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This paper introduces an event-based luminance-free feature from the output of

asynchronous event-based neuromorphic retinas. The feature consists in mapping the

distribution of the optical flow along the contours of the moving objects in the visual

scene into a matrix. Asynchronous event-based neuromorphic retinas are composed

of autonomous pixels, each of them asynchronously generating “spiking” events that

encode relative changes in pixels’ illumination at high temporal resolutions. The optical

flow is computed at each event, and is integrated locally or globally in a speed and

direction coordinate frame based grid, using speed-tuned temporal kernels. The latter

ensures that the resulting feature equitably represents the distribution of the normal

motion along the current moving edges, whatever their respective dynamics. The

usefulness and the generality of the proposed feature are demonstrated in pattern

recognition applications: local corner detection and global gesture recognition.

Keywords: neuromorphic sensor, event-driven vision, pattern recognition, motion-based feature, speed-tuned

integration time, histogram of oriented optical flow, corner detection, gesture recognition

1. INTRODUCTION

In computer vision, a feature is a more or less compact representation of visual information that is
relevant to solve a task related to a given application (see Laptev, 2005; Mikolajczyk and Schmid,
2005; Mokhtarian andMohanna, 2006; Moreels and Perona, 2007; Gil et al., 2010; Dickscheid et al.,
2011; Gauglitz et al., 2011). Building a feature consists in encoding information contained in the
visual scene (global approach) or in a neighborhood of a point (local approach). It can represent
static information (e.g., shape of an object, contour, etc.), dynamic information (e.g., speed and
direction at the point, dynamic deformations, etc.) or both simultaneously.

In this article, we propose a motion-based feature computed on visual information provided by
asynchronous image sensors known as neuromorphic retinas (see Delbrück et al., 2010; Posch,
2015). These cameras provide visual information as asynchronous event-based streams while
conventional cameras output it as synchronous frame-based streams. The ATIS (“Asynchronous
Time-based Image Sensor,” Posch et al., 2010; Posch, 2015), one of the neuromorphic visual
sensors used in this work, is a time-domain encoding image sensor with QVGA resolution. It
contains an array of fully autonomous pixels that combine an illuminance change detector circuit,
associated to the PD1 photodiode, see Figure 1A and a conditional exposure measurement block,
associated to the PD2 photodiode. The change detector individually and asynchronously initiates
the measurement of an exposure/gray scale value only if a brightness change of a certain magnitude
has been detected in the field-of-view of the respective pixel, as shown in the functional diagram
of the ATIS pixel in Figures 1B, 2. The exposure measurement circuit encodes the absolute
instantaneous pixel illuminance into the timing of asynchronous event pulses, more precisely
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FIGURE 1 | ATIS, Asynchronous Time-based Image Sensor: (A) The ATIS and its pixel array, made of 304 × 240 pixels (QVGA). PD1 is the change detector, PD2

is the grayscale measurement unit. (B) When a contrast change occurs in the visual scene, the ATIS outputs a change event (ON or OFF) and a grayscale event. (C)

The spatio-temporal space of imaging events: static objects and scene background are acquired first. Then, dynamic objects trigger pixel-individual, asynchronous

gray-level events after each change. Frames are absent from this acquisition process. Samples of generated images from the presented spatio-temporal space are

shown in the upper part of the figure.

into inter-event intervals. The DVS (“Dynamic Visual Sensor,”
Lichtsteiner et al., 2008; Serrano-Gotarredona and Linares-
Barranco, 2013), another neuromorphic camera used in this
work, works in a similar manner but only the illuminance change
detector is implemented and retina’s spatial resolution is limited
to 128× 128pixels.

Despite the recent introduction of neuromorphic cameras,

numerous applications have already emerged in robotics (see
Censi et al., 2013; Delbrück and Lang, 2013; Lagorce et al., 2013;
Clady et al., 2014; Ni et al., 2014; Milde et al., 2015), shape

tracking (see Drazen et al., 2011; Ni et al., 2015; Valeiras et al.,
2015), stereovision (cf. Rogister et al., 2012; Carneiro et al.,
2013; Camuñas-Mesa et al., 2014; Firouzi and Conradt, 2015),
corner detection (Clady et al., 2015), or shape recognition (see

Pérez-Carrasco et al., 2013; Akolkar et al., 2015; Orchard et al.,
2015a,b; Lee et al., 2016). This strong interest in such a sensor is
essentially due to its ability to provide visual information as a high
temporal resolution, luminance-free, and non-redundant stream.

This makes it a fitting for high-speed applications [e.g., gesture
recognition as in Lee et al. (2014), high-speed object tracking as
in Lagorce et al. (2014), Mueggler et al. (2015a)].

The proposed feature consists in mapping the distribution of
the optical flow along the contours of the objects in the visual
scene into a matrix (see Section 2). It can be computed locally
or more globally according to the targeted applications. Indeed,
in the experimental evaluations, we propose to demonstrate its
usefulness and generality in various applications. It is used to
locally detect corners (see Section 3) or to summarize global
motion observed in a scene in order to recognize actions, here
hand gestures for an application in human-machine interaction
(see Section 4).

2. MOTION-BASED FEATURE

Visual event streams are generated asynchronously at a high
temporal resolution, essentially by moving edges. They are thus
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FIGURE 2 | Illustration of the luminance change measured by a neuromorphic pixel, modeled as a cone-pixel (Debaecker et al., 2010), viewing an

moving edge. p are the coordinates of the center of the pixel, in the coordinate system related to the retina’s plane. The emitted event in response to this luminance

change is represented as a black dot in the coordinate system XYt related to the event space (in the lower-left part of the figure).

especially suitable for visual motion flow or optical flow (OF)
computation (Benosman et al., 2014; Orchard and Etienne-
Cummings, 2014; Brosch et al., 2015) along contours of objects.
In the following sections, methods andmechanisms are proposed
to estimate normal motion flows computed around events and
to map them into a matrix in order to incrementally estimate
scenemotion distribution (locally or globally). Thismatrix will be
considered as a feature. Its computation requires only the visual
events provided by the change detectors of the retina (associated
to photodiodes PD1 in Figure 1A), that can be defined as four
components vectors:

e = (p, t, pol)T , (1)

where p = (x, y)T is the spatial coordinate of each event,
t, its timestamp and pol ∈ {−1, 1} is the polarity, which is
equal to −1/1 when the measured luminance decrease/increase
is significant enough (see upper part of Figure 1B).

2.1. Extracting Normal Visual Motion
We use the event-based OF computation method proposed in
Benosman et al. (2014) which is known for its robustness and
its algorithmic efficiency (see Clady et al., 2014, 2015; Mueggler
et al., 2015b). More bio-inspired event-based OF computation
methods such as Brosch et al. (2015) and Orchard and Etienne-
Cummings (2014) can be used but they are computationallymore
expensive.

A function 6e that maps to each p the time t is defined
locally:

6e :

N 2 → R

p 7→ t

Applying the inverse function theorem of calculus, the vector
∇6e measures the rate and the direction of change of time with
respect to space: it is the normal optical flow, noted v = (vx, vy)

T ,
such as:

∇6e =

(

1

vx
,
1

vy

)⊤

This equation could be defined assuming that the surface
described by the visual events (generated by a moving edge)
in the space-time reference frame (XYt)T is continuous.
This assumption is validated through a regularization process
proposed in order to locally estimate this surface as a
spatiotemporal plane (fitted directly on the local event stream). In
this work the implementation proposed in Clady et al. (2015) has
been chosen because it proposes mechanisms to automatically
adapt the temporal dimension of the local neighborhood to
the edge’s dynamics, and to reject estimations of optical flow
probably wrong and due to noise. This algorithm allows us
to consider a function that associates for each valid visual
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event e ∈ E , a so-called visual motion event, noted ve, such
as:

E → V

e = (p, t, pol)T 7→ ve = (p, t, v, θ)T
(2)

where (v, θ)T corresponds to the intensity (i.e., speed) and the
direction of the normal visual flow.

Remark 1. Note that the polarity of visual events is not conserved
by the function (Equation 2). Indeed, in the applications proposed
in this article, it is not useful to “memorize” if the visual flow
has been computed on a positive or negative event stream. If
required, the feature can be augmented in order to distinguish the
distribution along “positive contours” from the one along “negative
contours.”

2.2. Computing and Updating the Feature
As we said, the feature corresponds to the estimated distribution
of the optical flow along the (local or global) contours in the
visual scene. This distribution is evaluated on a grid-based
sampling in the polar reference frame of the visual flow, such as it

is subdivided into an interval set
{

vl
}

l
=
{

(θ l, vl)T
}

l
where θ l is

an angle based interval and vl is an intensity based interval. Such a
discretization of the velocity subspace is consistent with biologic
observations about orientation (cf. Hubel andWiesel, 1962, 1968)
and speed (cf. Priebe et al., 2006) selectivity in V1 cells and
human psychophysical experiments about speed discrimination
as in Orban et al. (1984) and Kime et al. (2014, 2016). Here,
we parametrize the grid sampling mostly according to these
biologic observations and human psychophysical experiments.
However, its ranges and precisions could be set in relation with
targeted tasks, optimizing them according to given performance
criteria. We define the centers {θ l}l of the angle intervals such

as: θ l ∈ [0, ..., 2π i
Nθ

, ..., 2π Nθ−1
Nθ

], with i ∈ [0,Nθ − 1]; 2π
Nθ

is the length of the interval and thus the angular precision
of the grid. With Nθ = 36, we barely reach the precision
(∼10◦) observed for V1 simple cells (see Hubel and Wiesel,
1962, 1968). For the velocity intensity, we propose a non-regular
speed-based sampling, where {vl} are the centers of the speed
based intervals on a logarithmic scale. The sampling is then
operated such that vl ∈ [vmin, ..., vminγ

i, ..., vminγ
Nv−1], with

i ∈ [0,Nv − 1] and γ = 1 + ǫv (ǫv > 0). This discretization
strategy ensures an a priori constant relative precision in speed

estimation: 1vl

vl
≈ ǫv. Setting ǫv to 0.1 will barely correspond

to the relative speed-discrimination threshold (10%) observed in
human psychophysical experiments (see Orban et al., 1984; Kime
et al., 2014, 2016). vmin has been fixed to 1pixel.s−1 and Nv to
73 in order that vmax = vminγ

Nv−1 is close to 1000pixels.s−1,
i.e., inversely close to the temporal precision of the visual events,
estimated over 1 ms (cf. Akolkar et al., 2015). Motions with
intensities less than vmin are then discarded: they are assumed
as belonging to static or faraway objects in the background
visual scene. Motions with intensities higher than vmax are also
discarded because noise associated to their computation can a
priori be considered as too high.

Finally, the feature, noted F ∈ F , is defined as a matrix
corresponding to this grid, and associated to a spatiotemporal
point (p, t)T of the retina (or to the entire visual scene for a global
approach), and computed as:

V → F

{vj}j=1,...,N 7→ Fp,t(v
l, θ l) =

∑

j wv(vj − vl, θj − θ l)ws(p− pj)

wl
t(t − tj)

(3)
where:

• wt is a temporal exponentially decay function (or kernel),
inspired by the synchrony measure of spike trains proposed
in van Rossum (2001), such that:

wl
t(t − tj) = H(t − tj) exp

(

−αvl(t − tj)
)

(4)

where H(·) is the Heaviside step function and α parametrizes
the global decreasing dynamic. In our experiments (see
Sections 3 and 4), we fixed α to 0.8, i.e., close to 1 in order
to mostly take into account the current edges while slightly
smoothing them in order to make F less sensitive to both noise
and missing data. This kernel gives indeed more weight (or a
higher probability value) to events generated by current edges,
i.e., the events with timings close to t, while also respecting
an isoprobabilistic representation of the edges whatever their
dynamics, as we will discuss below (see Section 2.3). Of course,
other temporal kernels [Gaussian-based in Schreiber et al.
(2003),...] can be envisioned, but this one has the advantage
of being causal and of leading to an incremental computation
of the feature (see Equation 7).

• ws is a spatial bivariate function, which can be defined as:

1. in a global approach, ws(p − pj) = 1, which gives an
equitable representation to the edges whatever their spatial
locations, or

2. in a local approach:

ws(p− pj) =
1

2πσ 2
s

exp

(

−
||p− pj||

2

2σ 2
s

)

, (5)

where σs implicitly parametrizes the spatial scale of a region
of interest or neighborhood around the spatial location p;
Fp,t then represents the local distribution of the normal

velocities around the spatiotemporal location (p, t)T ;

• wv is the multiplication of two univariate Gaussian-like
functions used to take into account potential imprecisions in
the computation of the optical flow, defined as:

wv(vj − vl, θj − θ l) = exp

(

−
(vj − vl)2

V2

)

exp

(

−
(θj − θ l)2

22

)

(6)
with V2 = vjv

l in order to consider a relative speed
imprecision, and 2 set to 20◦. So, even if an estimated motion
belongs to a wrong interval because of noise, it will still
contribute to the right element of the matrix, probably close.
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As we said previously, the feature can be incrementally updated
at each occurring visual motion event vi, considering that
Fp,0(v

l, θ l) = 1
NθNv

for all (vl, θ l)T (in order to consider, at time
t = 0, an uniform distribution for the considered velocity-space),
such as:

Fp,ti (v
l, θ l) = Fp,ti− 1 (v

l, θ l) exp
(

−αvl(ti − ti− 1)
)

+ ws(p− pi)wv(vi − vl, θi − θ l) (7)

Remark 2. The feature works like a voting matrix, i.e., each visual
motion event votes for the speed and direction interval it belongs
(and its neighboring intervals through the weighting kernel wv,
Equation 6). More visual events there are, more robust the feature
will be. Conversely, the feature will be more sensitive to noise in low
light or low contrast situations.

In addition the feature F can be related to a probabilistic
distribution while normalizing it to sum up to 1, i.e., to divide it
with

∑

l F(v
l, θ l).

In the global approach, Fp,t is independent of p; it can then be
noted Ft . Note that the feature is noted F (without sub-index) in
this article when the application context (local or global approach)
is not relevant or obvious.

2.3. Speed-Tuned vs. Fixed Decreasing
Strategies
Another important point to highlight is that the temporal
decreasing function wt (Equation 4) is related to the speed vl.
Indeed, τ l = 1

vl
is the time during which an edge travels

through a pixel or in other words, the estimated lifetime of its
observation at a given location p, as already remarked in Clady
et al. (2015) and Mueggler et al. (2015b). Including it as decay
factor in the temporal kernel (Equations 4 and 7) provides a
more isoprobabilistic representation of the moving edges in F,
i.e., depending only of their contrasts whatever their respective
dynamics.

In order to concretely illustrate this point, Figure 3 represents
two synchrony images I built integrating a visual event stream
and with two different strategies for decay factor τ (related to
the speed or not), such as, for each occurring visual event ei,

I(p, ti) = I(p, ti− 1) exp
(

−
ti−ti− 1

τ

)

+ δ(||p − pi||) where δ(·)

is the Dirac function. The left image (Figure 3A) results from
this equation with a constant τ = cst (whatever the dynamics
of the edges), and the middle image (Figure 3B) with a speed-
tuned τ = 1

v . As shown in the right image (Figure 3C), which is
the subtraction of both previous images without a speed-tuned
factor the high-velocity edges (resulting from the moving and
forward leg) are over-represented and the low-velocity edges
(resulting from the backward leg) are under-represented in
the corresponding synchrony image (Figure 3A). The moving
edges are more equitably represented in the second synchrony
image (Figure 3B) with a speed-tuned temporal kernel and, by
extension, in feature F. Results in Section 3.2 show this equitable
representation is very important to obtain accurate results.

The proposed strategy is also consistent with biological
observations. Indeed Bair and Movshon (2004) showed that

the effective integration time of the computations in direction-
selective cells changes with stimulus speed; the integration time
for slow motions is longer than that for fast motions. This is
modeled in Equation (4) as a decay factor inversely proportional
to the speed intensity.

Algorithm 1 Computation of the local feature.

1: for all pixel’s location p ∈ Retina do
2: Set Fp,0(v

l, θ l) = 1
NθNv

for all (vl, θ l)T

3: end for

4: for all event e = (p, t, pol)T do

5: Compute the current optical flow ve = (p, t, v, θ)T (see
Section 2.1).

6: for all pi ∈ �p, where �pi is a spatial neighborhood such
as || p− pi ||< 2σs, do

7: Update Fpi ,ti : Fpi ,t(v
l, θ l) =

Fpi ,ti (v
l, θ l) exp

(

−αvl(t − ti)
)

+ ws(p − pi)wv(v −

vl, θ − θ l),
where ti is the timing of the previous update of Fpi ,t (see
Equation 7)

8: end for

9: end for

10: Output Fp,t

The organization of the feature in a polar coordinate frame
based grid, greatly facilitates its computation and its update.
The representation of the visual motion information into speed
and direction coordinates grants that each speed-tuned decay
factor can be associated to an element of the grid, and not
directly to the velocity associated to the occurring visual motion
event. The latter indicates only which elements in the grid
have to be incremented. A bio-inspired implementation can be
envisioned where visual motion events are conveyed by selective
lines (each line conveying only the motion events ve included

in its associated interval, (v, θ)T ∈ (vl, θ l)T) from a neuron
layer computing the optical flow to a leaky integrate-and-fire
(LIF) neural layer (cf. Gerstner and Kistler, 2002), in which each
neuron could be assimilated with an element of the feature; this
selectivity of lines could result from the selectivity of neurons in
the first neuron layer.

Indeed the following model (notations are inspired by Lee
et al., 2016) can be used to update the membrane potential of a
LIF neuron for a given input event (or spike):

Vmp(ti) = Vmp(ti− 1) exp(−
ti − ti− 1

τmp
)+ wkwdyn (8)

where τmp is the membrane time constant, wk is the synaptic
weight of the k-th synapse (through which the input event
or spike arrives) and wdyn is a dynamic weight controlling a
refractory period (see Gerstner and Kistler, 2002; Lee et al.,
2016 for more details). This model is very similar to the
incremental updating equation of our feature, Equation (7). The
only things missing are the dynamic weight wdyn and a firing
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FIGURE 3 | Illustration of different strategies for the exponential decay function; comparison between synchrony images I built applying exponential

temporal kernels with a constant decreasing factor (A) and with a speed-tuned decreasing factor (B) to an event stream (acquired from a visual scene

containing a walking person). The comparison Iτ=cst − I
τ= 1

v
(C) of both images shows that the second strategy provides a more isoprobabilistic representation of the

edges (taking into account the observation lifetime of the moving edges as in Clady et al., 2015; Mueggler et al., 2015b) than the first one; the high-velocity edges

(resulting from the moving and forward leg) are over-represented and the low-velocity edges (resulting from the backward leg) are under-represented in the left

synchrony image. (A) Iτ=cst with a fixed decreasing factor. (B) I
τ= 1

v
with a speed-tuned decreasing factor. (C) comparison Iτ=cst − I

τ= 1
v
.

threshold Vth in order to output approximatively the value of
the corresponding feature’s element as an event stream (or spike
train), and then approximatively following a rate-coding model.
Here, the refractory period should be set close to 0 (probably
as a small fraction of the integration time τ l = 1

vl
), in order

to allow (quasi-)simultaneous visual events in the neighborhood
(i.e., the events generate by the same contour moving across
several pixels in the neighborhood) to contribute equitably to the
neuron’s potential, i.e., the value of the corresponding element of
the feature.

For the local approach, a leaky integrate-and-fire neural layer
has to be implemented for each pixel; this neural layer collects
the visual motion events from the receptive field, �pi (defined
as || p − pi ||< 2σs) defined by the corresponding bi-variate
spatial kernel (Equation 5). This local computation is detailed in
Algorithm 1. For the global approach, only one neural layer is
required, collecting the visual motion events estimated over the
entire retina.

Finally, Figure 4 shows that the distribution of optical flow
representation in the global approach (Figure 4C) summarizes
the principal motions observed in the visual scene. This property
will allow us to propose a machine learning based approach
to recognize gestures in Section 4. In the next Section, we will
demonstrate that the local version can be also used to detect
particular interest points, i.e., corners.

Remark 3. If the photodiode of the retina’s pixel is not square as for
the ATIS’s one (see Posch et al., 2010 and Figure 1A), the frequency
of a set of events emitted by a pixel will be not the same when a

contour moves horizontally or vertically in the pixel’s field of view
(contour’s speed and contrast are considered equal in both cases),
because the contour travels the same surface of the photodiode
during different time periods. In this case, keeping a decay factor
invariant whatever the direction of the motion will introduce a
bias, favoring one direction over another, in F. To avoid this bias, a
cone-pixel with an ellipse-based basis (and not a disk-based basis as
illustrated in Figure 2) can be implicitly considered in a correcting
function αθ (·) introduced in Equations 4 and 7 (instead of the
constant smoothing parameter α); it is depending on the direction
θ l of the visual motion and defined as:

αθ (θ
l) = α

√

1

1− e2 cos(θ l)2
(9)

where α ∈ [0, 1] and e =

√

1−
(

a
b

)2
is the eccentricity

of the ellipse, with a and b the width and the length of the
photodiode, respectively. The second term of this equation increases
the decay factor in the direction of the principal axis of the ellipse,
rebalancing the representation of the moving edges in F.

3. APPLICATION TO CORNER DETECTION

In conventional frame-based vision, several techniques have
been proposed that consist in determining points for which a
measurement is locally optimal with respect to a criteria; in
particular specific to corners. This measure can be computed by
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FIGURE 4 | Illustration of the global motion-based feature for event-based vision: from the stream of events (A), the optical flow (B) is extracted. The

feature corresponds to the distribution of this optical flow (C) in a polar coordinate frame, and can be reduced into a more compact and scale-invariant representation,

called Histogram of Oriented Optical Flow (D) (see Section 4.1). As we can see in (B,C), the motions generated by the forward leg (magenta boxes), the backward leg

(green boxes), and the rest of body (red boxes) corresponds to three distinct and representative modes in the proposed feature.

a cumulative process (Park et al., 2004), using a self-similarity
measure (Moravec, 1980) derived from mathematical analysis
[e.g., contour’s local curvature (Mokhtarian and Suomela, 1998),
relying on an eigenvalue decomposition of a second-moment
matrix (Harris and Stephens, 1988)] or selected as the output
from amachine learning process (Rosten and Drummond, 2006).

In asynchronous event-based vision, Clady et al. (2015) have
proposed an algorithm based on the intersection of constraints
principle (see Adelson and Movshon, 1982); which considers
corners as locations where the aperture problem can be solved
locally. Since cameras have a finite aperture size, motion
estimation is possible only for directions orthogonal to edges.
Figure 5 shows the ambiguity due to the finite aperture. This
can be written as follows: if vn is the normal component of the
velocity vector to an edge at time t at a location p, then the real
velocity vector is an element of the R

2 subspace spanned by the
unit vector vt , tangent to the edge at p. This subspace is defined as
V1 = {v = vn + αvt} with α ∈ R. For a regular edge point, α can
usually not be estimated. When two moving crossed gratings are
superimposed to produce a coherent moving pattern, the velocity
can be unambiguously estimated.

The geometry-based approach proposed in Clady et al. (2015)
consists in collecting planes, fitted directly on the event stream (as
in Benosman et al., 2014 and Section 2.1) and considered as local
observations of normal visual motions, around each visual event.
This event is considered as a corner event (i.e., event generates at
the spatiotemporal location of a corner) if most of the collected
planes intersect as a straight line in (XYT)T reference frame, at a
location temporally close to the event (see Figure 6).

3.1. Feature-Based Approaches
In the local approach, normalized Fp,t is the distribution of the
normal velocities along the contours around the spatiotemporal
location (p, t)T . In an ideal case illustrated in Figure 7, if
this location corresponds to a corner location, Fp,t is null

execpt around two velocity coordinates, (vn, θn)T and (vm, θm)T ,
corresponding to both normal visual motions of the intersecting
edges.

FIGURE 5 | The aperture problem allows estimating only the normal

component vn
1
of the velocity of events generated by an edge. The

tangential component v1t is not recoverable. Any motion with the same

component v1n induces the same stimulus. These motions define the real plane

subspace V1. (extracted from Clady et al., 2015).

3.1.1. 2-Maxima Based Decision
As we can see in this Figure, detecting corners (or junctions) will
consist in determining if at least two local maxima in Fp,t are
present. We first propose an algorithm in order to find the two
first maxima i n Fp,t consisting in:

1. finding the maximum Fmax and its velocity coordinates
(vmax, θmax)

T in Fp,t ,
2. inhibiting (set to zeros) all values in F for which the

coordinates verify |θ l − θmax| < thθ , with thθ = 20◦, and
3. finding the maximum (second maximum) F2ndmax and its

coordinates (v2ndmax, θ2ndmax)
T in Fp,t previously modified in

step 2.

Finally, as an isoprobabilistic representation of the intersecting
edges is assumed, both values of maxima, Fmax and F2ndmax,
should be close at the location of a corner (the difference would be
essentially due to noise). Then we propose as selection criterion
(noted C2max) to decide if a corner is present at (p, t)

T :
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FIGURE 6 | (A) An event e occurs at spatial location p at time t where two edges intersect. This configuration provides sufficient constraints to estimate the velocity v

at p from the normal velocity vector v1n and v2n provided by the two edges. The velocity subspaces V1 and V2 are derived from the normal vectors. (B) Vectors v1n
and v2n are computed by locally fitting two planes 51 and 52 on the events forming each edge over a space-time neighborhood. v1n and v2n are extracted from the

slope of (respectively) 51 and 52 at (p, t). (extracted from Clady et al., 2015).

FIGURE 7 | Illustration of the feature Fp,t (right figure) computed at the spatiotemporal location (p, t)T of a corner (left figure) in an ideal case.

C2max =
F2ndmax

Fmax
> thC2max (10)

with the threshold thC2max ∈ [0, 1].

3.1.2. Velocity-Constraint Based Decision
A second approach consists in considering each (vl, θ l)T (or
noted (vlx, v

l
y)
T in a cartesian reference frame) as a velocity

constraint V l weighted by the value Fp,t(v
l, θ l); verifying (vl)Tv =

||vl||2, where v = (vx, vy)
T is the velocity of the corner.

A corner is present at location (p, t)T if Fp,t gives rise to a real
solution to the equation:

WAv = WB (11)

where:

• A =



















v1x v1y
...

...

vlx vly
...

...

v
Nv
x v

Nv
y



















, with Nv = NvNθ the size of Fp,t , i.e., the

number of constraints,
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• B =

















||v1||2

...

||vl||2

...

||vNv ||2

















and W = diag(Fp,t(v
1, θ1), . . . ,

Fp,t(v
l, θ l), . . . , Fp,t(v

Nv , θNv )).

Then the over-determined system can be solved if M =

(WA)TWA has a full rank, meaning that its two eigenvalues have
to be significantly large. This significance is determined with the
selection criterion established in Noble (1988):

Cconst =
det(M)

trace(M)
> thCconst (12)

with the threshold thCconst > 0.
Equation (11) is also solved with a least square minimization

technique and solutions are considered as valid if Cconst is greater
than the threshold thCconst usually set experimentally. Finally,
a stream Sc of corner events (including features), noted c =

(p, v, t, F)T , is outputted.

Remark 4. In order to be robust to noise, weak values in Fp,t are
inhibited (associated equations are filtered out of the system): if
Fp,t(v

l, θ l) < thFFmax (with thF ∈ [0, 1]), then Fp,t(v
l, θ l) = 0.

Remark 5. With the 2-maxima based decision approach, a corner
event stream can also be obtained; the velocities of the detected
corners can be estimated in a similar manner using only both
maxima’s coordinates, without weighting them. Furthermore, while
the second approach is based on a (unnatural) mathematical
analysis, the first decision method is closer to a time-based
neural implementation; it could be implemented as a coincidence
detector between two (or more) events, denoting the two-first (or
more) maxima, outputted by the leaky integrate-and-fire neural
layer assimilated to the feature F (see Discussion at the end of
Section 2.3).

Note that neural networks have also been proposed in the
literature (Cichocki and Unbehauen, 1992) in order to solve similar
systems of linear equations that are required in the velocity-
constraint decision based method; VLSI implementations have
even been proposed.

Remark 6. Note that the computation principle is quite similar to
the one proposed in Clady et al. (2015); most mechanisms involved
(kernels, filters, selection criteria) have been designed and set in
a similar manner, in order to allow comparison in the fairest
way possible (see next Section). The methods differ from each
other essentially by the selection process of the velocity constraints.
Through a time-based weighting process, Clady et al. (2015)
considers only constraints along edges intersecting the evaluated
event. The methods proposed in this article consider all the edges
in a spatial neighborhood even if they are not perfectly intersecting
themselves at the evaluated location; however the spatial Gaussian-
based weights ws(·) implicitly perform a heuristic selection of the
spatially closer edges, i.e., the most probable intersecting edges.
So even if the location of their detected corner events should be

consequently less precise, they should be close to a real corner; this
is verified in the results presented in the next Section.

3.2. Evaluations
In order to evaluate the detectors, we reproduced one of the
experiments proposed in Clady et al. (2015), the one with the
most quantitative evaluations. It consists into a swinging wired
3D cube shown to a neuromorphic camera (DVS, see Figure 8).

A complete accuracy evaluation, comparing the results
obtained with the geometric-based method given in Clady et al.
(2015) and the methods proposed in this article, is provided
in Figure 9. The corner events parameters (spatial location and
velocity) and the 11 corners ones (obtained with the ground-
truth) are compared using different measures of errors. Each
corner event is associated to the spatially closest ground-truth
corner’s trajectory.

In order to propose a fair evaluation, the thresholds used
in the different methods have been set in order to detect the
same number of corner events (1500) and other algorithms’
parameters have been set as the ones proposed in Clady et al.
(2015) (see Remark 6). The distribution of the corner events per
corner’s trajectory is shown in Figure 11A. We can observe that
the distributions using the geometric-based and the 2-maxima
decision based methods are closely similar. However, the one
obtained with the velocity-constraint decision based method is
unbalanced, with a great number (close to the third of the corner
events) of detections around a particular corner, corner number
5. This can be explained by the fact that the proposed method is
less spatially precise than the geometric-based one (cf. the curves
in Figure 9A and Remark 6) and, as we can see in Figure 10,
the edges around this corner generated more events than the
others because they are generated by “clean” intersecting edges,
see Figure 8, and then verifying well the ideal conditions for the
optical flow estimation, and because it is a X-junction. It is not
the case for the corners number 1, 7, and 11, for example; the
high speed of the cube (close to 500pix.s−1, i.e., inversely close
to the precision of the event timings) and their badly shaped
structures (they correspond to connections between the different
wires constituting the cube) make their detection very hard due
to the local bad quality of the event streams (in particular, there
are numerous missing events as we can see in Figure 11).

Remark 7. Note that accuracy results in Figure 9 concern median
evaluations over the 11 ground-truth corners. Each corner is

FIGURE 8 | Illustration of the experiment: a swinging 3D cube is shown

to a neuromorphic camera.
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FIGURE 9 | Precision evaluation of the corner detectors; the green plain curves correspond to the results obtained with the algorithm proposed in

Clady et al. (2015); the blue dash-dotted blue curves to the velocity-constraint based decision proposed in Section 3.1.2 and the red dashed curves to

the 2-maxima based decision proposed in the Section 3.1.1. The blue and red dotted curves correspond to the respective feature-based approaches but

without speed-tuned temporal kernels. The left figure (A) represents the spatial location errors of the corner events compared to the manually-obtained ground-truth

trajectories of the corners; the middle one (B) the relative error about the intensity of the estimated speed and the right one (C) its error in direction. Accuracies (X-axis

fo the Figures) are given related to the considered percent (Y-axis) of the population of corner events detected with the different methods; e.g., with the method in

Clady et al. (2015), 80% of the corner events have a distance error in corner location <2 pixels compared to the ground truth, see plain green curve in (A).

FIGURE 10 | Snapshots of the results obtained for the three compared detectors, projecting in a frame the visual events (black dots) and corner

events (circles, associated to vectors representing the estimated speeds) over two short time periods (1 ms).

associated to the spatially closest ground-truth corners trajectory.
Each set of corner events (associated to a ground-truth corner) is
sorted according to one of the evaluation criteria (type of errors).
The Y%-most accurate corner events are then selected. Finally, the
accuracy median value for this evaluation criterion is computed
over all ground-truths corners. So these evaluations are a priori not
(or weakly) biased by these differences in distributions.

We can observe that the detectors proposed in this article are
influenced by the quantification of the grid; especially in the
Figure 9C representing the angular precision of the estimated
speed direction. Indeed a lot of corner events have a direction-
related precision close to 5◦, the half of the direction-related
interval length. The velocity-constrainst based decision method
is less clearly influenced because it takes into account more
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FIGURE 11 | Distributions of the detected event corners related to the labeled corners. (A) Comparison between the three evaluated detectors. (B)

Comparison with or without (black) speed-tuned temporal kernels.

elements in the feature (not only the elements with the maximal
values, but also their neighboring elements) to estimate the
speed.

In addition, Figure 11B shows the detections distribution
for both feature-based methods, with or without speed-tuned
temporal kernels. In the approaches without speed-tuning, the
temporal decreasing factor τ has been fixed as τ = 1

vmean
,

where vmean is the mean velocity computed over all corners
and the stream duration (150 ms). Without speed-tuning, some
corners are not or not often detected, in particular corners
number 6 and 8. They correspond to X-junctions between
two intersecting edges with quite different dynamics, because
generated by front and back wires. Furthermore, the accuracy
performances for the approaches without speed-tuned temporal
kernels are significantly lower than the ones with speed-tuned
kernels, as shown in Figure 9.

Finally, if we consider that a corner event detection is valid
if the distance error is <3pixels, the geometric-based method
generates only 2% of false alarms (with a median velocity error
around 10% and a median direction error around 3◦ for the
positive detections), while this rate rises to 8% and to 18% for
the velocity-constraint decision and 2-maxima decision based
methods, respectively (with a median velocity error around 10%
and a median direction error around 8◦, for both).

We have demonstrated that the proposed feature can be used
(in its local approach) to detect corners in event streams. Even
if the detectors are slightly less precise and more sensitive to the
quality of the event streams than the other method proposed in
the literature, our feature-based approaches are more efficient in
terms of memory and computation loads.

Indeed the method in Clady et al. (2015) requires to
memorize the stream of the visual motion events (see Equation
2) and spatiotemporal extrapolations of them (called “normal

events”) and operates quite complex computations between
them. In the approach presented in this article, the visual
motion events are integrated directly in the neighboring features,
and corner detection related computations are operated only
using the feature at the spatiotemporal location of the current
event. We have measured important differences in terms of
computation time between their different implementations;
e.g., for the event stream used for the above evaluations, the
feature-based approaches are ∼10 times faster. Table 1 presents
the distribution of mean computation times obtained with
the different approaches and over 10 repetitions (for 1500
detections). But as themethod in Clady et al. (2015) has been only
implemented on Matlab (Matlab2015b), they should be taken
with caution; it is indeed known that memory can be poorly
managed on Matlab. Measuring the computation time without
code lines dedicated to memory management (which is a crucial
part of the method in Clady et al., 2015), the gain is still around
40%. While the geometric-based method is only envisioned in
Clady et al. (2015) for a real time implementation on massively
parallel computers such as the SpiNNaker board (see Furber
et al., 2013; Orchard et al., 2015a), the feature-based approaches
run in real-time on a standard computer (in C++ on a Intel
Core i7-4790K @ 4GHz, using only one core and without any
optimization such as integer arithmetic instead of floating point
based computations, e.g., Schraudolph, 1999; Cawley, 2000) for
weakly complex visual scenes such as the one presented in this
study.

Beyond this operational asset, the greatest strength of the
proposed feature-based approaches lies in fact that they lead
to a solution of the corner detection issue on event streams
based on classical event-based neural network models (leaky
integrate-and-fire neural network, coincidence detectors, etc.) as
it is highlighted in Section 2.3 and Remark 5.
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TABLE 1 | Distribution of mean computation times (CT) with the different

approaches (estimated on Matlab2015b).

Methods Total CT % of CT OF % of CT feature % of CT corner

estimation computation detection

Velocity-

constraint

76s. 16 83 1

2-maxima 75s. 16 83 1

Geometric 828s. 1 – 99

Geometric 132s. 9 – 91

(w/o memory

management)

4. APPLICATION TO GESTURE
RECOGNITION

Human movement analysis is an area of study that has been
quickly expanding since the 1990’s (see Moeslund et al., 2006;
Poppe, 2007, 2010). The evolution and miniaturization of both
computers and motion capturing sensors have made motion
analysis possible in a growing set of environments. They have
enabled numerous applications in robotics, control, surveillance,
medical purposes (Zhou and Hu, 2008) or even in video-
games with the Microsoft’s Kinect (Han et al., 2013). However,
the available technologies and methods still present numerous
limitations, discouraging their use in embedded systems.
Conventional time-sampled acquisition is very problematic when
implemented in mobile devices because the embedded cameras
usually operate at a frame-rate of 30 to 60 Hz: normal speed
gesture movements can not be properly captured. Increasing
the frame rate would result in the overload of the recognition
algorithm, only displacing the bottleneck from acquisition
to post-processing. Furthermore, conventional cameras and
infrared-based methods are perturbed by dynamic lighting and
infra-red radiations emitted by the sun (cf. Panaïté et al., 2011).
Because they both require light-controlled environments, those
technologies are unsuitable for outdoor use.

Asynchronous event-based sensing technology is expected
to overcome several limitations encountered by state-of-the-
art gesture recognition systems, in particular for battery-
powered, mobile devices. These vision sensors, due to their
near continuous-time operation, allow capturing the complete
and true dynamics of human motion during the whole gesture
duration. Due to the pixel-individual style of acquisition and pre-
processing of the visual information, and in contrast to practically
all existing technologies, they will be also able to support device
operation under uncontrolled lighting conditions, particularly
in outdoor scenarios (cf. Simon-Chane et al., 2016). Native
redundancy suppression performed in event-based sensing and
processing will ensure that computation can be performed in real
time, while at the same time saving energy, decreasing system
complexity.

Gesture recognition using neuromorphic camera has already
been investigated by Lee et al. (2014). A stereo pair of DVS allows
them to compute disparity in order to cluster the hand. Then,
they use a tracking algorithm to extract the 2D trajectory of the

movement. Finally the trajectory is sampled into directions, and
the obtained sequence of directions is fed to a HMM classifier.
This approach uses event-based information only during the first
step (extraction of the location of the hand). In addition, with this
type of multi-steps architecture, a failure in a step could result in
the failure of the whole system.

Here we propose to demonstrate that our feature can be
used to detect and recognize more directly gestures. Hoof-
like features (see Section 4.1) are derived from the feature
matrix and provided to a classification architecture that performs
simultaneously detection and recognition. It is based on hybrid
generative/discriminative classifiers (Lasserre et al., 2006) in
order to associate at each feature its probabilities to belong to
the considered (hand) gestures or not, and these probabilities are
integrated over time through a network of Bayes filters (Thrun
et al., 2008).

4.1. A More Compact and Invariant
Representation
In order to reduce the dimensionality of the feature (it is often
required in machine learning, in order to address the “curse
of dimensionality” issue) and to provide (global speed- and)
scale-invariance property to the gesture representation, F can be
transformed into a more compact representation, noted h (hp,t
or ht , in local or global approaches, respectively) and named
hoof-like in reference to the Histogram of Oriented Optical Flow
(HOOF) introduced by Chaudhry et al. (2009) in frame-based
vision. This transformation consists in summing the intensities
of the optical flow vectors with respect to their directions.

From the feature F, hp,t =
[

hp,t;1, ...., hp,t;Nθ

]T
can be easily

obtained:

hp,t;i =
∑

k

vkFp,t(v
k, θ i) (13)

In the global approach, normalization (to sum to 1) makes the
hoof-like feature globally speed- and scale-invariant. Figure 4D
represents the histogram of oriented optical flows computed
globally on an event stream capturing a walking human
(Figure 4A).

4.2. Classification Architecture
We propose a classification architecture where the problem is
framed as a Bayes filter, that is estimating the probabilities of
gestures recursively over time using incoming measurements,
given as the hoof-like features ht0:tk ∈ H computed globally from
every visual events [e0, ek].

Then we note the state gi ∈ G, the gesture (numerated i,
i ∈ [1,K]) that the user is currently performing. A state g0 is
added in G, in order to consider the not-considered gestures or
the instants while the user is not performing a hand gesture.

The camera observes the user’s action and at each occurring
feature estimates a distribution over the current state gitk :

p(gitk | ht0:tk ) (14)
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where htk ∈ H is the observation of the gesture occurring at time
tk.

To estimate this probability, a time update and ameasurement
update are performed alternately. The time update updates the
belief that the user is performing a specific gesture given previous
information:

p(gitk | ht0:tk−1
) =

∑

g
j

k−1
∈G

p(gitk | g
j
tk−1

)p(gitk−1
| ht0:tk−1

) (15)

The time update includes a transition probability from the
previous state to the current state. As no-contextual information
is available here, we assume that an user is likely to perform the
same gesture, and at each timestamp has a large probability of
transitioning to the same state:

p(gitk | g
j
tk−1

) =















1
|G|

+
|G|−1
|G|

exp
(

−
tk−tk−1

τg

)

if i = j

1
|G|

− 1
|G|

exp
(

−
tk−tk−1

τg

)

otherwise

(16)
with τg set to 150 ms, less than the half duration of shorter
gestures. This assumption means that the gesture’s certainty
slowly decays over time, in the absence of corroborating
information, converging to a uniform distribution (even if no
event is observed).

The measurements update combines the previous belief with
the newest observation to update each belief state, such as:

p(gitk | ht0:tk ) =
p(htk |g

i
tk
)p(gitk

|ht0:tk−1
)

p(htk |ht0:tk )

∝ p(htk | g
i
tk
)p(gitk | ht0:tk−1

)
(17)

In order to estimate p(htk | gitk ), we propose a machine learning
based approach to compute and select generative models for
gesture. It is decomposed into two steps:

• For the first step, we collect hoof-like features computed while
the users (included in the training database, see Section 4.3.1)
performed a gesture gi, i ∈ [1,K]. Then a k-means algorithm
is applied on them in order to compute N candidate models,

notedmgi .
• The second step consists in selecting from these candidate

models, the ones that are the most discriminative against
hoof-like features collected from the rest of the training event
streams; these last features have been computed during other
considered gestures (gj with i 6= j) or during other period
times when users were not performing gestures. This selection
is processed through a discrete Adaboost classifier.

Adaboost (Freund and Schapire, 1996) is an iterative algorithm
that finds, from a feature set, some weak but discriminative
classification functions and combines them in a strong

classification function:

B =







1,
S
∑

s=1
λsbs ≥

1
2

S
∑

s=1
λs,

−1, otherwise,

(18)

where B and b are the strong and weak classification functions,
respectively, and λ is a weight coefficient for each b. T is
the threshold of the strong classifier B. The principle of the
Adaboost algorithm is to select, at each iteration, a new weak
classifier in favor of the instances (or features) misclassified by
previous classifiers, through a weighting process attributingmore
influence to misclassified instances.

Note that a threshold value, noted thB, can be defined (such

as the condition in Equation 18 can be written: 2
S
∑

s=1
λs

S
∑

s=1
λsbs ≥

thB) in order to optimize a particular classification performance.
During the learning step, its default value is 1; this means a
classification frontier at the middle of the margin (see Schapire
et al., 1998). Increasing or reducing its value correspond to
moving the frontier closer or further to the positive class,
respectively.

In literature, discriminative training of generative models, as
we propose here, has been shown as efficient learning methods
in numerous applications as object or human detection (Holub
et al., 2005; Negri et al., 2008; Wang et al., 2011), face or character
recognition (Prevost et al., 2005; Grabner et al., 2007) or for
medical purposes (Deselaers et al., 2008; Wang et al., 2015). The
proposed classifier based on the training and the selection of
generative models in a discriminative way, combines indeed the
main characteristics of discriminative and generative approaches:
discriminative power and generalization ability, respectively. The
latter is in particular very important in our application, when
a weak amount of labeled training data is available, see Section
4.3.1.

Following the framework described in Jing et al. (2008), we
propose to design weak classifiers as generative ones, associated

to each candidate modelsm
gi

s (s ∈ [1,N]):

bis =







1, if f (h,m
gi

s ) = exp

(

−
d(h,m

gi

s )2

θ
gi

s

)

≥ 1
2

−1, otherwise,

(19)

where d(·, ·) is the Euclidean distance and θ
gi

s parametrizes the
likelihood function f and is computed at each iteration of the
algorithm through a maximum-likelihood estimation (taking
into account the weights attributed to features).

During training, Adaboost based algorithm tends to select
iteratively the most discriminative and complementary models
for each gesture. We limit the number of selected models, such as
the relative difference between F-measure (computed on training
database, see Section 4.3.1) obtained at the corresponding
iteration is superior or equal to 95% of its maximum (obtained
with a greater number of iterations of Adaboost algorithm).

Let us remind that F-measure is defined as 2 ×
precision×recall
precision+recall

.
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Optimizing it means also to determine a number of models for
which an acceptable compromise between precision (the ratio of
positive detections to instances belonging to performed gestures)
and recall (the ratio of positive detections to all instances detected
as belonging to gestures) is reached.

The probability p(htk | gitk ) is then estimated as proportional
to a measure (∈ [0, 1]) operated between the hoof-like feature
and the set of selected models (applying a sigmoidal function to
the output of the strong classifier):

p(htk | g
i
tk
) ∝ L(htk , g

i) =
1

1+ exp







2
Si
∑

s=1
λis

Si
∑

s=1
λisb

i
s − thiB







(20)
with i ∈ [1,K] and thiB is the threshold obtained optimizing the
F-measure. The probability associated to not-considered gesture
(or no-gesture), noted g0, is then defined as:

p(htk | g
0
tk
) ∝ 1−maxi∈[1,K]

(

L(htk , g
i)
)

(21)

Figure 12 presents the obtained classification architecture.
Finally a gesture’s class Gtk at each time is attributed from the
distribution of probabilities, defined as:

Gtk = argmaxi∈[0,K]

(

p(gitk | ht0:tk )
)

(22)

Remark 8. Even if our implementation is based on a learning
process not directly related to neural approaches (essentially due to
the limited size of the database), we can observe that the resulting
classification architecture could be fully implemented in an event-
based framework. Through a rate-coding model, hoof-like features
could be computed and transmitted from the leaky integrate-and-
fire neural network, corresponding to the feature computation,
as evoked in Section 2.3, to neural networks performing their
comparison with gesture models (considering maybe another
distance than the Euclidean one used here) and outputting positive
events when they match; these positive events corresponding to the
weak classifier responses (bis). The coefficients λis would be then
assimilated to synaptic weights. The other operations, in particular
involved in Bayes filters, would correspond to feedback lines and
basic mathematical operations that can be modeled using precise
timing and event-based paradigms as demonstrated in Lagorce and
Benosman (2015).

4.3. Results
4.3.1. Experimental Protocol
The protocol assumes that the users performed gestures in front
of the camera. Event streams (using the ATIS camera) have
been collected with nine users (young and middle-aged people
working in the laboratory). All users are right-handed but the
database could be extended to left-handed users by mirroring the
sequences horizontally.

The hand is moving at a distance around 30 cm from
the camera, approximatively. Note that this distance has been

FIGURE 12 | Gesture Recognition Architecture: for each occurring hoof-like feature htk , the distribution of probabilities noted p(htk | gtk ), is estimated

comparing the features to models computed and selected through an Adaboost-based learning process. Then the probabilities of gestures, noted

p(gtk | ht0:tk−1
), are estimated recursively over time.
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determined to ensure that the hand is fully viewed by the camera
(see Figure 13A) considering the current optic lens (this distance
should be reduced when a wider-angle lens will be implemented).
Each gesture is repeated five times by each user, varying the hand
speed.

Six gestures have been defined and correspond to a
dictionary of coarse gestures; the gesture is defined by the
global motion of the hand (hand moving to the left, to the
right, upward, downward, opening, or closing). These gestures
could match with the main controls we could intend to
execute interacting with a smartphone or a tablet (navigating
in a menu or a list, selecting/unselecting an object or an
application), i.e., the targeted application (see Figure 13B).
Furthermore, they constitute a dictionary for more complex
gestures, successively combining these movements. In Figure 14,
an iconic representation of these coarse gestures is presented in
the second column.

The training database is composed of the event streams
collected with five users and the test database with the four
other ones. During the evaluations (see next Section), a cross-
validation is performed ten times (presented evaluations are
the obtained mean values), putting randomly the users in the
training or test databases. 30, 000 hoof-like features, computed
on the training streams, are collected randomly and equitably
in the time periods when gestures are performed (including
the not-considered gestures or no gesture class) to train the
Adaboost classifiers with a one-vs.-all strategy. An equal quantity
is again randomly selected for the F-measure based optimization
process and the selection of the number of models. Six hundred
candidatemodels per gesture have been computed using k-means
algorithm. The characteristics of the hoof-like features are the
same as described in Section 2.2 (Nθ = 36, etc).

A gesture is considered as detected when the duration of a time
period with classified gestures (Gtk 6= 0 in Equation 22) is over
300 ms. This detection is counted as positive if this time period
overlaps the manually labeled ground truth (with an overlap ratio
superior to 0.5) .

4.3.2. Evaluations
Figure 14 represents the considered gestures and the models
selected by Adaboost during a learning process (see Section
4.2). We can observe that the number of selected models is
relatively weak (3 or 4). This means that the hoof-like features
are able to represent well the gestures despite their (speed- and
user-related) variability, mostly thanks to its speed- and scale-
invariance property.

Another observation concerns the “shape” of the feature
models. For most of them, they match well to the iconic
representation of the corresponding motion; for example, for
the motions to the left and to the right, most speed vectors
are oriented to these respective directions, etc. However, some
singularities have to be explained considering not only the global
motion but also the directions of the principal contours of
the human parts (hand, finger and arm) involved in the hand
movement. For the opening hand motion, models obtained
at iterations 1 and 2 highlight the motion of the thumb, for
which the moving contours are prevalent in the feature. For the
downward motion, the contours of the arm are too prevalent (see
models obtained at iterations 2 and 3) because the camera viewed
the user’s bust (see Figure 13).

In terms of detection performance, we obtained a mean
precision of 91% and a mean recall of 83% (F-measure =

0.85) which confirm the great discrimination power of the
proposed feature. Note that the F-measures obtained during

FIGURE 13 | Illustration of the targeted human-machine interaction. (A) Example of a hand gesture performed in front of the camera. (B) ATIS camera

embedded on a smartphone.
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FIGURE 14 | Iconic representations (second column) of the gestures (first column) and corresponding models selected by the Adaboost-based

machine learning process.

the optimization (to determine thB and the number of
models) are around 0.75. The greater value obtained at
the final output highlights the filtering action of the Bayes
filters.

Finally the confusion matrix given in Figure 15 shows
us the recognized gestures among the positive detections.
The downward and closing hand gestures are obviously a
little confused because the similarity of the hand’s and the
fingers’ motions, respectively. The confusion of other gestures
with the opening hand is probably due to the fact that
the gesture is hard to detect, probably because the larger
proportion of the movement involved the other fingers than
the thumb and their moving contours generated few visual
events (because in folded positions; the finger-skin vs. palm-
skin contrast changes are weakly captured, see Remark 2).
Indeed, in order to optimize the F-measure, the proposed
process tends to select a low threshold compared to others
(3 or 4 times lower); this means that classification frontier
defined for this gesture tends to include other gestures.
Hence, these gestures are sometimes misclassified as opening
hand.

In further developments, we expect to improve these
performances combining this global feature with locally
computed ones, taking into account their relative spatio-
temporal relationships. This should help us to better distinct
the global motion of the hand and the local motions
of the fingers, and hence better detect and categorize
gestures.

FIGURE 15 | Confusion matrix (expressed in percent) showing the

recognized gestures (columns) related to the performed gestures

(lines), among the positive detections.

5. CONCLUSION AND DISCUSSION

In this article, we have proposed a motion-based feature for
event-based vision. It consists in encoding the local or global
visual information provided a neuromorphic camera in a
grid-sampled map of optical flow. Collecting optical flow (or
visual motion events) computed around each visual event in
a neighborhood or in the entire retina, this map represents
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their current probabilistic distribution in a speed- and direction-
coordinates frame.

Two event-based pattern recognition frameworks have been
developed in order to demonstrate its usefulness for such tasks.
The first one is dedicated to detection of specific interest points,
corners. Two feature-based approaches have been developed and
evaluated. Formulated as an intersection of constraints issue, this
fundamental task in computer vision can be resolved operating
with the information encoded in the proposed local feature. The
second one consists in a hand gesture recognition system for
human-machine interaction, in particular with mobile devices.
More compact and scale-invariant representations (called hoof-
like features) of the motion observed in the visual scene, are
extracted directly from the global version of the proposed feature,
and feed a classification architecture, based on a discriminative
learning schema of gestures’ generative models and framed as
a Bayes filter. Evaluations show that this feature has sufficient
descriptive power to solve such pattern recognition problems.
Other extensions or derivations of the proposed feature can be
also envisioned in further developments, in order to address
other pattern recognition issues. For example, summing the
elements of the feature, with respect to their directions and
without weighting them by corresponding speed, will result
into another compact form, similar to the hog (histogram of
oriented gradients) feature proposed by Dalal and Triggs (2005).
This feature and its derivations have been demonstrated as
very efficient for many pattern recognition tasks in frame-
based vision. To evaluate it in event-based vision would
required to design event-based and dedicated classification
architecture(s).

It is interesting to notice that our motion-based feature
allows us to detect features defined by “static” properties, i.e.,
corners, and recognize dynamic actions, i.e., gestures, in visual
scenes. All required information for both tasks are provided by a
local computation of optical flow; this information is precisely
encoded in the primary area (V1) of the visual cortex via the
selectivity of V1 neurons. We underline also that the proposed
frameworks are fully incremental and could be implemented as
event-based neural networks, in particular thanks to speed and
direction coordinates frame based representation of the visual
motion information.

Such polar coordinate frame based representations have
been already investigated for computer vision; e.g., based on
bank of Gabor filters, using whether synchronous frame-based
(Lades et al., 1993; Jain et al., 1997; Lyons et al., 1998, etc.)
or asynchronous event-based (Akolkar et al., 2015) visual
information. Works about natural image statistics (Hyvarinen
et al., 2009) showed that similar decompositions of visual
information emerge naturally from independent component
analysis applied on patches collected on natural images.
Recently, a work in Chandrapala and Shi (2016) encoding more
directly local event streams as local spatiotemporal surfaces
(Lagorce et al., 2016), showed that an unsupervised learning
process applied on a relatively large database acquired with
a neuromorphic camera, leads to a similar result: basic and
local feature extractors coding contours’ speed and direction.
Moreover, other works (Cedras and Shah, 1995; Chaudhry et al.,
2009; Ahad et al., 2012, etc.) in frame-based vision have shown

that optical flow is a valuable information to encode in features
for pattern recognition tasks.

In addition, the work presented in this article supports the
proposition that optical flow’s speed and direction based grid
is not only a powerful manner for encoding visual information
in pattern recognition tasks, but it plays also a key role at
a computational level when dealing with asynchronous event-
based streams. Indeed we have shown that, to compute the
distribution of optical flow along current edges, we need
to take into account their respective dynamics, in order to
ensure that the moving edges are equitably represented in
the feature (whatever their own dynamics). The discretization
of the visual motion information into the proposed speed-
and direction-based grid allows us to incorporate directly the
required speed-tuned temporal kernels in the structure of the
computational architecture computing the feature. We have in
addition proposed that this architecture can be implemented as a
leaky integrate-and-fire neural layer, wherein neurons have then
speed-tuned integration times; so it could be further integrated as
the first layer in a spiking neural network using back-propagation
based deep learning technique, as the one recently proposed by
Lee et al. (2016) wherein LIF neurons are also used.

Finally, in the asynchronous event-based multilayer
architectures proposed recently in Chandrapala and Shi
(2016) and Lagorce et al. (2016), the integration times are
tuned as increasing at higher layers. In addition, in our gesture
recognition architecture, we have set the integration time in
Bayes filters regarding the gesture durations, not the dynamics
of the visual information. Further, investigations could address
the following issue: when (or at what level in hierarchical
models) the integration times should be tuned not regarding
the dynamics of the perceived information, but other temporal
considerations or dynamics, maybe related to a targeted task or
action, or maybe related to other perceptive, learning, or memory
functions.
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