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In vivo Molecular Imaging of 
Glutamate Carboxypeptidase II 
Expression in Re-endothelialisation 
after Percutaneous Balloon 
Denudation in a Rat Model
Heike Endepols   1,2, Felix M. Mottaghy3,4, Sakine Simsekyilmaz5, Jan Bucerius3,4,6,  
Felix Vogt7, Oliver Winz3, Raphael Richarz1, Philipp Krapf1,9, Bernd Neumaier   1,8,9,  
Boris D. Zlatopolskiy1,3 & Agnieszka Morgenroth3

The short- and long-term success of intravascular stents depends on a proper re-endothelialisation after 
the intervention-induced endothelial denudation. The aim of this study was to evaluate the potential 
of in vivo molecular imaging of glutamate carboxypeptidase II (GCPII; identical with prostate-specific 
membrane antigen PSMA) expression as a marker of re-endothelialisation. Fifteen Sprague Dawley 
rats underwent unilateral balloon angioplasty of the common carotid artery (CCA). Positron emission 
tomography (PET) using the GCPII-targeting tracer [18F]DCFPyL was performed after 5–21 days (scan 60–
120 min post injection). In two animals, the GCPII inhibitor PMPA (23 mg/kg BW) was added to the tracer 
solution. After PET, both CCAs were removed, dissected, and immunostained with the GCPII specific 
antibody YPSMA-1. Difference of GCPII expression between both CCAs was established by PCR analysis. 
[18F]DCFPyL uptake was significantly higher in the ipsilateral compared to the contralateral CCA with an 
ipsi-/contralateral ratio of 1.67 ± 0.39. PMPA blocked tracer binding. The selective expression of GCPII in 
endothelial cells of the treated CCA was confirmed by immunohistological staining. PCR analysis verified 
the site-specific GCPII expression. By using a molecular imaging marker of GCPII expression, we provide 
the first non-invasive in vivo delineation of re-endothelialisation after angioplasty.

Percutaneous vascular intervention (PVI) leads to mechanical endovascular injury with endothelial denudation. 
A timely re-endothelialisation after stent deployment or balloon angioplasty is essential for safety and efficacy 
of PVI. The arterial healing involves regrowth of the denuded endothelium from the remaining endothelial cells 
and uninjured segments proximally and distally of the treated lesion1,2. Circulating endothelial progenitor cells 
play most likely an important role in this process3. Current concepts of PVI optimization include approaches 
to accelerate re-endothelialisation, at the same time trying to inhibit restenosis. Assessment of this process is 
crucial as successful re-endothelialisation has prognostic implications to the patient and would clearly impact 
and change his post-interventional follow-up and treatment. However, whereas the clinical assessment of 
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endothelial recovery is primarily performed by estimating the extent of endothelium-dependent vasodilatation 
in response to acetylcholine or reactive-hyperaemia-induced shear stress or by gradual visualisation of endothe-
lial cells by invasive imaging methods such as optical coherence tomography, non-invasive in vivo visualization of 
re-endothelialisation after PVI has not been successful until now4,5.

Recently, a molecular imaging probe that visualizes the expression of the transmembrane protein glutamate 
carboxypeptidase II (GCPII), also called prostate-specific membrane antigen (PSMA), has become available. 
Currently, the clinical application is tested in primary and recurrent prostate cancer6. GCPII is expressed in a 
variety of healthy (e.g., salivary glands, duodenal mucosa, subset of proximal renal tubular cells, and subpop-
ulations of neuroendocrine cells in the colonic crypts) and neoplastic tissues7 (e.g. subtypes of transitional cell 
carcinoma, renal cell carcinoma, colon carcinoma, and peritumoural as well as endotumoural endothelial cells of 
neo-vasculature). GCPII seems to be a true molecular interface, integrating both extracellular and intracellular 
signals during angiogenesis. Especially the endothelial cell invasion seems to be dependent on GCPII activity 
since GCPII inhibition, knockdown, or deficiency decreases endothelial cell invasion in vitro and thereby abro-
gates angiogenesis8. Next to that, GCPII also plays a role in the neo-vasculature of physiologic regenerative and 
reparative conditions9.

Over the last years, GCPII has received increasing attention as a useful biomarker in the evaluation of pros-
tate cancer patients with positron emission tomography (PET). The recent development of several 68Ga labelled 
GCPII inhibitors for PET imaging demonstrated a high specificity for GCPII expressing tumour cells in vitro and 
in vivo. The first human studies revealed a high specificity as well as a high detection rate in patients with prostate 
cancer using GCPII-inhibitor-PET10–13.

In this study, we evaluated the potential role of a newly developed 18F-labeled GCPII targeting tracer for in 
vivo molecular imaging of re-endothelialisation after PVI in the common carotid artery in a rat model and cor-
roborated the results with immunohistochemistry of GCPII expression and polymerase chain reaction (PCR).

Results
PET.  Five to 21 days after balloon dilatation, [18F]DCFPyL binding was noticeable in the entire ipsilateral 
CCA, while binding in the contralateral CCA was weak or even absent (Fig. 1a,b). The mean ratio between ipsi- 
and contralateral CCA was 1.67 ± 0.39, which was significantly different from µ = 1.0 (p < 0.0001; one sample 
t-test). Comparison of the arterial tracer uptake between the ipsi- and contralateral CCA revealed significantly 
higher uptake values for the ipsilateral CCA (0.030 ± 0.026%ID/cm3 vs. 0.020 ± 0.021%ID/cm3, p = 0.0004; 
paired t-test). Blocking of GCPII binding sites with PMPA in two animals resulted in strong reduction of ipsilat-
eral arterial tracer binding to 0.0008 and 0.0004%ID/ccm3, respectively (Fig. 1c).

Ex vivo GCPII expression analysis.  The vascular injury induced GCPII expression in the reparative 
endothelium of the ipsilateral CCA (Fig. 2a). GCPII staining was significantly more intense in endothelial cells 
of the dilated compared to the intact CCA (mean difference was 51 in a grayscale of 256 intensities, p = 0.0038, 
t-test; Fig. 2b,c). In the tunica adventitia, the external connective tissue layer, GCPII staining intensity was also 
higher in the dilated vessels, although this effect was not as pronounced as in the endothelial layer (mean differ-
ence: 20 gray levels, p = 0.0167). In the tunica media, the smooth muscle cell layer, GCPII staining intensity did 
not differ between dilated and intact CCA (mean difference: 18 gray levels, p = 0.1087). Corresponding to the 
immunohistological staining patterns, PCR tissue analysis revealed increased GCPII expression in the ipsilateral 
CCA, while no GCPII expression was detected in control CCAs (Fig. 3; supplementary Fig. 1).

Methods
Animals.  In total, 15 Sprague Dawley rats (male, 450–500 g) were included in this study. Angioplasty of the 
common carotid artery in the rats was performed under isoflurane anaesthesia. After midline neck incision, 
the left external carotid artery was ligated distally, and via transverse arteriotomy, a balloon dilatation catheter 
(2.0 × 8.0 mm, Mini Trek, Abbott Vascular) guided by a flexible angioplasty wire (diameter: 356 µm = 0.014 in) 
was advanced into the common carotid artery by 1 cm (Fig. 4). Complete and uniform endothelial denudation 
was achieved by expanding the balloon for 5 seconds with a pressure of 12 bar using an inflation syringe sys-
tem (Medflator, Medex Supply, Monsey, NY). The muscular layers and skin incision were closed, and analgesics 
(buprenorphine 0.025 mg/kg BW) were administered until full recovery of the animal.

Study protocol.  PET image acquisition using the tracer [18F]DCFPyL was performed at different time points 
after angioplasty, from day 5 to day 21. Nine animals were measured once after the intervention, and four ani-
mals twice with an interval of 5–7 days between measurements. For blocking experiments, the GCPII inhibitor 
2-(phosphonomethyl)pentane-1,5-dioic acid (PMPA; Tocris) was co-injected with the PET tracer at a concentra-
tion of 23 mg/kg BW in two animals.

Uptake analyses were carried out for the ipsilateral (dilated) and contralateral (untreated) common carotid 
artery (CCA). Animals were sacrificed after their last PET scan, and immunohistochemistry of both carotid arter-
ies was performed using a GCPII-specific antibody.

Synthesis and radiolabelling of the GCPII targeting radiotracer [18F]DCFPyL.  [18F]Fluoride was 
produced via the 18O (p, n)18F reaction by bombardment of enriched [18O] water with 16.5 MeV protons using 
a MC16 cyclotron (Scanditronix, Uppsala, Sweden) at the Max Planck Institute for Metabolism Research in 
Cologne. The synthesis of [18F]DCFPyL was carried out as follows14. A solution of 2,3,5,6-Tetrafluorophenyl-6-
[18F]fluoronicotinate ([18F]F-Py-TFP) (0.5–30 GBq) in EtOH (500 µL), prepared according to the procedure of 
Malik et al., was added to 2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid tris-tert-butyl ester (2.5 mg) and 
the reaction mixture was stirred for 10 min at 40 °C15,16. Thereafter, 10 M HCl (1 mL) was added and the mixture 
was stirred for 10 min at 100 °C. Volatiles were removed under reduced pressure and the residue was taken up in 
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0.38% H3PO4 (pH 2) and purified by semipreparative HPLC to give [18F]DCFPyL in reasonable radiochemical 
yields of 8–12% and in high radiochemical purity (99.8%). The final product was formulated in a PBS solution 
(pH 4–6). The specific activity of [18F]DCFPyL amounted to 65–78 GBq/μmol. Semi-preparative HPLC was per-
formed with a Chromolith SpeedROD® column of 50 × 4.6 mm (Merck Millipore, Darmstadt, Germany), 5% 
EtOH in 0.38% H3PO4 (pH 2) as eluent and a flow rate of 3.0 mL/min. Quality control was conducted under the 
same conditions as for the purification with tR = 2.2 min.

PET acquisition.  13–80 MBq of [18F]DCFPyL in isotonic saline (200 µL) were injected into the lateral tail 
vein of the rats. One hour later, rats were set under anaesthesia with isoflurane and placed in a small animal PET 
scanner (Inveon, Siemens, Knoxville, USA) under continuous ECG and temperature monitoring and imaged for 
60 minutes. CT images were acquired on a Philips Gemini TF16 PET/CT (Philips Medical Systems, Best, The 
Netherlands).

PET image analysis.  PET images were reconstructed with the help of a 3D-OSEM procedure yielding a matrix 
of 128 × 128 × 159 voxels with sizes of 0.78 × 0.78 × 0.80 mm3. Using the software VINCI17, all PET images were 
Gauss-filtered with a kernel of 1.0 mm FWHM and co-registered to the CT images. For VOI analysis, images were 
rotated so that superior and inferior cervical ganglia, which were labelled in all preparations, appeared in the same 
horizontal plane on both sides of the body. Because the CCA stretches between the two ganglia, this procedure aligns 
left and right CCA with the horizontal plane as well, and the damaged vessel can be easily recognized (Fig. 1). Two 
cylindrical volumes of interest (VOIs) were drawn with a diameter of 2.9 mm and a length of 7.3 mm, comprising 
101 voxels each. The VOIs were positioned over the part of the vessel where the catheter was inserted, and over its 
contralateral counterpart, respectively (Fig. 2a). If the unaffected contralateral CCA was not visible at all, the con-
tralateral VOI position mirrored that of the ipsilateral VOI. Mean VOI values in % injected dose per cm³ (%ID/ccm) 
tissue were extracted, and the ratio between ipsilateral (=dilated) and contralateral (=untreated) side was calculated.

Figure 1.  Increased GCPII-expression in the rat CCA after dilatation with a balloon catheter. (a) Schematic 
drawing of the dilatation site (yellow) and the cervical ganglia (red and green) used as landmarks. (b) [18F]
DCFPyL-PET image five days post-op. The image was tilted (see insert, level a–d) so that the CCA was oriented 
in the horizontal plane. Red squares indicate position of the VOIs. (c) Blocking experiment with PMPA (23 mg/
kg BW), injected together with [18F]DCFPyL. (d) Image of a different rat seven days post-op. in horizontal 
and transverse view. E: Plotting of VOI ratios (ipsi-/contralateral) over time after dilatation. Blue lines indicate 
animals that were measured twice. Abbreviations: B: brain; CCA: common carotid artery; ECA: external carotid 
artery; ICA: internal carotid artery; ICG: inferior cervical ganglion; SCG: superior cervical ganglion; SG: 
salivary gland; SJ: shoulder joint. SpG: Spinal ganglia. Scale bars: 1 cm.
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All continuous variables are expressed as mean ± standard deviation and categorical data as absolute numbers 
and percentages. A Pearson correlation analysis was performed between the ratio of ipsi- and contralateral CCA 
[18F]DCFPyL uptake and post-operative day. Since the correlation was not significant (R = −0.28; p = 0.2699), all 
measurements were pooled and a paired t-test was used to compare ipsi- and contralateral CCA.

Immunohistology.  Consecutive formalin-fixed, paraffin-embedded longitudinal tissue sections (2 µm thick) 
were dewaxed in xylene and rehydrated through graded concentrations of ethanol to distilled water. Sections 
were then immersed in 10 mmol/L citrate buffer (pH 6.0) and processed for antigen retrieval in the microwave for 
5 min at 600 W. For blocking of endogenous peroxidase activity the sections were treated with 0.3% H2O2 solution 
for 15 min at RT. Unspecific antibody binding was inhibited by incubation in 3% BSA-TBST solution for 30 min 
at RT. For staining, sections were incubated with the anti-PSMA (=anti-GCPII) antibody (1:200 dilution in TBST, 

Figure 2.  GCPII immunohistochemistry with HE counterstaining. (a) GCPII immunostaining of the dilated 
CCA. Arrowheads indicate immunopositive endothelial cells (E). (b) Negative control without primary 
antibody. (c) Mean gray values ± standard deviation. *p < 0.05, **p < 0.005. Scale bar: 30 µm.

Figure 3.  Comparative analysis of GCPII expression at mRNA level (cropped gels). Examples of PCR analysis 
of GCPII expression (product size 424 bp) in dilated CCAs (5, 7 and 21 days post balloon dilatation in lane 1, 
2 and 3, respectively) and control CCAs (lanes 4–6). Corresponding β-Actin (product site 60 bp) served as a 
loading control (M, DNA ladder).
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clone YPSMA-1, abcam) over night at 4 °C. Subsequently, the sections were washed tree times with TBST and 
exposed for 60 min to peroxidase-linked anti-mouse immunoglobulin antibody (1:500 diluted in TBST, Cell 
Signaling Technology). Colour development used diaminobenzidine substrate and sections were counterstained 
with haematoxylin/eosin (HE). Digital photographs of the stained arteries were analysed with ImageJ 1.51m9 
(NIH, USA). For analysis of the endothelial cell layer, five short lines per section were drawn perpendicular to 
the luminal surface, and profile plots (gray value against distance) were generated. The minimum gray value 
corresponding with the darkest pixel in the endothelial layer was extracted from each plot. For the tunica media 
and adventitia, five rectangular regions of interest (ROIs) were drawn per section, and the ROI mean values were 
retrieved. Mean values for each animal from the dilated artery (GCPII staining versus control staining without 
primary antibody) were compared using a paired t-test.

PCR validation of GCPII expression.  Total RNA was extracted from formalin-fixed, paraffin-embedded 
tissue sections using a Phenol-chloroform method. Reverse transcription was carried out using Advantage 
RT-for-PCR kit (Clontech, Mountain View, California, USA) (50 ng RNA/sample). RNA and cDNA were quan-
tified by using a BioPhotometer (Eppendorf, Germany). For PCR analysis (0.5 µg cDNA/sample) gene-specific 
primers were used at 10 pmol per reaction: GCPII forward primer 5′-TGCAGGGCTGATAAGCGAGGCATT-3′; 
GCPII reverse primer 5′-TGGGATTGAATTTGCTTTGCAAGCTG-3′ ; Actin-β  forward primer 
5′-CCCAGCACAATGAAGATCAA-3′, Actin-β reverse primer 5′-GATCCACACGGAGTACTTG-3′. PCR was 
performed using Advantage® cDNA PCR kit (Clontech) for 35 cycles. PCR products were resolved on a 1.2% 
agarose gel, stained with ethidium bromid, and bands were detected using the ImageQuant LAS 4010 camera 
system (GE Healthcare).

Ethical statement.  Animal experiments were performed in accordance with the German legislation govern-
ing animal studies following the ‘Guide for the care and use of Laboratory Animals’ (NIH publication, 8th edition, 
2011) and the Directive 2010/63/EU on the protection of animals used for scientific purposes (Official Journal of 
the European Union, 2010). Official permission was granted from the governmental animal care and use office 
(LANUV Nordrhein-Westfalen, Recklinghausen, Germany).

The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Discussion
Using microPET and PCR, we found a significantly increased GCPII expression in the ipsilateral CCA compared 
to the contralateral, non-treated CCA between day 5 and 21 after balloon denudation. Immunohistochemical 
stainings showed that the endothelial cell layer was the main source of elevated GCPII, while approx. 28% of the 
signal arose in the tunica adventitia. Although endothelial cells form a very thin layer (a few micrometers at most), 
it is possible to visualize purely endothelial targets with PET, as has been shown for endothelial HSP-60 expression 
in the rabbit aorta18. Because GCPII is highly expressed in neo-vasculature of reparative and regenerative tissues9, 

Figure 4.  Schematic drawing of the surgical procedure. The balloon catheter is temporarily inserted via the 
external carotid artery (ECA) into the common carotid artery (CCA). The ECA remains clamped after surgery.
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our findings most likely reflect an elevated re-endothelialisation process after endothelial denudation rather than 
the injury per se. Increased GCPII expression in the adventitia may indicate formation of neo-vasculature19 and/
or the recruitment of resident progenitor cells to form new endothelial cells20. Thus, GCPII expression most likely 
represents the healing processes, taking place in different layers of the dilated vessel.

Arterial injury is an unavoidable consequence of all interventional vascular procedures, which is followed 
by a cascade of cellular and molecular events resulting in an acute damage of the endothelial layer of the arte-
rial vessel wall21. Disruption of the normal endothelial structure or function is strongly associated with the 
pathogenesis of atherosclerosis. Furthermore, it also leads to early, late, and very late thrombotic events and 
re-stenosis burden that are well-known to occur after angioplasty and stenting2. Based on these pathophysiolog-
ical processes, it becomes obvious that maintaining or re-establishing a competent and fully intact endothelium 
in the treated vessel is crucial for the long-term health of the respective vessel wall. Consequently, the process 
of endothelial restoration has significant prognostic and therapeutic implications for patients undergoing PVI2. 
Current therapeutic concepts are therefore focused on the acceleration of re-endothelialisation after PVI, at the 
same time aiming to inhibit restenosis2. The introduction of drug-eluting stents several years ago has reduced 
the rate of early re-stenosis, however late re-stenosis or neo-atherosclerosis is a common side effect, requiring 
a more pronounced anti-platelet therapy. The problem of late re-stenosis is most likely due to a still incompe-
tent and not fully restored endothelium with respect to its integrity and function2. In this context, assessing 
the process of re-endothelialisation in vivo and, consequently, healing of the injured vessel wall is mandatory 
and much-needed. However, despite remarkable advances in imaging techniques, imaging of the endothelial 
cell structure and integrity is challenging and still cannot currently be assessed adequately in vivo. Up to now, 
the assessment of endothelial function in the clinical situation has primarily been performed by estimating the 
extent of endothelium-dependent vasodilatation in response to acetylcholine or reactive-hyperaemia-induced 
shear stress4,5. Using optical coherence tomography it was demonstrated that the abnormal vasoconstriction in 
response to acetylcholine three months after implantation of a drug-eluting stent is associated with the presence 
of uncovered struts22. Optical coherence tomography is an in vivo technique that provides high-resolution images. 
The technique enables identification of the detailed morphology of coronary plaques, including the thickness of 
the fibrous cap and the accumulation of macrophages. However, the recognition of the structure of the endothe-
lium in native coronary arteries remains inconclusive23.

Non-invasive molecular imaging of GCPII expression after PVI seems to have the potential to overcome this 
shortcoming as GCPII plays a significant role in angiogenesis, mainly with regard to endothelial cell invasion, as 
this process seems to be GCPII-dependent8. GCPII also plays a significant role in the neo-vasculature of physio-
logically regenerative and reparative conditions. It is assumed that the folate hydrolase activity of GCPII facilitates 
angiogenesis by increasing local availability of folic acid9. The increased local availability of folic acid in endothe-
lial cells seems to lead to an increase in the amount of tetrahydrobiopterin. Tetrahydrobiopterin in turn facilitates 
the VEGF-mediated production of nitric oxide by endothelial nitric oxide synthase9. Nitric oxide is known to 
exhibit several vasoprotective effects, for instance vascular relaxation and endothelial regeneration. Furthermore, 
it inhibits platelet aggregation and blood coagulation24.

The visual and the semi-quantitative analysis of the tracer uptake in the CCAs as well as the results of the 
immunohistochemistry indicate a higher tracer uptake in the injured ipsilateral CCA compared to the contralat-
eral CCA. Therefore, we are confident that this is a very promising proof-of-concept finding and the next step 
will be the translation of this application. This could be done in a rather short time frame since the tracer itself is 
already applied in a clinical setting.

For the first time, we provide evidence that GCPII is a reliable in vivo marker of re-endothelialisation after 
PVI and that GCPII-PET is the first non-invasive in vivo molecular imaging technique that can demonstrate and 
quantify re-endothelialisation. As a further perspective, well-powered studies in patients undergoing PVI need to 
confirm the potential of GCPII-PET for imaging the crucial process of arterial re-endothelialisation after injuring 
the vessel wall.
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