oxygenated 
fatty acids such as 10-ketostearic acid and 10-hydroxy-
stearic acid using oleic acid [76] and vegetable oils [77] 
as substrates. It was also shown to convert linoleic acid to 
10-hydroxy-12(Z)-octadecenoic acid [78]. The bioconversion 
of oleic acid by this strain was reported to be more efficient 

than the bioconversion of linoleic acid. More importantly, the 
oleate hydratase of strain B-14859 was predicted to be a C-10 
positional-specific enzyme with a preference for 18-carbon 
mono-unsaturated fatty acid [79]. This strain was further 
characterised in the context of results reported in the previous 
two sections.

Golden-yellow-coloured colonies of strain B-14859 were seen 
on LB agar plates after overnight incubation at 30 °C (the strain 
could also grow at 20 or 42 °C). Strain B-14859 was resistant to 
ampicillin (100 µg ml−1), kanamycin (50 µg ml−1), tetracycline 
(30 µg ml−1) and spermidine (15 µg ml−1), but lacked plasmids. 
It was catalase, urease and gelatinase positive, but was oxidase 
and indole negative. The 16S rDNA gene of strain B-14859 was 
cloned and sequenced. The closest homologues of this sequence 
were retrieved as described in the first section. The top five hits 
(from C. ureilyticum, C. indologenes, C. gleum, Chryseobacte-
rium bernardetii and C. vrystaatense) had 97–98 % identity 
(with a blast score of 2471–2508, query coverage of 96–99 %). 

Fig. 2. Phylogenetic tree based on 16S rDNA sequences. The analysis involved 13 sequences and the tree was constructed using the 
maximum likelihood method in mega 7.0. Bootstrap values of 1000 replicates are indicated as numbers at the nodes (only values >400 
are shown). The tree was rooted and rendered without using branch lengths. Numbers at the end of each branch, when present, refer 
to the strains as in Table 2. Black lines and text indicate Chryseobacterium spp. with validly published names (n=7). Green line and text 
indicate strain AG844 that was predicted to be very closely related to C. cucumeris GSE06 in Fig. 1. Red lines and text indicate five strains 
that were predicted to represent novel species (only three of these are shown in Fig. 1); strains B-14859 and WG4 lacked genome 
sequences and are shaded.
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Therefore, based on the inferences drawn in Table 1, it appeared 
that strain B-14859 belongs to the genus Chryseobacterium, and 
represents a novel species. To further characterise the taxonomic 
position of this strain, phylogenetic analysis was performed 
using 16S rDNA sequences (961 bp). In the phylogenetic tree, 
C. cucumeris and C. gleum clustered on a main branch with 
strains AG844 and RU33C (Fig. 2). A similar clustering was 
also observed in the proteome sequence-based tree (Fig. 1). 
Since strains B-14859 and RU33C were located on a sub-branch 
within this main branch (Fig. 2), it is likely that they are closely 
related. Furthermore, Chryseobacterium sp. strain WG4, which 
was isolated from a water sample collected in the Western Ghats 
of India [80], was located on a separate branch (Fig. 2) and may 
also represent a novel species. Notably, C. lactis clustered on 
a main branch with C. ureilyticum (and strain ISE14) in the 
16S rDNA sequence-based tree (Fig. 2), but with C. indologenes 
(and strain ISE14) in the proteome sequence-based tree (Fig. 1). 
Interestingly, strain MYb7, which was predicted to be closely 
related to C. lactis (Table 1), but clustered with C. culicis in the 
proteome sequence-based tree (Fig. 1), was located on a separate 
branch in Fig. 2. As indicated previously, further analyses are 

required to resolve the taxonomic position of strains ISE14 and 
MYb7.

Overnight cultures of strain B-14859 on solid medium or in 
broth had a distinct fruity odour. Interestingly, fruity odour 
was also reported in C. indologenes [38], but not in C. gleum 
[3]. Based on the characterization of strain WG4 [80], it is 
likely that the fruity aroma of Chryseobacterium sp. is due to 
ethyl-2-methylbutyrate and ethyl-3-methylbutyrate. Yabu-
uchi et al. [38] reported that the flexirubin-type pigment of  
C. indologenes turned deep red after one drop of 3 % potas-
sium hydroxide (KOH) solution was added, and that the 
colour change was reversed when one drop of 1.5 N hydro-
chloric acid (HCl) was added. A similar result was obtained 
with the pigment of strain B-14859 (Fig. 3). Yabuuchi et al. 
[38] also reported that the absorption spectra of pigments 
extracted using acetone from three strains of C. indolo-
genes had a single peak at ~451 nm. The pigment of strain 
B-14859 extracted using acetone showed a similar peak 
(Fig. 4). In contrast, the UV-Vis absorption spectrum of 
acetone-extracted pigments of Sphingomonas paucimobilis 

Fig. 3. Reversible colour change of pigment of strain B-14859. Left: colour changes to red when 3 % KOH added to culture spot (a); no 
change in colour when 1.5 N HCl is added (b); no change in colour when 1.5 N HCl is added first, followed by 3 % KOH (c); colour changes 
from red to yellow when 3 % KOH is added first, followed by 1.5 N HCl (d); control culture spot (e). Right: control culture (a); colour 
changes to red when 3 % KOH is added to the broth culture (b); colour changes from red to yellow when 3 % KOH is added first, followed 
by 1.5 N HCl (c).

Fig. 4. Absorption spectra of pigments. Left: the absorption spectrum of pigments extracted using acetone from strain B-14859 shows 
a single peak (broken line), whereas that of S. paucimobilis strain NRRL B-54 shows three characteristic peaks (solid line). Right: the 
~451 nm peak (solid line) of pigments extracted using acetone from strain B-14859 showed a bathochromic shift (broken line) after the 
addition of 20 % KOH. In all spectra, the numbers indicate wavelength/peak absorbance.
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strain B-54, which produces C40 carotenoids, showed three 
peaks (Fig. 4). Furthermore, the ~451 nm peak of strain 
B-14859 shifted to a higher wavelength after the addition of 
20 % KOH (Fig. 4), as reported previously for C. indologenes 
strains [38]. Therefore, it is likely that the pigment of strain 
B-14859 is of the flexirubin type. Flexirubins, first identi-
fied in Flexibacter elegans [81], are polyene compounds that 
are insoluble in many organic solvents or water [82]. The 
biological functions of these pigments, which appear to be 
pervasive in Chryseobacterium spp. (Table 2), are yet to be 
characterised.
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