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Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair 
and regeneration. This review explores their intricate interplay, elucidating their 
collaborative role in maintaining tissue homeostasis and responding to injury or disease. 
While examining the fundamentals of stem cells, we detail the mechanisms underlying 
inflammation, including immune cell recruitment and inflammatory mediator release, 
highlighting their self‑renewal and differentiation capabilities. Central to our exploration 
is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their 
mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, 
growth factors, and autophagy, an intracellular catabolic mechanism involved in this 
process, are discussed alongside their clinical relevance. Furthermore, mesenchymal 
stem cell homing in response to inflammation contributes to tissue repair processes. 
In addition, we discuss stem cell resilience in the face of inflammatory challenges. 
Moreover, we examine the reciprocal influence of stem cells on the inflammatory 
milieu, shaping immune responses and tissue repair. We underscore the potential of 
targeting inflammation‑induced stem cell mobilization for regenerative therapies through 
extensive literature analysis and clinical insights. By unraveling the complex interplay 
between inflammation and stem cells, this review advances our understanding of tissue 
repair mechanisms and offers promising avenues for clinical translation in regenerative 
medicine.

Keywords: Inflammation, Resilience, Stem cell mobilization, Therapeutic interventions, 
Tissue regeneration

Inflammation: A fundamental process in 
the immune system

Inflammation, a conserved process marked by activating 
immune and nonimmune cells to safeguard the host against 
bacteria, viruses, toxins, and infections, can be categorized 
into acute and chronic phases. Acute inflammation is usually 
rapid and self‑limiting, whereas chronic inflammation endures 
over an extended period, potentially resulting in tissue 
damage and organ dysfunction  [8,9]. Chronic inflammation 
is associated with numerous diseases, including ischemic 
heart disease, stroke, cancer, diabetes mellitus, chronic 
kidney disease, nonalcoholic fatty liver disease, autoimmune 

Introduction

Inflammation in itself is not to be considered as a disease 
but as a salutary operation consequent to some violence 

or some disease  [1]. It is closely linked with nearly every 
human ailment  [2]. Inflammation serves as a crucial defense 
mechanism against pathogens and tissue damage, orchestrated 
by a complex interplay of immune cells, cytokines, and 
chemokines. It is characterized by a series of events including 
vasodilation, increased vascular permeability, and leukocyte 
recruitment to the site of injury or infection  [3]. Adult stem 
cells, on the other hand, possess remarkable self‑renewal and 
differentiation capabilities, contributing to tissue homeostasis, 
repair, and regeneration  [4,5]. The mobilization or homing of 
stem cells, the process by which stem cells are released from 
their niche into circulation or injury sites, plays a pivotal 
role in tissue repair, particularly in response to inflammatory 
stimuli [6,7].
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disorders, and neurodegenerative conditions  [10]. Injury and 
infection‑triggered inflammatory responses can be detected 
through two distinct modes of recognition [11]  [Figure  1]. 
First, tissue damage leads to the release of intracellular 
proteins such as heat‑shock proteins, the transcription factor 
high mobility group box 1  (HMGB1), extracellular adenosine 
triphosphate  (eATP), histone, and mitochondrial peptides 
bearing the N‑formyl group characteristic of prokaryotic 
proteins, eliciting an inflammatory response  [12‑16]. Second, 
microbes and their shed or secreted products are sensed through 
the binding of their conserved molecular constituents to soluble 
receptors such as complement, mannose‑binding protein, and 
bacterial cell wall components such as lipopolysaccharide, 
which in turn bind to cell‑surface receptors such as toll‑like 
receptor  (TLR) family members  [17,18]. The inflammatory 
response recruits various immune cells, including neutrophils, 
macrophages, and lymphocytes, to the site of inflammation in 
a tightly regulated manner. Cytokines such as tumor necrosis 
factor‑alpha  (TNF‑α) and interleukins  (ILs), along with 
chemokines, orchestrate leukocyte trafficking and activation, 
aiding in the clearance of pathogens and damaged cells [17,18]. 
Furthermore, it is now understood that inflammation can occur 
independently of infection or tissue injury. Cells experiencing 
senescence or stress, such as endoplasmic reticulum  (ER), 
mitochondrial, or osmotic stress, activate the NOD‑like receptor 
family and pyrin domain‑containing 3 (NLRP3) inflammasome 
and produce inflammatory cytokines  [11,19,20]. Furthermore, 
a key player in the complex landscape of inflammation is 
the NLRP3 inflammasome, a protein complex that modulates 
inflammatory responses and has been implicated in various 
diseases.

NLRP3 inflammasome
Inflammasomes, first proposed by Martinon et  al., 

2002  [21], are protein complexes containing caspase‑1 that 
positively regulate the inflammation and are associated with 
various diseases such as diabetes, Alzheimer’s disease, gout, 
and atherosclerosis  [22‑26]. The NLRP3 inflammasome is 
among the most studied inflammasome members  [23,24,26]. 
It consists of NLRP3, ASC  (apoptosis‑associated speck‑like 
protein containing a caspase recruitment domain), and 
pro‑caspase‑1 [27,28]. Activation of the NLRP3 inflammasome 
involves two steps: priming and activation. In the priming 
signal, pathogen‑associated molecular patterns (PAMPs) or 
damage‑associated molecular patterns (DAMPs) bind to TLRs, 
activating the NF‑κB pathway. This activation results in 
increased expression of inflammasome‑related molecules such 
as pro‑IL1β, pro‑IL‑18, and NLRP3  [29,30]. In the activation 
signal, the NLRP3 inflammasome assembles and activates 
through three main mechanisms: ion flux (potassium channels, 
chloride channels, or calcium signaling), mitochondrial 
dysfunction, and lysosomal disruption [29,30]. After activation, 
the inflammasome‑activated caspase‑1 cleaves pro‑IL‑1β, 
pro‑IL‑18, and gasdermin D, leading to the secretion of IL‑1β 
and IL‑18 [31,32] and induction of inflammatory programmed 
cell death‑pyroptosis [29] [Figure 2].

Stem cells: Basics and types
In contrast to the intricate regulatory pathways of 

inflammasomes, stem cells offer a promising avenue in 
regenerative medicine. Stem cells, characterized by their 
remarkable plasticity, play pivotal roles in tissue repair and 
regeneration. Understanding their dynamics and potential 

Figure 1: Schematic illustration showing the two types of inflammatory responses: injury‑triggered and infection‑triggered. Both inflammatory reactions involve recruiting 
immune cells to clear damaged cells or pathogens
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therapeutic applications requires a grasp of their fundamental 
properties. Stem cells are undifferentiated cells capable of both 
self‑renewal and differentiation into specialized cell types. 
Hematopoietic stem cells  (HSCs) give rise to all blood cell 
lineages, whereas mesenchymal stem cells  (MSCs) have the 
potential to differentiate into various mesenchymal lineages 
including adipocytes, osteoblasts, and chondrocytes  [33,34]. 
These multipotent stem cell populations reside in specialized 
niches within tissues, maintaining tissue homeostasis and 
responding to injury or inflammation by proliferating 
and differentiating into required cell types for tissue 
repair [35] [Table 1].

Hematopoietic stem cells and the bone 
marrow niche

HSCs reside in the bone marrow niche. The existence 
of a niche or microenvironment was proposed in 1978 by 
Schofield  [36]. He suggested that stem cells are associated 
with other tissue‑resident cells that prevent stem cell 
differentiation and maintain self‑renewal. Niche is composed 
of endothelial cells and mesenchymal stromal progenitor 
cells. The interactions between niche cells and HSCs are 
associated with adhesion, self‑renewal, mobilization, and 
homing [37,38]. The following ten molecules on the surface 
of niche cells  (N‑cadherin, soluble kit ligand, angiopoietin, 
stromal cell‑derived factor 1 [SDF‑1, also called CXCL12], 
vascular cell adhesion molecule‑1  [VCAM‑1], ICAM‑1,2,3, 
thrombopoietin, osteopontin  [OPN], E‑selectin, and 

P‑selectin) are responsible for the interaction with the 
surface receptors  (N‑cadherin, c‑kit, tie2, CXC chemokine 
receptor‑4  [CXCR4], very late antigen‑4  [VLA‑4], 
LFA‑1, MPL, α and β integrin  [CD44], E‑selectin 
ligand‑1, and P‑selectin glycoprotein ligand‑1) on the 
HSCs, respectively  [38]. Niche cells also can provide 
noncellular ligands such as fibronectin, laminin, collagen, 
OPN, and hyaluronan for cell adhesion between HSCs 
and niche cells  [39]. Besides endothelial cells and 
mesenchymal stromal progenitor cells, there are a variety 
of cells such as macrophages, neutrophils, osteoblasts, 
and megakaryocytes regulated by sympathetic nerves and 
complement components that maintain the bone marrow’s 
hemostasis [40,41].

The interplay between inflammation and 
hematopoietic stem cell mobilization

Inflammation exerts profound effects on stem cell dynamics, 
influencing their mobilization from the bone marrow into 
circulation. During inflammation, cytokines and chemokines 
such as granulocyte colony‑stimulating factor  (G‑CSF, also 
known as filgrastim), granulocyte‑macrophage CSF, and 
SDF‑1 are upregulated, promoting the release of stem cells 
from the bone marrow niche  [42]. In addition, inflammatory 
signals can directly modulate the behavior of stem cells, 
enhancing their migratory and homing capacities to sites of 
injury or inflammation  [43]. This orchestrated mobilization of 
stem cells plays a crucial role in tissue repair and regeneration, 

Figure 2: Schematic illustration showing the activation pathway of the NLRP3 inflammasome. The NLRP3 inflammasome, a protein complex crucial for inflammation, 
involves NLRP3, ASC, and pro‑caspase‑1. Activation occurs in two steps: priming and activation. Priming involves pathogen‑associated molecular patterns or 
damage‑associated molecular patterns binding to toll‑like receptors, activating the NF‑κB pathway, and increasing pro‑interleukin  (IL)‑1β, pro‑IL‑18, and NLRP3 
expression. Activation involves ion flux, mitochondrial dysfunction, and lysosomal disruption, leading to the assembly of the inflammasome. Activated caspase‑1 then 
cleaves pro‑IL‑1β, pro‑IL‑18, and gasdermin D, resulting in IL‑1β and IL‑18 secretion and pyroptosis
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contributing to the replenishment of damaged cell populations 
and the restoration of tissue function [44].

Beyond the regulation by circadian rhythms  [45], HSCs 
will mobilize to the peripheral blood in responses to systemic 
or local inflammation, intensive exercise, hypoxia, and 
tissue/organ injuries in steady‑state conditions  [6,46‑49]. 
Accumulated studies revealed that G‑CSF or plerixafor  (also 
known as AMD3100) can activate neutrophils in the bone 
marrow, and then, the activated neutrophils will release 
some DAMPs such as HMGB1, eATP, DNA, and hyaluronan 
fragments  [50‑52]. These DAMPs will be recognized by 
mannan‑binding lectin, which then activates complement 
system through MBL‑associated serine proteinase. The 
activated complement C5a then lyses erythrocytes and releases 
sphingosine‑1‑phosphate into the peripheral blood to attract 
the HSCs mobilized from the bone marrow  [40,50,53,54]. 
Recent studies have reported that the NLRP3 inflammasome is 
involved in G‑CSF and AMD3100-triggered HSC mobilization 
in mice. Additionally, the administration of the NLRP3 
inflammasome activator nigericin, or the activation mediators 
IL‑1β and IL‑18, induces HSC mobilization in mice [55‑58]. 
Mice deficient in caspase‑1 and Nlrp3 are poor mobilizers in 
response to G‑CSF and AMD3100 [59]. In clinical settings, 
proinflammatory cytokine levels (interferon‑gamma, IL‑22, 
and TNF‑α) correlate positively with G‑CSF‑triggered HSC 
mobilization [60]. All these evidence demonstrated that innate 
immunity plays an important role in HSC mobilization.

Moreover, in addition to influencing stem cell mobilization, 
inflammatory signals secreted by recruited immune cells 
also suppress Notch activation in tissue‑resident stem cells 
such as airway stem cells. This process promotes stem cell 
plasticity and their differentiation into alveolar cells  [61,62]. 
These findings underscore the intricate interplay between 
inflammation and stem cell dynamics, wherein inflammatory 
cues mobilize stem cells and shape their fate and function in 
tissue repair and regeneration processes.

Autophagy and hematopoietic stem cell 
mobilization

Transitioning to another facet of stem cell regulation, autophagy 
emerges as a critical intracellular mechanism with implications 
in immunity and inflammation [63‑65]. Recent studies have 
elucidated a mutual regulation between inflammasomes and 
autophagy [66‑68]. Autophagy is initiated by the formation 
of a double membrane called autophagosome‑sequestered 
malfunctioning components  [69,70]. The autophagosome fuses 

with lysosome to become the autolysosome and degrades all 
unwanted cytosolic constituents  [69,70]. Autophagy is initiated 
by the autophagy‑related protein 1  (Atg1)‑Atg13 protein 
complex. The class  III phosphoinositide 3‑kinase‑Beclin 1 
complex is the key for the nucleation step  [71]. Elongation 
of the isolation membrane is mediated by two ubiquitin‑like 
conjugation systems  (coordination by several Atg proteins, such 
as Atg3 and Atg5‑12)  [72,73]. Autophagy plays important roles 
in cell survival, immunity, development, cancer, and adaptation 
to starvation  [74,75]. Evidence also showed that autophagy is 
important for hematopoietic system and Atg7−/− mice developed 
severe anemia, lymphopenia, and atypical myeloproliferation 
resembling human myelodysplastic syndrome  [72,76,77]. In 
addition, autophagy also plays an important role in hematopoietic 
cell differentiation  [78,79], including erythroid cell terminal 
differentiation, especially in reticulocyte maturation  [80‑83] 
and megakaryocyte differentiation  [84], and is also required for 
the maintenance of quiescence and stemness of HSCs  [85‑87]. 
Notably, G‑CSF‑induced neutrophil and HSC mobilization is 
impaired in Atg7−/− or Atg5−/− mice, suggesting a crucial role 
for autophagy in this process  [88]. Autophagy‑related genes 
also increase expression in both neutrophils and HSCs of mice 
and humans after G‑CSF stimulation  [88]. Furthermore, G‑CSF 
has been shown to mobilize regulatory T‑cells  (Tregs) from the 
bone marrow to the peripheral blood and induce autophagy for 
the survival of Tregs  [89,90]. These cells are heterogeneous 
immunosuppressive T‑cells that maintain tolerance after HSC 
transplantation  (HSCT)  [91]. Understanding autophagy’s role in 
HSC mobilization holds promise for improving HSCT protocols 
and promoting tolerance of graft‑versus‑host diseases after 
HSCT.

Mesenchymal stem cell homing in response 
to inflammation

Transitioning to another aspect of stem cell behavior, 
MSCs exhibit remarkable homing capabilities in response 
to inflammation. MSCs can be isolated from various tissues, 
including bone marrow  [92], adipose tissue  [93], umbilical 
cord tissue  [94], placenta  [95], umbilical cord  [96], peripheral 
blood  [97], and skin  [98]. Among these, bone marrow MSCs, 
adipose‑derived MSCs, and umbilical cord MSCs are the most 
frequently studied. Compared to the other two MSC types, 
adipose‑derived MSCs are readily available and collected 
noninvasively, making adipose tissue an ideal source for 
MSCs  [99]. For clinical treatments, MSCs can be sourced 
endogenously or exogenously. Regardless of their origin, 
MSCs preferentially home to injury or tumor sites under the 

Table 1: Comparison of hematopoietic stem cells and mesenchymal stem cells
Aspect HSCs MSCs
Origin and location Originate in bone marrow Found in bone marrow and various tissue (e.g., adipose tissue, umbilical cord blood)
Differentiation ability Give rise to all blood cell types Differentiate into nonhematopoietic cell types (e.g., bone, cartilage, muscle, and fat)
Function Primarily involved in blood cell production Exhibit immunomodulatory properties; contribute to tissue repair and regeneration
Response to 
inflammation or injury

Mobilize from bone marrow to peripheral 
blood; participate in tissue repair

Actively respond to inflammation; secrete anti‑inflammatory cytokines; promote 
tissue healing; modulate immune responses

Clinical application Used in HSCT Investigated for therapeutic potential in various conditions; enhance HSCT 
outcomes when combined with HSC infusion

MSCs: Mesenchymal stem cells, HSCs: Hematopoietic stem cells, HSCT: Hematopoietic stem cell transplantation
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influence of inflammatory and chemotactic factors, which 
promote angiogenesis, regeneration, immunomodulation, anti-
inflammatory, and antitumor effects [100‑103]. Therapeutic 
MSC administration can be performed systemically or 
site specifically; thus, MSC homing can be divided into 
nonsystemic and systemic  [Figure 3]. In nonsystemic homing, 
MSCs injected locally near the target tissue are recruited to 
the injury site by sensing chemokines released from injured 
or inflamed tissue  [104]. In systemic homing, MSCs are 
administered locally or recruited endogenously into the 
circulation first. They then go home to the injury site akin to 
leukocytes, following four subsequent steps  [101,103,104]. 
Initially, adhesion molecules such as VLA‑4  (also known as 
α4β1‑integrin) on the surface of MSCs bind to VCAM‑1 on 
endothelial cells, promoting adhesion and activating between 

MSCs and endothelial cells  [105,106]. Several reports have 
demonstrated that damaged tissues or inflammatory sites 
express various inflammatory cytokines such as IL‑1β and 
IL‑6, as well as growth factors such as epidermal growth 
factor and fibroblast growth factor. These factors bind to 
receptors on MSC surfaces, facilitating the rolling, capture, 
and adhesion of MSCs at the target site  [107]. For instance, 
stromal cell‑derived factor 1  (SDF‑1) significantly increases 
after cardiac ischemia, and the recruitment of MSCs expressing 
CXCR4 toward the SDF‑1 gradient plays a crucial role in 
tissue recovery [108]. The SDF‑1/CXCR4 interaction between 
SDF‑1 and CXCR4 regulates MSC homing, and strategies 
have been developed to modify MSCs to express more CXCR4 
before transplantation for cardiac repair  [109]. Subsequently, 
matrix metalloproteinases  (MMP‑9 and MMP‑2), released 

Figure 3: Schematic illustration showcasing mesenchymal stem cell (MSC) homing, depicting two pathways: nonsystemic homing and systemic homing. In nonsystemic 
homing, MSCs are injected locally near the target tissues. Conversely, MSCs navigate to the injury site or tumor in systemic homing through four subsequent steps: 
adhesion, facilitating rolling and capture, transendothelial migration, and homing to the injury site. In both modes of MSC homing, recruitment to the injury site is 
facilitated by the sensing of chemokines
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by inflammatory cells or MSCs, degrade the two major 
components of basement membranes  –  collagen and gelatin, 
enabling transendothelial migration of MSCs  [110,111]. 
Finally, chemotactic factors such as platelet‑derived growth 
factors and insulin‑like growth factor‑1 guide MSCs to 
the injured or inflamed sites  [103]. Several inflammatory 
mediators  (such as TNF‑α) or chemokines are produced 
throughout the homing process, contributing to the formation 
of a chemotactic gradient that aids in recruiting MSCs to the 
injury site  [101]. Recent studies have reported that MSCs 
interact with platelets in the blood and are involved in the 
migration of MSCs both in vitro and in vivo [107,112‑114].

Granulocyte colony‑stimulating factor 
triggered hematopoietic stem cell 
mobilization

While MSC homing highlights the body’s intrinsic 
repair mechanisms, another vital therapeutic approach 
involves the mobilization of HSCs. The administration of 
G‑CSF has been widely used clinically to mobilize HSCs 
for HSCT in the treatment of hematopoietic diseases such 
as sickle cell anemia, thalassemia, and hematological 
malignancies  [115‑122]. In addition, G‑CSF, which stimulates 
the production of granulocytes, has been used since 1988 
to treat cytopenia following chemotherapy, as well as 
neutropenia caused by nonchemotherapy‑related idiosyncratic 
drug reactions or diseases  [123,124]. G‑CSF also aids in 
mobilizing granulocytes for transfusions and contributes to 
treating congenital or acquired bone marrow failure  [125]. 
Furthermore, G‑CSF has demonstrated neuroprotective and 
cardioprotective effects and has been used in numerous clinical 
trials for the treatment of conditions such as spinal cord injury, 
carbon monoxide poisoning, nonarteritic anterior ischemic 
optic neuropathy, and myocardial infarction  [126‑129]. 
The administration of G‑CSF is associated with a range 
of side effects, including musculoskeletal pain, bone pain, 
splenomegaly, thrombocytopenia, and drug hypersensitivity 
reactions [123,130‑132].

Stem cell resilience
In addition to their therapeutic mobilization, stem 

cell resilience is crucial in understanding their utility. 
Resilience is the dynamic process by which individuals 
adapt and maintain their functionality amid various 
challenges or stressors  [133,134]. Stem cells play a crucial 
role in tissue homeostasis by replenishing damaged or 
senescent cells, thereby supporting tissue integrity and 
preserving organ function [135]. Their inherent regenerative 
potential enables them to participate in tissue repair and 
regeneration following injury, disease, or physiological 
stress [136]. Moreover, stem cells exert immunomodulatory 
effects by regulating inflammatory responses, modulating 
immune cell function, and promoting tissue repair and 
regeneration  [33]. In addition, they offer neuroprotective 
effects through diverse mechanisms, including neurotrophic 
factor secretion, promoting neuronal survival, and 
modulation of inflammatory reactions. This multifaceted 
resilience of stem cells underscores their significance 

in maintaining overall tissue health and function  [137]. 
In clinical trials, MSCs have been used to treat several 
neurodegenerative diseases, including amyotrophic 
lateral sclerosis, multiple sclerosis, Parkinson’s disease, 
Huntington’s disease, and Alzheimer’s disease. All MSC 
treatments have demonstrated safety and early promising 
signs of efficacy  [138‑141]. HSCs have also been 
employed in clinical trials for multiple sclerosis therapy, 
showing an increase in the percentage of regulatory T‑cells 
and suppression of inflammation [138,142,143].

Clinical implications and therapeutic 
potential

Dysregulated inflammation and impaired stem cell 
mobilization or homing are associated with various 
pathological conditions including cardiovascular 
diseases, neurodegenerative disorders, and autoimmune 
diseases  [144‑147]. Therapeutic strategies to modulate 
inflammation and enhance stem cell mobilization are 
promising for treating these conditions. Administering 
inflammatory factors such as G‑CSF has been widely 
used clinically to mobilize HSCs for HSCT. Beyond 
neurodegenerative diseases, MSCs have demonstrated 
effectiveness in alleviating various conditions. They mitigate 
inflammatory bowel disease by modulating inflammatory 
cytokines within the inflamed gut in clinical trials [148,149]. 
Additionally, they ameliorate spinal cord injury by improving 
motor function in the lower limbs and bladder compliance 
[150‑153].  In addition, MSCs have been shown to safeguard 
renal function by diminishing serum creatinine and blood 
urea nitrogen levels, thereby mitigating acute renal injury 
through various mechanisms such as anti‑inflammation, 
anti‑apoptosis, angiogenesis anti‑oxidative stress, and 
anti‑fibrosis  [154,155]. Furthermore, MSC transplantation 
has demonstrated improvements in quality of life, functional 
outcomes, and pain relief for patients with heart failure 
or knee osteoarthritis  [150,156‑160]  [Table  2]. Moreover, 
emerging strategies, such as cell‑based therapies incorporating 
MSCs alongside HSCT, aim to enhance hematopoietic 
reconstitution and address graft‑versus‑host diseases with 
ongoing exploration through clinical trials  [161]. However, 
challenges such as optimizing the efficacy and safety of 
stem cell‑based therapies and understanding the long‑term 
consequences of modulating inflammation warrant further 
investigation.

Conclusion
Inflammation and stem cell mobilization or homing are 

intricately linked processes essential for tissue homeostasis, 
repair, and regeneration. Understanding the mechanisms 
underlying their interplay provides insights into the development 
of novel therapeutic strategies for a wide range of diseases 
and conditions. Further research into elucidating the complex 
crosstalk between inflammation and stem cells will undoubtedly 
uncover new avenues for therapeutic intervention and enhance 
our ability to harness the regenerative potential of stem cells.
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