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Abstract

Single-cell RNA sequencing (scRNA-seq) has been rapidly developing and widely applied in biological and medical research.

Identification of cell types in scRNA-seq data sets is an essential step before in-depth investigations of their functional and

pathological roles. However, the conventional workflow based on clustering and marker genes is not scalable for an

increasingly large number of scRNA-seq data sets due to complicated procedures and manual annotation. Therefore, a

number of tools have been developed recently to predict cell types in new data sets using reference data sets. These

methods have not been generally adapted due to a lack of tool benchmarking and user guidance. In this article, we

performed a comprehensive and impartial evaluation of nine classification software tools specifically designed for

scRNA-seq data sets. Results showed that Seurat based on random forest, SingleR based on correlation analysis and CaSTLe

based on XGBoost performed better than others. A simple ensemble voting of all tools can improve the predictive accuracy.

Under nonideal situations, such as small-sized and class-imbalanced reference data sets, tools based on cluster-level

similarities have superior performance. However, even with the function of assigning ‘unassigned’ labels, it is still

challenging to catch novel cell types by solely using any of the single-cell classifiers. This article provides a guideline for

researchers to select and apply suitable classification tools in their analysis workflows and sheds some lights on potential

direction of future improvement on classification tools.
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Introduction

Categorizing cell identity is an essential step to have a compre-

hensive knowledge of the composition of human organs and

tissues, which is also the foundation to further explore the cell
basis of human diseases. Conventionally, techniques such as

immunohistochemistry [1], fluorescence-activated cell sorting

(FACS) [2, 3] and morphological methods [4] are used to identify

cell types. With the rapid development of single-cell separation

and sequencing technologies [5–11], researchers can now easily

obtain a large scale of gene expression profiles of individual cells,

http://creativecommons.org/licenses/by/4.0/
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hence characterizing the cell types and functions of single cells

in an unbiased manner [12].

A typical single-cell RNA sequencing (scRNA-seq) analysis

workflow implements cell clustering and then cluster-based

cell type identification using canonical cell type markers. How-

ever, there are several limitations to this strategy. First, clus-

tering results, such as the number of clusters, largely depend

on analysis tools and chosen parameters used for each tool.

Researchers might have to test multiple clustering tools and

multiple parameters for each data set to obtain a consensus

result. Second, the results of clustering are sensitive to the num-

ber of cells in the data sets. Meanwhile, the time and memory

consumption increase exponentially with the increasing num-

ber of cells. Third, it requires expert knowledge of canonical cell

type markers to enable the identification of cell types. Finally,

the manual annotation process is labor intensive. Sometimes, it

even requires an iterative process between clustering parameter

tuning and cell type assignment.

With more and more studies published and large-scale sur-

vey studies ofmouse [10, 13] and human [14] becoming available,

cell types in both normal and disease tissues [15, 16] are accu-

mulated in great quantities. Gradually, scRNA-seq study designs

have been shifting from discovering new cell types to becoming

a high-resolution assay to profile subtle changes of cell type pro-

portions and cell type-specific expression signatures, for exam-

ple, different treatment responses between patient subgroups

[17]. Therefore, it is now both feasible and inevitable to apply

classification techniques for categorizing single cells into known

cell types based on annotated public data sets. Reference data

set-based cell type annotation does not require domain knowl-

edge of the cell types, and time consumption linearly increases

with the scale of test data sets with the possible parallelization.

A rapidly growing list of single-cell classification tools has been

developed specifically for scRNA-seq data over the past 2 years

[18]. These tools can be loosely divided into two categories.

One assigns cell types based on its nearest neighbors using

similarity measurements, such as scMCA [10], using Pearson

correlation and scmap [19] adopting cosine similarity. This type

of the tools usually has a preset model with tunable parameters,

and the neighbors could either be on the cell level or on the

cluster level. The other is developed with supervised learning

algorithms, such as scPred [20] based on support vector machine

(SVM) by default and Seurat [7, 21] based on random forest (RF).

Both types of tools predict cell type labels of a new data set

based on a reference data set. Single-cell label prediction is a

relatively new approach, unlike other analysis components in

the scRNA-seq workflow such as differential expression [22, 23],

clustering [24, 25], trajectory inference [26] and imputation [27],

andhas not been evaluated systematically and comprehensively.

Some published reports showed comparison analysis between

different classification tools such as CellFishing compared with

scmap [28], but the results are still limited.Without a benchmark

study tocompareall available tools, it isdifficult for researchers to

choose anappropriate tool and incorporate it into theirworkflow.

In this article, nine tools listed in the ‘classification’ cate-

gory on scrna-tools.org [18] have been systematically compared.

Internally generated mixed cell line data sets and a few public

data sets with various complexities, all with well-annotated

cell type labels, are used to test their performances. We first

tested these tools on eight pairs of reference/test data sets with

default parameters to evaluate their baseline performances. We

then assessed the stability of the performances by altering the

number of reference cells and by randomly sampling refer-

ence cells from the same data set. Next, we explored risk–

benefit balance when these tools have the capability to identify

novel cell types. Finally, we analyzed the performances of all

tools when reference cell types have imbalanced cell numbers.

We applied widely used evaluation metrics, such as accuracy,

receiver operator characteristic (ROC) curves and area under ROC

curves (AUC), to estimate the performances of the classification

tools. We believe this work would provide guidance on choosing

supervised cell type classification tools for scRNA-seq data sets

under various user scenarios. We also presented suggestions on

potential directions of future classification tool development.

Methods

Data

scRNA-seq data sets with well-annotated cell labels are required

for a comprehensive and systematic evaluation of single-cell

classification tools, since calculations of most evaluation met-

rics rely on a ground truth label set. Therefore, we only included

scRNA-seq data sets with highly credible cell type labels. In

this article, the following three sources of scRNA-seq data sets

were used.

Mixed Cell Lines

Cell lines are rather homogenous populations. Clustering-based

approaches could generate near-truth cell type labels of mixed

cell line data when the number of clusters is known [25]. We

generated two scRNA-seq data sets of mixed cell lines in house

as described below. Three human cell lines, K562, HEK293T and

A431, and one murine cell line, L929, were cultured separately

in DMEM (Thermo Fisher Gibco), with 10% fetal bovine serum

(Thermo Fisher Gibco) and 1%penicillin–streptomycin (Beyotime

Biotechnology) in an incubator with 5% carbon dioxide at 37 ◦C.

Single-cell suspensions with 1×105 cells/ml in concentration in

phosphate buffered saline (HyClone) were prepared. Two exper-

iments were conducted. One is named as Mix3, where K562,

293T and L929 cell suspensions were mixed in 1:1:1 ratio. The

other is named as Mix4, where cell suspensions of all four

cell lines were mixed in 1:1:1:1 ratio. Mixed single-cell suspen-

sions were then loaded onto microfluidic devices, and scRNA-

seq libraries were constructed following Singleron GEXSCOPE™

protocol [29] using GEXSCOPE™ Single-Cell RNA Library Kit (Sin-

gleron Biotechnologies). Sequencing was performed on Illumina

HiSeq X with 150 bp paired end reads to obtain a sequencing

depth of approximately 6.5 K reads/cell.

Raw reads were processed to generate gene expression pro-

files using an internal pipeline. Briefly, after filtering read 1

without polyT tails, cell barcode and unique molecule identifier

(UMI) were extracted. Adapters and polyA tails were trimmed

before read 2 was mapped to GRCh38 and mm10 reference

genome with ensemble version 92 gene annotation. Reads with

the same cell barcode, UMI and gene were grouped together to

calculate the number of UMIs per gene per cell. Cell number was

then determined based on the ‘knee’ method. We used Seurat

to perform clustering analysis for Mix3 and Mix4 data sets sep-

arately using FindCluster function with resolution equal to 0.1,

to generate three and four clusters, respectively. The clusters are

well separated as shown by the t-distributed stochastic neighbor

embedding (t-SNE) [30] plots (Supplementary Figure S1A and C).

Differential expression analysis with default parameters was

conducted to findmarker genes per cluster. Top 10marker genes

per cluster are shown in Supplementary Figure S1B and D. A431

cells were identified by gene KRT7.HEK293T cells were identified

by SOX4 and K562 cells were identified by HBA1. The murine

scrna-tools.org
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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cell line L929 was identified by mouse gene names. The cell

numbers of each cell line in two experiments are shown in

Supplementary Table S1.

Peripheral blood mononuclear cell

Human peripheral blood mononuclear cell (PBMC) samples

are easy to obtain and routinely studied in the fields such as

immunology and infectious diseases. They are extremely het-

erogeneous populations containing a mixture of a hierarchical

structure of cell types and subtypes. Here,we used PBMC scRNA-

seq data sets generated by the 10× Genomics GemCode protocol

[9]. The authors purified 10 PBMC subpopulations by antibody-

based bead enrichment and further confirmed the cell identities

by FACS sorting. The 10 populations were then individually

processed to generate their single-cell gene expression profiles.

In this article,UMI counts per cell of 10 presorted and filtered cell

types of PBMC (detailed information in Supplementary Table S2)

were downloaded. We later combined them into different data

sets for different evaluation purposes.

Human pancreas data sets

Three public scRNA-seq data sets of human pancreas were used

in this article to evaluate the classification tools (Supplementary

Tables S3 and S4). They were generated using different

experimental protocols in different labs and are from the same

organ of different individuals. They have been widely used in

the publications of many single-cell classification tools [19, 20,

28]. Hence, we used them to model the most realistic situation

where a new data set is projected to an annotated data set from

the same tissue. We downloaded Bioconductor SingleCellExper-

iment class objects of these data sets converted by Herberg’s

lab with cell type annotations [19]. Cells with low quality or

unknown cell labels were removed, such as ‘unclear’ in the

Muraro data set and ‘alpha.contaminated’, ‘beta.contaminated’,

‘gamma.contaminated’ and ‘delta.contaminated’ in the Xin

data set.

Classification tools

In this study, we aimed to evaluate all tools in the classification

category of the website scrna-tools.org [18] before 31 December

2018 (Table 1 and Supplementary Table S5). Some tools adopted

widely used supervised learning algorithms, such as K-Nearest

Neighbor (KNN), RF and SVM. Other tools are based on cluster-

level similarity measurements, such as Pearson correlation in

scMCA and Spearman correlation in SingleR [31], which calcu-

late the similarity between query cells and one representative

gene expression per cell type in reference data sets. All tools

require both gene expressionmatrix and corresponding cell type

annotations for reference data input and only the former for test

data input.

The scmap [19] package contains two variations: scmapClus-

ter and scmapCell. scmapCluster first constructs a virtual repre-

sentation of each cell type in reference data set by extracting the

median value of each feature (namely gene). It then calculates

the similarity between each query cell and all cell type-specific

virtual cells. The label of the query cell is assigned as the cell type

of the virtual cell with the highest similarity. scmapCell directly

calculates the similarity between the query cell and all of the ref-

erence cells. It then labels the query cell if the similarity exceeds

a threshold and the k nearest neighbors are from the same cell

type. scmapCluster and scmapCell are referred as scmapc2clus

and scmapc2c, evaluated as separate tools in this article. The

published version of scMCA [10] does not support user-provided

reference data sets. Therefore, we added a parameter ‘ref.data’

to scMCA to import the average expression of each cell type

for the reference data set, similar to its internal function to

predict murine cell types. scPred [20] provides the option to call

all models included in the caret package [32], and SVM with

radial basis function kernel is called by default. Seurat imple-

ments cell type classification using its ClassifyCells function,

which is an interface to randomForest package [33]. CaSTLe [34]

uses XGBoost and requires logcounts of SingleCellExperiment

objects as its data format. scID [35] first performs a feature

selection step for each reference cell type through FindMarker

function of Seurat and then deduces corresponding reference

cell type membership of target cells employing a Fisher’s linear

discriminant analysis classifier. AltAnalyze [36] is an integrated

pipeline for analysis of scRNA-seq data sets and implements

a sample classification using its LineageProfilerIterate.py script

as a command line tool. It requires one or more gene models,

namely gene lists as one of the input files. If not provided, it will

return the intersection of expressed genes between reference

and test data sets. The union set of genes of reference and test

sets are adopted as gene list in this article. CellFishing [28] is

similar to scmapc2c but uses locality-sensitive hashing to hash

expression profiles into bit vectors. It then estimates cosine

similarity between two cells from their Hamming distance. Cell-

Fishing is specifically compared to scmapc2c in its published

article due to their similarities. In all tools, scmap, scPred and

scID have the capability to predict certain cells as ‘unassigned’

when the similarity/probability/score is lower than a certain

threshold or not returned by the model. In scmapc2c, the cell

is also labeled as ‘unassigned’ if its nearest k neighbors are not

from the same cell type. Main parameters and default values of

tools in Table 1 are shown in Supplementary Table S6.

Some tools were excluded from this evaluation due to vari-

ous reasons (Supplementary Table S5). For example, celaref and

MetaNeighbor [37] require clustering of the test data prior to

classification, and thus, their performances are partially depen-

dent on the clustering.DistMap [38] is designed for cell classifica-

tion of 3D gene expression.Moana [39] only provides a pretrained

classifier for PBMC as of 31 December 2018.

Strategies of performance evaluation

Construction of reference and test data pairs

To get a performance assessment of classification tools under
different scenarios, we set up eight pairs of reference and test
data sets, all generated from three sources discussed above

(Table 2). The test pairs are designed to evaluate three levels of
effects with increasing variability on the performance of tools:

(1) The reference and test data sets were randomly selected from
the same scRNA-seq data set (self-projection). Self-projection
represents an ideal but unrealistic situation. (2) The reference

and test data sets were from two different scRNA-seq experi-

ments on the same platform, originated from the sample biolog-
ical material. This scenario is to mimic the use case when a lab

wants to increase their sample size based on a small-scale pre-

liminary study. Batch effects between experiments could poten-

tially affect the prediction accuracies. (3) The reference and
test data sets were generated from the same tissue but were
from different biological individuals using different platforms
by different labs. In addition, the data sets were processed by

different computational analysis pipelines. This is the most
realistic setting and represents the most applicable use case,
predicting cell types for any new scRNA-seq experiment based

on existing public scRNA-seq data sets.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
scrna-tools.org
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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Table 1. Classification tools selected for evaluation in this article and their information

Tools (Pre)published

date

Feature

selection

Algorithm Data format ‘Unassigned’

function

Scmap
scmapc2c

02/04/2018 Yes#
k-Means and approximate KNN,

cosine distance

Normalized counts/log

counts

Yes

scmapc2clus cluster-level median

expression, cosine distance

scMCA 02/22/2018 No Cluster-level mean expression,

Pearson correlation

Log counts No

scPred 07/14/2018∗ Yes SVM Normalized counts →

cpm

Yes

SingleR 01/14/2019 Yes# Cluster-level median expression,

Spearman correlation

(Normalized) counts No

Seurat 04/13/2015 Yes RandomForest (Normalized) counts No

CaSTLe 10/10/2018 Yes XGBoost Log counts No

scID 11/14/2018∗ Yes# A two-mixed

Gaussian distribution

Counts → norm counts

(with build-in function)

Yes

AltAnalyze 08/31/2016 Yes# No description for algorithm Norm counts No

CellFishing 11/29/2018 Yes# approximate k-NN, Locality-

sensitive hashing and Hamming

distance

Raw counts No

Note. Dates labeled with ‘∗’ mean the preprint date of the corresponding tool. The # label means corresponding tools have the option to perform the feature selection

using a user-defined gene list. The published date of Seurat and AltAnalyze are the published dates for the packages but not for their classification functions. The

version of all tools adopted in this article was up to date as of 31 December 2018.

Table 2. Eight pairs of data sets used in the performance evaluation of all tools

Data sets PBMC Mix cell lines Pancreas of human

Reference 500∗10 80% Mix4 Mix4 Mix3 Baron Baron Muraro Muraro

Test 50∗10 20% Mix4 Mix3 Mix4 Muraro Xin Baron Xin

Situation Self-projection Projection from one data set to another from different experiments

Note. See Methods section for original data set description.

For self-projection of mixed cell lines, we randomly split

Mix4 data set into 80%:20% as the reference and test data sets,

respectively. For self-projection of PBMC, 500 cells were ran-

domly sampled from each data set of purified cell types without

replacement and combined into the reference data set. Fifty

cells were then selected randomly without replacement from

remaining cells of each data set and combined into the test data

set. To have a fair comparison for the tools with the ‘unassigned’

function, we also tested scenarios where test data set contains

novel cell types not presented in the reference data set. In reality,

although novel cell type discovery may not be a main objective

of the scRNA-seq experiments, there is no guarantee all cell

types in the test data set are included in the reference data set

when using classification methods. Thus, we used Mix3 with

three cell types as a reference to predict Mix4 with four cell

types. Similarly, we used the Xin data set, which only has four

cell types, to predict the Muraro data set, which has nine cell

types.More importantly, all classification toolswere investigated

with default parameters or recommended parameters to ensure

the fairness of evaluation. Performances of tools with default

parameters reflect their robustness and applicability, which is

an important criterion for researchers without enough bioinfor-

matics expertise to determine whether to use it as an off-the-

shelf solution.

Batch effects on the classification performances

There are significant batch effects between Baron and Muraro

data sets for four cell types, alpha, beta, gamma and delta

(Supplementary Figure S2). Cells of these four cell types from

Baron and Muraro data sets are extracted as a pair of reference

and test data sets to assess the influence of batch effects on

classifiers.

Influence of numbers of reference cells on the
performance

Reference cell numbers could potentially affect the performance

of tools, as observed in other supervised classifier evaluations.

Fifty, 100, 250, 500, 1000 and 2000 cells per PBMC cell type were

selected randomly and combined to form reference data sets.We

down-sampled the reference cells sequentially where a larger

reference data set always contains all cells in a smaller reference

data set.We used the same test data setwith 50 cells per cell type

in all predictions in this section.

Performance stability

Different samplings could potentially have an effect on the

results. In order to achieve unbiased evaluations and examine

stabilities of all tools, we generated 100 sets of data pairs for

both PBMC and Mix4 self-projections. For PBMC, 500 cells were

selected as the reference data set and 50 cells as test for each

cell type in each sampling. Mix4 data set was randomly divided

into five equal groups for 100 times. For every division, one of

the groups was chosen as the test data set, and the rest as the

reference data set.Meanwhile, 10 times 10-fold cross validations

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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(CVs) were used to see if it is susceptible to introduce bias due to

the random determination of training and test sets for Mix4 and

PBMC data sets.

Effects of classifier parameters on performance

To understand the association between parameters and per-

formances of tools, scmapc2c, scPred and scID were evaluated

by tuning their parameters on PBMC data sets. In scmapc2c,

we varied two parameters: the number of centroids and the

threshold. Centroids are landmark points calculated by k-means

clustering of cells, used to estimate the similarity between cells.

The threshold is a cutoff to determine whether the evidence is

strong enough to identify the cell type. For scPred, the threshold

was fine-tuned, which is similar to the threshold parameter in

scmapc2c. As for scID, one parameter named ‘contamination’,

which affects the number of cells belonging to a certain cell type,

is tuned.

Class-imbalanced tests

Four PBMC cell types, CD19+ B cells, CD56+ natural killer (NK)

cells, CD4+ helper T cells and CD4+ CD25+ regulatory T cells

(Tregs),with various levels of similarities, in turnwere selected to

form class-imbalanced data sets.We compared the performance

of class-imbalanced data sets with a control reference. In the

class-imbalanced group, cells of four cell types were randomly

selected without replacement and with the cell numbers of

10 000, 10, 10 000 and 10 to form the reference data set. And

50 cells were then selected randomly without replacement from

remaining cells per cell type and combined into the test data

set. In the control group, 500 cells of each of four PBMC cell types

were randomly selected without replacement and combined to

form the reference data set, and the test data set is similar to

that of the class-imbalanced group and cells of it do not overlap

with the reference data set.

Evaluation metrics

We extracted the accuracy and recall from confusion matrices

[40] using caret R package. They are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Recall/FPR =
TP

TP + FN

ROC and AUC are used to assess the stability and robustness

of classifiers. In this article, R packages pROC and multipleROC

were used to calculate ROC curves with sensitivity and 1 −
specificity as the axis.

Sensitivity =
TP

TP + FN

Specificity =
TP

TP + FN

In addition, Matthews correlation coefficient (MCC) takes into

account both true and false positives and negatives, which is

regarded as a balanced measure for class-imbalanced data sets

[41, 42] and defined as the following formula:

MMC =
TP ∗ TN + FP ∗ FN

√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TP + TN)

MCC is calculated using yardstick R package.

Results

Overall performance evaluation

Figure 1 shows the classification accuracies and AUC of all tools

for eight test cases. In term of accuracies within one data set,

predictions of self-projection of mixed cell lines are nearly per-

fect, which is consistent with the expectation. scID performed

worst in the self-projection of Mix4 with the lowest accuracy. In

contrast, the accuracies obtained in the self-projection of PBMC

are lower than that in the self-projection of mixed cell lines

for all tools, which is due to the higher complexity of PBMC. To

investigate the exact reason for overall low accuracies, we per-

formed the ROC analysis to evaluate whether the classification

abilities of tools are different for different cell types. For Seurat

(Figure 2A), AUC values of cell types, except various subtypes

of T cells, are equal or close to 1, indicating strong prediction

powers. All T cells show lower AUC values, and CD4+ helper

T cells and CD4+ CD25+ Tregs have the lowest AUC values.

Similar results were observed for scPred (Figure 2B). Correlation

analysis of PBMC cell types between reference and test data

sets (Supplementary Figure S3A) indicated that T-cell types have

very high correlations with each other. The two T subtypes with

the lowest AUC values, CD4+ T helper and CD4+ Tregs, have

a pairwise correlation of 0.99, even higher than the monocyte

correlation between the reference and the test data sets. If

similar T cells with CD4+ or CD8+ markers were considered as

the same cell type (Supplementary Figure S4), especially when

all T cells were considered as the same cell type, the accuracy of

the predictions is higher than predicting T subtypes individually.

Therefore, T-cell subtypes could be an intractable challenge to

classify, while distinct cell types are easier to classify.

When projecting from Mix3 to Mix4, the accuracy is similar

to that of the self-projection of Mix4, and all tools performed

well. The projection from Mix4 to Mix3 showed nearly all accu-

racies are between 0.7 and 0.8 (Figure 1A). Since Mix4 has one

cell type A431 not included in Mix3, tools without ‘unassigned’

function (see Methods section for details) classified A431 as

other cell types in Mix4. After further analysis, we found that

all accuracies not considering A431 are above 0.95 (data not

shown). Most A431 cells are predicted to be 293T since A431

is most similar to 293T among the three cell types in Mix3

(Supplementary Figure S3B). In summary, all tools demonstrate

good classification performances on mixed cell line data sets. It

indicated that batch effects between experiments based on the

same protocol are negligible for data sets with low complexity

and have an insignificant impact on cell type predictions.

In projections among four pairs of human pancreas data sets,

which are close to realistic situations and practical needs, tools’

performance varies. Accuracies in projections where Xin is the

test set are overall higher than the other two, since Xin data set

only contains four cell types and the difference among these four

cell types is significant (Supplementary Figure S3C). The other

two projections between Baron and Muraro data sets showed

worse accuracies, in the range of 0.7–0.8, for all tools, except for

even lower accuracies for scmapc2clus, scPred and scID.One rea-

son is that Baron andMuraro data sets contain eight cell types in

commonwith some cell types unique in each data set. Similar to

projection fromMix4 to Mix3, those unique cell types could only

be assigned with a wrong label or ‘unassigned’. In addition,mes-

enchymal cells only presented in Muraro and quiescent stellate

cells only presented in Baron are highly related cell types, which

are frequently predicted to be each other. It is worth noting

that scmapc2clus performed worst compared with other groups

whenMuraro is the reference set. Through further investigation,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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Figure 1. Performance of all tools on eight projections. The top and bottom names on the x axis represent the reference and test data sets, respectively. The pairs of

data sets labeled with ‘∗’ mean that test data sets contain novel cell types not included in the reference data set. (A) Accuracies of all tools across eight tests. (B) AUC

of macro ROC curves of all tools except scmapc2c, scmapc2clus, CellFishing and AltAnalyze on eight pairs of data sets. These four tools do not output a probability or

score value for each class and cannot be evaluated through ROC curves.

we found that accuracy observably increasedwith the parameter

‘threshold’ decreasing (Supplementary Figure S5). It indicated

that the ranks of similarities between query cells and reference

cell types are correct, but some of the cells were predicted

as unassigned due to an inappropriate threshold. scmapc2clus

constructed a representative gene expression profile for each

cell type using the median expression of each gene. Low cell

numbers of certain cell types inMuraromight cause the cell type

level gene expression profiles to be not representative. Hence,

lower similarities arose between reference cell types in Muraro

and their corresponding type of test cells. For the projection

from Muraro to Baron, since cell numbers of common reference

cell types are large enough, the performance of scmapc2clus

improved.

Compared among the tools, the one with the best accuracy

is different under various test strategies. Seurat, scMCA, SingleR

and CaSTLe showed higher accuracies (greater than 0.7 across

all data sets) than other tools on all eight pairs of data sets.

In addition, their prediction accuracies are more stable across

eight pairs of data sets. Therefore, these four tools possess

better universal applicability for different data sets. scmap,

including both scmapc2c and scmapc2clus, has an unstable

performance with its default parameters. scmapc2c has the

lowest accuracy in PBMC self-projection, and scmapc2clus has

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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Figure 2. Analysis of cell type prediction accuracy of PBMC subtypes. ROC curves of Seurat (A) and scPred (B) on 10 cell types of the PBMC data set.

the worst performance in the pancreas group where Baron is

the test set and Muraro is the reference set. scPred and scID

have overall poor performance; scPred especially performed

worse than other tools on all data sets except for mixed

cell lines. This is because numerous cells were incorrectly

predicted as ‘unassigned’ by these two tools, even though

some cell types in the test data set are already included in

the reference data set. Higher accuracy is achieved when

calculations do not include unassigned labels. Meanwhile, AUC

values (Figure 1B) of tools based on supervised learning are all

higher than other tools. Even though scPred has lower overall

accuracy, ROC curves suggested it has the potential to improve.

SingleR performed worse than supervised learning tools but

better than scID and scMCA in terms of AUC. AUC of scID

is also low, consistent with its low accuracy. We conducted

further analysis on scmapc2c, scPred and scID to evaluate the

effects of the ‘unassigned’ function (see Tuning parameters

section).

In summary, the performance of tools is partially dependent

on the complexity of data sets, and there is no universally best

tool under all circumstances. Results of projections between two

mixed cell lines data sets and among three pancreas data sets

suggest that batch effects, experimental protocols and biological
variations have little impact on the prediction of well-separated

cell types. In addition, all tools performed poorly for the PBMC

data set with lower accuracies compared with other data sets,

which is due to closely related cell types coexisting in PBMC.

Hence, we used PBMC data sets in the following evaluation

process.Moreover, an ensemble voting of tools on PBMC data set

presented a slightly better accuracy (Supplementary Figure S6),

which provide a new thought to correctly classify single cells

with high similarity.

Batch effects

Batch effects are common between scRNA-seq experiments,

especially when the data sets are from different experimental

platforms or protocols. They are challenging for the combined

analysis using clustering and batch effect correction methods

have been proposed [43–45]. Therefore, classification tools that

are not sensitive to batch effects could be beneficial. To test

effects of batch effects on classifiers, cells of four cell types,

alpha, beta, delta and gamma, from Baron and Muraro data

sets are used to evaluate how batch effects influence classi-

fication performances. According to the accuracy of each tool

(Figure 3A), scmapc2c, scCMA, SingleR, Seurat and CaSTLe are

not sensitive to batch effects of data sets.A significant difference

of accuracy between two test scenarios in scmapc2clus was due

to fewer reference cells in Muraro than in Baron. As described

above, the accuracy would improve by lowering the thresholds

of scmapc2clus (Supplementary Figure S4). In total, scmapc2c,

scCMA, SingleR, Seurat and CaSTLe are tolerant to batch effects

between reference and test data sets.

The effect of the number of reference cells on
performance of tools

To investigate whether the number of reference cells makes an

impact on the performance of classification tools, we created

a series of PBMC reference data sets with various numbers of

reference cells (see details in Methods section). Figure 3B dis-

played the accuracy profiles of all tools on reference data sets

with different sample sizes. Accuracies of classification tools

based on supervised learning, such as scPred, Seurat andCaSTLe,

gradually increase with the increasing number of reference cells

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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Figure 3. Accuracy of all tools with batch effects and different reference set size: (A) the influence of batch effects on the accuracy and (B) the accuracy during different

sizes of reference data sets. Dash lines represent accuracy trends of machine-learning tools.

per PBMC cell type. In contrast, accuracies of the other tools

barely change when changing the numbers of reference cells,

especially the accuracies of scMCA and SingleR based on cell

type-level distances. It suggested that when reference set size

is small, it may be beneficial to use tools based on cluster-level

similarities. In addition, we found that when the number of cells

of each cell type is 500 or more, accuracies reach saturation

for all classification tools on PBMC data sets. With increasing

reference cells, time and memory consumption of tools would

theoretically increase to various degrees. For tools based on

cluster-level similarities, such as scmapc2clus and SingleR, the

time and memory consumption would increase linearly with

the increasing size of reference data when calculating mean/-

median expression profiles for each cell type. However, tools of

supervised learning algorithms would take more time to train

the model, such as scPred and Seurat, with a time complexity

greater than O(n2) and CaSTLe with that greater than O(log n)

(n represents the number of training samples). Therefore, it

indicates itmight be appropriate to subsample each cell type to a

sample size of 500 whenmore cells are available, in order to save

computing resources and time while achieving the comparable

accuracy.

Bootstrapping test and 10-fold CVs of tools in
self-projection

In self-projection of Mix4, scID performed unstably on randomly

sampled reference data, which may happen to other tools. We

have demonstrated above that reference sample size of 500 cells

per PBMC cell type is a good choice in terms of balancing between

accuracy and efficiency. Hence, we performed 100 samplings of

PBMC and Mix4 data sets and 10 times 10-fold CVs (see detailed

information in Methods section) and evaluated their accuracies.

Figure 4 displays the accuracy distribution of all tools on 100

samplings and 10 times 10-fold CVs. Variances of accuracies

within one tool are very small except for scID. scID presented

unstable accuracies even in Mix4 self-projection. Meanwhile,

this indicated that bootstrapped samples have less impact on

predictions for all tools when the number of reference cells per

cell type is larger than 500 for PBMC.

Tuning parameters

Three tools, scmapc2c, scPred and scID, performed much worse

than other tools in the bootstrapping test and the training sam-

ple size test, accuracies of which are less than 0.5 (Figures 3B

and 4). ‘Unassigned’ labels occur when the tools decide cells

are not close enough to any cell type in the reference data set

or when a cell cannot be classified with enough confidence,

which probably happens on cells of novel cell types not existing

in the reference data set. Hence, ‘unassigned’ function could

be critical for catching novel cell types not presented in the

reference data set. In this study, we regarded predicted ‘unas-

signed’ labels that are truly novel cell types not included in

the reference data set as true ‘unassigned’, and else as mis-

taken ‘unassigned’.Moreover, accuracy and the number of ‘unas-

signed’ labels rely on parameters of those tools, as shown above

for scmapc2clus (Supplementary Figure S4).Therefore,we tested

the performances of these tools with variable parameters (see

details in Methods section) on the same data set to see if the

true ‘unassigned’ rate would be increased and the mistaken

‘unassigned’ labels decreased. We expected to not only improve

the accuracy of identifying cells of cell types existing in the

reference data set but also accurately identify cells of cell types

not included in the reference data set—decreasing the ratio of

mistaken ‘unassigned’.

For scmapc2c, with the decreasing value of w in scmapc2c,

which defines the number of nearest neighbors, accuracies get

higher and the ratio of ‘unassigned’ labels to the total cell types

in prediction gets lower (Figure 5A). It indicates that parameter

w has a great impact on the prediction of scmapc2c by vary-

ing the number of ‘unassigned’ cells. Whereas with increasing

similarity threshold (Figure 5B), the accuracy starts to decrease

dramatically from the point where the threshold equals 0.5, the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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Figure 4. Box plots of accuracies of all tools tested on 100 Mix4 (A) and PBMC (B) samplings as well as 10 times 10-fold CVs tested on Mix4 and PBMC data sets.

default value in scmap [19]. For scPred, a default threshold of 0.9

defines the minimum probability that one cell is predicted as

a certain cell type, instead of ‘unassigned’. Figure 5C indicated

that, with the threshold increasing, the accuracy declined and

the unassigned ratio increased. As for scID (Figure 5D), which

fits a mixture of two Gaussian distributions in a Fisher’s linear

discriminant analysis classifier, the parameter ‘contamination’

represents the percentage of cells that located in the overlapping

area between the population distributions of a certain cell type

and others. With the increase of the value of ‘contamination’,

the accuracy went up and the unassigned ratio went down.

The accuracy tends to be stable when ‘contamination’ is larger

than 0.05.

We defined a metric called unassigned ratio, as the ratio of

cells with the ‘unassigned’ label to all target cells. Since the

pair of PBMC data sets has the same cell types, all ‘unassigned’

cells are mistaken ‘unassigned’ cells. Mistaken ‘unassigned’

cells may not be considered as incorrectly predicted but are

cells that need further analysis to define their cell types.

Therefore, we also calculated the prediction accuracies without

the ‘unassigned’ labels. The accuracies without ‘unassigned’

labels are higher than the accuracies with ‘unassigned’ labels

for almost all tools (Figure 5), which indicated the ability of

these tools to maximize the predictive accuracy for cells with

definitive cell type labels. On the other hand, it is not desirable

to have the ratio of mistaken ‘unassigned’ labels too high,

whichmight require too much work downstream. In conclusion,

after weighing these three metrics on the same reference

and test data sets of PBMC, scmapc2c performed best with

w equal to 2 or 3 and threshold between 0 and 0.7, scPred
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Figure 5. Performance of tools with the ‘unassigned’ function with various parameter choices: (A) parameter w of scmapc2c, (B) parameter threshold of scmapc2c,

(C) parameter threshold of scPred and (D) parameter contamination of scID. Accuracy_without_unassigned means the accuracy calculated without considering

‘unassigned’ labels. Unassigned_ratio means the ratio of ‘unassigned’ labels in all predicted labels.
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Figure 6. Recalls and ROC curves of four PBMC cell types in class-imbalanced and control group. (A) Recalls of four PBMC cell types in the class-imbalanced and control

group. (B and C) ROC curves of four cell types in the class-imbalanced and control group in Seurat. (D and E) ROC curves of four cell types in two groups in SingleR. ROC

curves indicated poorer robustness of Seurat on the class-imbalanced group than SingleR.
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Figure 7. Time and memory consumption of all tools. (A) Time consumption and (B) peak memory usage of all classifiers, taking their logs base 10, with increasing test

cell numbers. Nine PBMC cell types included, except CD14+ monocytes (due to its not enough cell number). Fifty, 500 and 5000 represented test cells per PBMC cell type

were contained in the test data set. The ‘rest’ represented the total rest of cells apart from reference cells per PBMC cell type, about a total of 90,000 cells.

achieved better performance with the threshold between 0.5

and 0.7 and scID worked better with ‘contamination’ equal

to 0.05. However, the accuracies of cells with definitive cell

type assignment of these three tools are not significantly

higher than the accuracies of other tools (Figures 1A and

5), unless more than half of the cells are deemed as ‘unas-

signed’.

To test the capability of these three tools to catch novel

cell types not included in the reference data set, we conducted

the same analysis on mixed cell lines data sets, with Mix3 as

reference and Mix4 as test. A431 is the new cell type not in

Mix3 but taking 22.84% proportion in Mix4. We found these

tools mostly predicted A431 cells as wrong cell types, instead

of ‘unassigned’ (Figure 5E). The proportion of true ‘unassigned’

cells in all ‘unassigned’ cells, defined as the true unassigned

ratio, is greater than 0.9 in scPred, which means that scPred is

themost capable to catch new cell types. In summary, it remains

challenging for these tools to precisely catch new cell types, even

for well-separated cell types. At the same time, this functional-

ity brings noise into the prediction of data sets without novel

cell types.

The class-imbalanced test on tools

It is very common that multiple cell types with uneven pro-

portions exist in the same scRNA-seq data set. The perfor-

mance for such cases would reveal the robustness of classi-

fication tools. In this study, four PBMC cell types are selected

(i.e. CD19+ B cells, CD56+ NK cells, CD4+ helper T cells and

CD4 + CD25+ Tregs). The former two are remarkably differ-

ent from each other, and the latter two are similar to each

other (Supplementary Figure S3A). Cells of four cell types were

randomly sampled separately and combined into two groups:

the class-imbalanced group and the control group. The control

group has four cell types taking equal proportions (see Methods

section).

Recalls of four PBMC cell types representing the predictive

accuracy of each cell type were calculated for both groups

(Figure 6A). In the control group, all tools performed worse with

lower recall rates on similar PBMC cell types, CD4+ helper T

cells and CD4+ CD25+ Tregs, than the other two, which is in line

with our expectation and previous results. However, in the class-

imbalanced group,due to fewer reference cells of CD56+ NKcells,

tools based on supervised learning, such as scPred, Seurat and

CaSTLe, predicted worse than other tools except for scmapc2c,

even if NK cells are significantly different from other PBMC cells.

Compared with the control group, due to more CD4+ helper T

cells added into the reference set of class-imbalanced group,

more CD4+ helper T cells of the test set were correctly predicted

by most tools, even though they are similar to CD4+ CD25+

Tregs and difficult to accurately predict in theory. Meanwhile,

worse predictions of Tregs and NK cells in scmapc2c indicate

that scmapc2c is sensitive to the number of reference cells per

cell type. scID also shows poor robustness, which may be due to

multiple factors, for instance, different samplings and similarity

between cell types.

ROC curves (Figure 6B–E and Supplementary Figure S7)

displayed that AUC values per cell type in Seurat were not as

stable as those in SingleR between two groups. It also implied

that the best performance of Seurat in the control group did not

translate in extremely imbalanced data sets, whereas SingleR is

relatively robust.

As reported by MCC (Supplementary Figure S8), Seurat and

CaSTLe showed lower performances in the class-imbalanced

group versus the balanced group, whereas others had nearly

equal MCC values between the two groups. Owing to incorrectly

predicted ‘unassigned’ labels (Figure 6A) in both balanced and

imbalanced test cases, MCC values are low for both in scPred.

In summary, different metrics imply similar conclusions, and

we showed that tools based on supervised learning are less

robust than the tools based on cluster-level similarities for class-

imbalanced data sets.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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Running time and memory usage

Strictly speaking, numbers of reference and test cells both have

impacts on the scalability of tools. We discussed in a previous

section the impact of increasing reference cells on the time and

memory consumption in theory and showed a reference data

set larger than 500 per cell type might not be beneficial for

achieving better classification accuracy (Figure 3B). Therefore,

we only focus on the impact of increasing test cells on time and

memory consumption in this section. We used a series of PBMC

data sets to compare the program running time and memory

usage of tools (Figure 7). All analyses were performed on the

same device with two processors, Intel(R) Xeon(R) CPU E5-2650

v4 (2.20GHz) and 192GB of RAM (DDR4), as well as Ubuntu 16.04.6

LTS system.

In theory, since tools evaluated in this study would predict

labels independently for each test cell, running time and

memory usage should increase linearly with the increasing

test cells. According to the results, run time and peak memory

usage of tools roughly increased linearly with increasing

test cell numbers (Figure 7), but accuracy barely changed

(Supplementary Figure S9A). Specifically, scmap (scmapc2clus

and scmapc2c) package ran significantly faster than other tools.

Seurat, CaSTLe, AltAnalyze and CellFishing were also relatively

fast.Whereas SingleR and scMCA tookmore time, running about

26 and 139 hours, respectively, when predicting approximately

90,000 cells. In terms of memory usage, all tools consumed

similar peak memory with increasing test cells. scID, scMCA and

SingleR consumed larger memories, especially scID with about

186G peakmemory usage when predicting approximately 90,000

cells. Seurat, scmapc2c and scmapc2clus used less memory,

especially scmapc2clus, maintaining small memory usage as

test cells increase. Comprehensively, Seurat is a relatively ideal

classification tool with higher accuracy, good scalability, faster

running speed and smaller peak memory usage. In addition,

similar tests were performed on an scRNA-seq data set of the

mouse gut endoderm with >100,000 cells [46]. Consistent with

the previous results, Seurat worked better in terms of high

performance and low resource requirement compared to other

tools (Supplementary Figure S9B–D).

Discussion

In this study, we conducted a comprehensive evaluation of the

performance of nine software tools for single-cell classification

analysis. Using three sources of scRNA-seq data sets with

different complexities, mixed cell lines as a golden standard,

PBMC as a complex system and public scRNA-seq data sets

of human pancreas as a near realistic situation, we evaluated

tools for classifying single-cell labels by various evaluation

metrics.

In projections of mixed cell lines and human pancreas data

sets, most of the tools precisely predicted test cells with cell

types existing in both reference and test data sets. However,

for catching new cell types, such as A431, not included in Mix3,

tools with the unassigned function, scmapc2c, scPred and scID,

merely caught a small portion of the new cell type. In projections

of PBMC, all tools performed worse than other test conditions

due to the existence of several similar T-cell types. Most tools

wrongly predicted similar T cells, and tools with the unassigned

function predicted most of similar T cells as ‘unassigned’. By

combining T subtypes into one label, the accuracies of tools

went up. For tools with the unassigned function, most of cells

with definitive cell type labels are correctly predicted and cred-

ible, especially in predictions of scPred. However, these tools

with ‘unassigned’ function do not significantly outperformother

tools even if considering accuracies without unassigned and

provide no further solution to ‘unassigned’ labels. Here, we pro-

vide several potential strategies for unassigned cells. We would

classify query single cells based on the reference data set using

existing supervised classifiers with ‘unassigned’ function. To

address query cells predicted as ‘unassigned’, one possibility is

unsupervised analysis, to cluster unassigned cells and identify

differentially expressed genes (DE genes) for each cluster. Then,

DE genes per cluster could be comparedwith those of known cell

types in the reference data set. Clusters with similar DE genes

to reference cell types may be defined as corresponding cell

types, and clusters with DE genes significantly different to the

reference cell types could be defined as a new cell population.

We could also cluster all cells in the query data set. By studying

the proportion of unassigned cells in every cluster, we could

distinguish between new cell populations and known cell types

with noise. Certainly, these strategies would require further val-

idations to better define labels of unassigned cells and discover

new cell populations.
All tools studied in this article first conduct feature selection

before classifying single cells, except for scMCA and AltAnalyze.

And some of these tools also provide custom feature selection

options. Feature selection is a general and critical step in the

classification field, which could largely affect the performance

of classifiers and the runtime. scMCA does not execute fea-

ture selection and directly calculates the correlation between

test and reference expression profiles. Hence, scMCA consumed

most runtime among all tools. Due to the complexity of feature

selection, we did not test its effects on the tool performance in

this article. With more and more tools developed in this field,

feature selection may be an essential component in the future

performance optimization.
Our evaluation suggests researchers knowing their reference

data well before implementing cell type classifiers. By analyz-

ing the similarity between cell types in the reference data set,

we could set lower expectations for prediction accuracies of

highly related cell types. Similar subtypes could be combined to

increase the accuracy. Seurat, SingleR and CaSTLe are the best

tools, while an ensemble voting of them presented a slightly

better accuracy. When the cell number is small or cell types
are extremely imbalanced in the reference, SingleR is the best
choice, based on the cluster-level similarities. If there might be
novel cell types in the target cells, a combined strategy of using
scPred with the ‘unassigned’ function, a well-performed tool

without the function such as SingleR, and the clustering analysis

might achieve a better outcome.

Conclusion

In summary, more and more tools are developed for identify-

ing cell types of single cells, yet researchers still face many
challenges. We evaluated the functionality and efficiency of
all available single-cell classification tools in this study. As of

now, there is no tool that can perfectly and completely solve

all problems. Based on the accuracy, ROC and other evaluation

metrics, we demonstrated that Seurat, SingleR and CaSTLe out-

performed the rest of tools. Although scMCA also performed

relatively better, it is time-consuming. Tools built on cluster-

level similarities aremore robust than tools based on supervised

learning for nonideal reference data. To use a reference data

set consisting of several similar cell types, researchers could

merge them into one super type for better prediction accuracy,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz096#supplementary-data
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or caution should be taken for potential mixed-up cell labels.

Although novel cell types and closely related cell types are still

very intractable problems, the results of our tests suggest that

it is applicable to incorporate classification into the single-cell

analysisworkflows. In the future, feature selection and enhance-

ment of novel cell prediction are worth further exploration to

improve the accuracy and functionality of single-cell classifica-

tion tools.

Availability of data sets

scRNA-seq data sets of mix cell lines are available at the

Gene Expression Omnibus at the accession number GSE128982.

PBMC data sets can be downloaded from 10X Genomics official

website (https://support.10xgenomics.com/single-cell-gene-

expression/data\ignorespacessets) [9]. As for the human pan-

creas scRNA-seq data sets, they are converted into Bioconductor

SingleCellExperiment class objects with cell type annotations

and available on https://hemberg-lab.github.io/scRNA.seq.

data\ignorespacessets [15]. The mouse gut endoderm scRNA-

seq data set was downloaded from https://endoderm-explorer.

com [46].
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Key Points

• Performance of classification tools is partially depen-

dent on data sets.
• Seurat, SingleR and CaSTLe have overall better perfor-

mance, and an ensemble voting of all tools increases

the performance.
• SingleR performs best when the reference cell number

is small or the cell types are imbalanced.
• Novel cell types are challenging to identify, and the

function needs further improvement.
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