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Despite the continued development of specialized immunosuppressive therapies in the
form of monoclonal antibodies, glucocorticoids remain a mainstay in the treatment of
rheumatological and auto-inflammatory disorders. Therapeutic glucocorticoids are
unmatched in the breadth of their immunosuppressive properties and deliver their anti-
inflammatory effects at unparalleled speed. However, long-term exposure to therapeutic
doses of glucocorticoids decreases bone mass and increases the risk of fractures –

particularly in the spine – thus limiting their clinical use. Due to the abundant expression of
glucocorticoid receptors across all skeletal cell populations and their respective
progenitors, therapeutic glucocorticoids affect skeletal quality through a plethora of
cellular targets and molecular mechanisms. However, recent evidence from rodent
studies, supported by clinical data, highlights the considerable role of cells of the
osteoblast lineage in the pathogenesis of glucocorticoid-induced osteoporosis: it is now
appreciated that cells of the osteoblast lineage are key targets of therapeutic
glucocorticoids and have an outsized role in mediating their undesirable skeletal effects.
As part of this article, we review the molecular mechanisms underpinning the detrimental
effects of supraphysiological levels of glucocorticoids on cells of the osteoblast lineage
including osteocytes and highlight the clinical implications of recent discoveries in the field.

Keywords: glucocorticoids, osteoblasts, osteocytes, glucocorticoid-induced osteoporosis (GIO), anti-resorptive
treatment, osteo-anabolic treatment
INTRODUCTION

Harvey Cushing first described the development of ‘osteoporosis of the skeleton’ in the spine of
patients suffering from endogenous hypercortisolism 90 years ago (1). Two decades later, clinicians
observed the same phenomenon in patients receiving synthetic glucocorticoids (GCs) (2). GC-
induced osteoporosis (GIO) is considered the third most common condition of pathological bone
loss following post-menopause and aging, and is the most frequent cause of secondary osteoporosis.
For instance, in the Global Longitudinal Study of Osteoporosis in Women (GLOW), about 2.7-4.6%
of women from 10 different countries received treatment with GCs (3). Although a considerable
proportion of GC-induced fractures remain asymptomatic and thus difficult to detect, exposure to
exogenous GCs has been linked to a high incidence of fractures, particularly in the spine. A rapid
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reduction in bone mineral density (BMD) is generally observed
as early as 3-6 months after initiation of GC treatment and
persists during continued GC exposure (4–9). Aside from the
spine, typically locations of GC-induced fractures include the
ribs and pelvis (8, 10–12), indicating that sites rich in trabecular
bone are more affected than the cortical structures (10).
Interestingly, some studies observed a rapid development of
fractures in patients receiving GCs, even before any detectable
decreases in the bone mineral density (9, 13, 14), suggesting that
not just bone mass but also bone quality is compromised in the
presence of supra-physiological levels of GCs (Box 1).

Several molecular mechanisms underlying GIO have been
identified through in vivo and in vitro studies. Overall, the effects
of excess GCs in the skeleton are complex owing to the
multifaceted nature of interactions between local and systemic
factors. Generally, GCs act via the glucocorticoid receptor (GR),
which is ubiquitously expressed in all skeletal cell types. The
molecular nature of GC-GR interactions and their interplay with
target cells are manifold and complex. Briefly, upon ligand
binding the GR translocates to the nucleus where it either acts
as a dimer by binding directly to the DNA in the promotor
region of target genes or it may act as a monomer by interfering
with other transcription factors such as activator protein 1 (AP-
1) and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB). A detailed review of the molecular action of the
GC-GR complex is provided by Hartmann et al. (18) or
Vandewalle et al. (19).

The skeletal effects of therapeutic GC use have to be separated
from the role of physiological GCs in the skeleton. Physiological
concentrations of GCs are critically required for differentiation of
stromal progenitors towards the osteoblast lineage – and away
from adipocytes – (20, 21) and thus support bone formation (22)
and the accrual of bone mass (23–25). Overall, physiological
concentrations of GCs exert anabolic effects throughout the
skeleton particularly during growth, whereas supraphysiological
(or therapeutic) levels of GCs result in loss of bone mass and
quality (26, 27). Early studies on GIO have described several extra-
Abbreviations: 11b-HSD2, 11b-hydroxysteroid dehydrogenase type 2; AP-1,
activator protein 1; ALP, alkaline phosphatase; BMP, bone morphogenic
protein; BMD, bone mineral density; CTX, carboxy-terminal collagen crosslinks;
C/EBPa, CCAAT-enhancer-binding protein alpha; CDK, Cyclin-dependent
Kinase; DUSP1, Dual-specificity phosphatase 1; DKK1, dickkopf1; ER,
endoplasmic reticulum; ERK, extracellular-signal-regulated kinases; Eif2a,
Eukaryotic Translation Initiation Factor 2A; FAK, focal adhesion kinase; GR,
glucocorticoid receptor; GCs, glucocorticoids; -GRE, negative GC-response
element; GIO, GC-induced osteoporosis; GLOW, Global Longitudinal Study of
Osteoporosis in Women; IL-11, interleukin-11; IGF-1, insulin-like growth factor I;
JNK, c-Jun N-terminal kinase; JAK2, Janus kinase 2; LncRNAs, long non-coding
RNAs; LIF, leukemia inhibitory factor; MKP1, MAPK phosphatase 1; MAPK,
mitogen-activated protein kinase; MMP, matrix metalloproteinase; M-CSF,
Macrophage colony-stimulating factor; NF-kB, nuclear factor kappa-light-
chain-enhancer of activated B cells; OPG, osteoprotegerin; OCN, osteocalcin;
P1NP, procollagen type I N-terminal propeptide; PPARg, Peroxisome
proliferator-activated receptor gamma; PTH, parathyroid hormone; PYK2,
Protein-tyrosine kinase 2 beta; RUNX2, runt-related transcription factor 2;
RANKL, receptor activator of nuclear factor kappa-B ligand; ROS, reactive
oxygen species; SOST, sclerostin; sRFP1, Secreted frizzled-related protein;
STAT3, Signal Transducer And Activator Of Transcription 3; TRAP-5b,
tartrate-resistant acid phosphatase-5b; TBS, trabecular bone score.
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skeletal effects, which may mechanistically underpin GC-induced
bone loss, such as i) a dysregulation of calcium homeostasis
through decreased intestinal calcium absorption and increased
renal calcium clearance; ii) a reduction in the growth hormone/
insulin-like growth factor axis; iii) alteration in gonadal steroid
hormones; or iv) the potential development of secondary
hyperparathyroidism. Also, the catabolic effects of GCs on
skeletal muscle have been marked as a contributor to increased
fracture risk via increased incidence of falls secondary to muscle
weakness (28–30). Interestingly, over the last two decades,
advances in mouse genetics have enabled the detailed
characterization of the mechanisms of GC-induced bone loss.
This led to the discovery that the direct effects of supra-
physiological levels of GCs on bone cells represent a significant
part of the pathogenesis of GIO. Generally, the pathogenesis of
GIO is characterized by two phases: an initial phase of accelerated
bone loss owing mainly to increased osteoclast-mediated bone
resorption; followed by a slow but continuous phase of qualitative
and quantitative bone loss as a result of the compromised function
of both osteoblasts and osteocytes. While all skeletal cell types –
namely osteoblasts, osteocytes and osteoclasts – are targeted by
GCs, it is now understood that cells of the osteoblast lineage are
the main effectors of GC-induced bone loss and the GC-induced
rise in fracture risk.

Here we review the molecular and cellular targets of
therapeutic doses of GCs with a particular focus on osteoblasts
and osteocytes as well as the implications for clinical therapy
of GIO.
THE OSTEOBLAST LINEAGE AS A KEY
TARGET FOR EXCESS GCs

Skeletal cells continually interact with one another through the
process of bone remodeling. Bone remodeling includes the
coordinated processes of bone formation and bone resorption.
Formation of new bone is performed by osteoblasts, whereas
bone resorption is carried out by osteoclasts. Osteocytes act as
mechanosensors and orchestrate the skeletal remodeling process
by initiating and governing the remodeling cycle (31, 32). While
exogenous GCs affect all cells of the remodeling process – either
directly or indirectly (Figure 1) –, cells of the osteoblast lineage,
and therefore bone formation, are key targets of GCs in
the skeleton.

Generally, exposure to supra-physiological levels of GCs
results in a strong suppression of bone formation and the
anabolic function of osteoblasts in both humans and rodents.
Treatment of patients with therapeutic doses of GCs rapidly
suppresses serummarkers of bone formation such as osteocalcin,
bone-specific alkaline phosphatase (ALP) and procollagen type I
N-terminal propeptide (P1NP) (33–40). Similarly, prolonged
exposure of rodents to excess GCs decreases the systemic
markers of bone formation and the osteoblasts’ anabolic
function, such as osteocalcin and P1NP (17, 41–46).
Histomorphological analysis of bones from GC-treated rodents
confirms these findings and reveals compromised bone
March 2022 | Volume 13 | Article 835720
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BOX 1 | Bone mineral density as a surrogate parameter in GIO.

GCs have been shown to substantially increase fracture risk in humans. Interestingly, the increase in fracture risk manifest itself immediately after the commencement of
GC therapy (8), leading to the hypothesis that GCs may damage bone beyond the loss of bone mass. And indeed, studies were able to establish that in patients suffering
from GIO fractures occurred more frequently compared to patients with postmenopausal osteoporosis even when BMD scores were taken into account (13). Similarly, it
has been established that the commonly used FRAX algorithm underestimates the occurrence of fractures in subjects treated with GCs (15). More recently the use of
trabecular bone score (TBS) has been shown to potentially remedy some of these concerns (16); however, its use has not been widely adopted and/or established as a
diagnostic tool in GIO. Overall, the predictive value of BMD is reduced in GIO compared to postmenopausal osteoporosis. This is of particular concern as virtually all
studies assessing the use of anti-osteoporotic medication in GIO utilize BMD as a surrogate parameter for fractures. Studies were not adequately powered to allow for an
analysis of fracture risk. This should be taken into account when evaluating the results of clinical trials comparing therapeutic agents in the context of GIO.

Preclinical studies have attempted to assess the underlying reason for the particularly high fracture risk in GIO compared to postmenopausal osteoporosis. Studies
in rodents were able to link the high fracture risk in GIO as well as the rapid onset of fractures following commencement of GC-therapy to their detrimental effects on
osteocytes. Lane et al. highlighted the role of the lacunar-canalicular network in this context, which is largely maintained by osteocytes (17). Others have built on this idea
and highlighted the role of the skeletal vasculature in GIO, see section ‘The Effects of Excess GCs on the Function of Osteocytes’ for further details. However, the rapid
increase in fracture risk with commencement of GC-therapy may also be the result of systemic effects of supraphysiological levels of GCs; i.e. GCs may decrease muscle
strength and adversely affect coordination and/or lead to an increase in falls (and thus fractures) due to their effects in the central nervous system. Hence, whether the
rapid and strong increase in fractures following commencement of therapeutic GCs is a result of bone-intrinsic effects of GCs or GC-action elsewhere in the body
remains to be determined.
FIGURE 1 | Osteoblasts and osteocytes as main targets of glucocorticoid (GC) excess in the skeleton. Exposure to supra-physiological levels of GCs affects many
aspects of osteoblast formation and function. Whereas GCs inhibit osteogenic commitment of stromal progenitor cells by diversion into adipogenesis, they inhibit
proliferation and differentiation of pre-osteoblasts through direct as well as autocrine/paracrine effects. Together with suppression of osteoblast function, all these
GC-induced alterations in osteoblasts suppress bone formation. Additionally, GCs induce apoptosis of both osteoblasts and osteocytes and cause disruptions in
osteocytic lacuna-canalicular network affecting bone quality. Osteoclast-mediated bone resorption is affected by GCs as well, especially through the regulation of the
RANKL/OPG system via osteoblasts and osteocytes. The figure was created with BioRender.com.
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formation and mineralization as well as a reduction in the
number and surface of osteoblasts (17, 23, 43, 45, 47–49).
Similar effects were observed in bone biopsies from GC-treated
patients (50–53). Overall, GIO occurs in both rodents and
humans with similar cellular and molecular features. Thus,
rodents may act as a suitable model organism to investigate
the molecular and cellular mechanism underlying GIO (54).

The significance of osteoblasts in the pathogenesis of GIO has
been made clear through the utilization of genetically modified
mouse models, in which GC-GR signaling has been disrupted in a
cell-specific fashion. Protection of osteoblasts from excessive GC
signaling by osteoblast-specific overexpression of the GC-
inactivating enzyme, 11b-hydroxysteroid dehydrogenase type 2
(11b-HSD2), not only prevented GC-induced osteoblast
apoptosis but also preserved osteoblast function and bone
formation (43, 55). Similarly, specific deletion of GR in
osteoblasts prevented both GC-driven bone loss as well as
compromised bone formation (23). Some – though not all –
studies investigating the disruption of GC signaling in osteoblasts/
osteocytes during GC excess showed that not only osteoblast
function and bone formation were preserved in this setting but
also the GC-induced increase in osteoclast number and activity
was prevented (43). Collectively, these results suggest that the
adverse skeletal effects of exogenous GCs result to a large degree
from their detrimental action on cells of the osteoblast lineage.
Quantifying the overall contribution of osteoclasts to the
development of GC-induced osteoporosis remains challenging.
The selective abrogation of GC-GR signaling in osteoclasts (by GR
knock-out) resulted in preserved bone resorption and preserved
bone formation, indicating a prominent role for osteoclasts in
GC-induced bone loss (56). However, – in the hands of different
researchers – the osteoclast-specific disruption of GCs (either by
11b-HSD2 overexpression or conditional GR knockout) had no
discernible protective effects against GC-induced bone loss since
osteoblasts were readily affected by excess GCs (23, 57).
Collectively, the weight of the evidence strongly points to the
osteoblast lineage as a more impactful target of GCs in the
skeleton compared to the cells of the osteoclast lineage.
THE EFFECTS OF GC EXCESS ON
THE FORMATION AND FUNCTION
OF OSTEOBLASTS

GCs cause alterations in the formation and apoptosis of
osteoblasts as well as their function, all of which contribute to
the pathogenesis of GIO. In vivo and in vitro studies have
determined that supra-physiological levels of GCs exert their
deleterious effects on cells of the osteoblast lineage at all stages of
differentiation, leading to reduced osteoblast formation.
Moreover, GCs limit both function and lifespan of osteoblasts,
ultimately resulting in compromised bone formation.
Furthermore, through the intrinsic link between bone
formation and bone resorption, GCs may alter osteoblast
activity and function through their action in osteoblasts and
osteocytes. The effects of exogenous GCs on molecular pathways
Frontiers in Endocrinology | www.frontiersin.org 4
within osteoblasts are manifold and the relative contribution of
each identified pathway is not always quantifiable. Nevertheless,
the main effects of GCs on osteoblasts can be outlined as follows:

a) Decreased Osteogenic Cell Fate of
Stromal Progenitor Cells
Given the multipotent nature of stromal progenitor cells in the
bone marrow, supra-physiological levels of GCs induce diversion
of these stem cells away from the osteoblast lineage towards the
adipocyte lineage. Ultimately, this diversion of stem cell
commitment leads to a decrease in the pool of osteoblast
progenitors and limits bone formation. Accordingly, it has
been shown that exposure to exogenous GCs in humans and
rodents is associated with increased bone marrow adiposity (58–
60). In line with these results, gene expression profiling of bone
tissue from GC-treated mice displayed an induction of
adipogenesis-related genes whereas osteogenic genes were
downregulated (49). Moreover, bone marrow stromal
progenitor cells from GC-treated rodents displayed reduced
osteoblastogenesis ex vivo (23, 45, 48), with enhanced direction
towards adipogenesis even in osteogenic media (59, 60).
Similarly, exposure of bone marrow stromal progenitor cells to
pharmacological levels of GCs results in decreased expression of
essential osteogenic transcription factors such as runt-related
transcription factor 2 (RUNX2), accompanied by concurrent
increased expression of adipogenic transcription factors such as
peroxisome proliferator- activated receptor gamma (PPARg) and
CCAAT-enhancer-binding protein alpha (C/EBPa) (61–66).

b) Suppressed Proliferation
of Osteoprogenitors
Acting also on committed osteoblast precursors, GCs have been
shown to inhibit and suppress their proliferation prior to full
differentiation. In pre-osteoblast cultures, exposure to
pharmacological ‘micromolar’ concentrations of GCs was
associated with cell cycle arrest at the G1 phase due to
downregulation of cell cycle activators such as Cyclin A, Cyclin
D, Cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6 (67–
70) as well as upregulation of cell cycle inhibitors such as p53,
p21 and p27 (67, 69, 71). In addition, GCs were shown to
suppress the proliferation of osteoblast precursors through
suppression of intracellular mitogenic signaling pathways, such
as mitogen-activated protein kinase (MAPK) signaling via a
rapid increase in the expression of a tyrosine phosphatase,
MAPK phosphatase 1/dual specificity protein phosphatase 1
(MKP1/DUSP1), leading to dephosphorylation of extracellular-
signal-regulated kinases (ERK), p38 and c-Jun N-terminal kinase
(JNK) (72–74). Interestingly, while non-specific tyrosine
phosphatase inhibition reversed GC-induced suppression of
pre-osteoblasts in vitro and partly prevented deleterious bone
effects (of GCs) in a rat model of GIO,Mkp1 knockout mice were
not protected against the adverse effects of methylprednisolone
treatment (72–76). In a different studyMkp1 deletion was shown
to exacerbate inflammatory bone loss (77). These results suggest
that targeting MKP1 may not represent a viable strategy for the
prevention of GC-driven bone loss.
March 2022 | Volume 13 | Article 835720
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c) Inhibited Differentiation of Osteoblast
Precursors Into Mature Osteoblasts
GC-induced inhibition of osteoblastogenesis is mediated mainly
via suppression of signaling pathways involved in promoting
osteoblast differentiation, importantly WNT and bone
morphogenetic protein (BMP) pathways. First, GCs have been
shown to inhibit the production of autocrine/paracrine WNT
proteins, such as WNT7b, WNT10 and WNT16 (22, 78), as well
as BMP proteins, such as BMP2, frommature osteoblasts (79–82).
Conversely, the GC-driven suppression of osteoblast
differentiation in vitro was corrected by supplementation of
culture media with WNT and BMP proteins. Second, GCs
increase the expression of inhibitory factors of the WNT and
BMP signaling pathways from osteoblasts as well as osteocytes
including WNT antagonists such as dickkopf1 (DKK1), sclerostin
(SOST), secreted frizzled-related protein 1 (sRFP1) and axin-2 (22,
41, 49, 79, 83–89), as well as BMP antagonists, such as Follistatin
and Dan (63, 79, 90). Third, exposure of pre-osteoblasts to supra-
physiological levels of GCs suppresses the canonical WNT
pathway through inducing degradation and inactivation of b-
catenin, therefore inhibiting osteoblastogenesis (68, 91, 92).
Moreover, suppression of growth factor pathways, such as
insulin-like growth factor I (IGF-I), may contribute to the
suppressive effects of GCs on osteoblastogenesis (93–96). GCs
also suppress anabolic cytokines such as interleukin-11 (IL-11)
and leukemia inhibitory factor (LIF) thereby reducing Janus
kinase 2 (JAK2) – signal transducer and activator of
transcription 3 (STAT3) signaling via inducing interaction of
the monomeric glucocorticoid receptor with the transcription
factor AP-1 (23, 97). Not only did supplementation of GC-
treated osteoblasts with IL-11 (23, 97) and LIF (98) reverse the
suppression in STAT3 signaling and osteoblast differentiation in
vitro, treatment with LIF protected mice against GC-driven bone
loss (98). Interestingly, reduced IL-11 expression was observed in
other models of bone loss such as age-related suppression of bone
formation, suggesting that IL-11 may be generally implicated in
bone diseases (99, 100). Nevertheless, IL-11 is known to affect
osteoclasts as well (101). Beside the direct targeting of key bone-
anabolic pathways such as WNT and BMP signaling, GCs
modulate the expression of miRNAs, including miR-29a, miR-
34a-5p and miR-199a-5p, which regulate proliferation and
differentiation of osteoblasts (102). A study by Wang and
colleagues showed an association of GC-induced osteoporosis
with miR-29a in rats, as GCs reduced the levels of miR-29a
leading to a subsequent increase in deacetylation and
ubiquitinylation of b-catenin, thus attenuating the pro-
osteogenic impact of WNT signaling on differentiation of
osteoblasts (103, 104). However, osteoblast-selective deletion of
Dicer, an important enzyme in miRNA biogenesis, did not affect
GC-induced suppression of osteogenesis both in vitro and in
vivo (105).

d) Decreased Function of Osteoblasts
In addition to suppressed osteoblast formation, GCs decrease the
anabolic function of osteoblasts, i.e., secretion of osteoid matrix
proteins (e.g., collagen and osteocalcin) and subsequent
Frontiers in Endocrinology | www.frontiersin.org 5
mineralization of the matrix itself. For instance, GCs
downregulate OCN (the gene encoding osteocalcin) gene
expression in human and rat osteoblasts through direct binding of
the GC-GR complex to a negative GC-response element (-GRE) in
the enhancer region of the osteocalcin gene leading to trans-
repression (106–108). Also, the expression of collagen from
osteoblasts was shown to be suppressed by excess GCs via
transcriptional and post-transcriptional mechanisms (109, 110).
Apart from the synthesis of bone matrix proteins, supra-
physiological levels of GCs were shown to provoke matrix
degradation through upregulating expression of metalloproteinases
such as matrix metalloproteinase 13 (MMP13) from osteoblasts
(49, 111).
THE EFFECTS OF EXCESS GCs
ON THE LIFESPAN OF OSTEOBLASTS
AND OSTEOCYTES

Aside from suppression of osteoblast differentiation and activity,
exposure to pharmacological levels of GCs triggers apoptosis in
osteoblasts as well as their descendants, osteocytes, limiting their
lifespan. Apoptotic osteoblasts and osteocytes were clearly
detectable in the bones not only from GC-treated rodents (17,
45, 48, 55, 112) but also from patients undergoing therapy with
GCs (45, 52, 113). It may be inferred that the GC-induced
osteoblast apoptosis, similarly to suppressed osteoblast
differentiation, likely contributes to the compromised bone
formation, ultimately leading to GC-induced loss of bone mass
and increase in fracture risk. More importantly, prevention of
GC-driven apoptosis in osteoblasts and osteocytes has been
associated with preservation of bone mass as well as strength
in mouse models of GIO. For instance, co-treatment of mice with
bisphosphonates (48, 114), intermittent parathyroid hormone
(PTH) (115) or osteoprotegerin (OPG) (116) alleviated the
adverse effects of pharmacological GCs on osteoblast and
osteocyte apoptosis as well as bone formation and
mineralization resulting in protection from bone loss.

Despite the evidence outlined above, some studies failed to
detect a GC-induced increase in apoptosis of osteoblasts and
osteocytes despite the detrimental effects of GCs on bone
formation (23). This might be related to differences in the
mouse strain and/or the dose of GCs utilized in the study.
Importantly, the induction of apoptosis in osteocytes and
osteoblasts has been shown to be dose- and time-dependent. In
response to low ‘nanomolar’ concentrations of GCs, osteocytes
and osteoblasts rely on autophagy to repair cellular damage and
maintain viability (112, 117–120). In mice treated with low dose
GCs, an upregulation of the expression of anti-oxidant and
autophagy genes as well as an appearance of autophagic
osteocytes and osteoblasts was observed in the skeleton (112,
119). However, prolonged exposure and/or high ‘micromolar’
doses of GCs result in suppression of autophagy as well as
excessive intracellular damage due to accumulation of
autophagosomes inside osteocytes and osteoblasts, which
ultimately lead to the activation of pro-apoptotic pathways and
March 2022 | Volume 13 | Article 835720
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programmed cell death (112, 119, 121). Induction of autophagy
in osteocytes and osteoblasts has been hypothesized to underpin
a protective mechanism to preserve cellular viability (120, 122,
123); however, prolonged exposure to GCs is associated with
suppressed autophagy leading to apoptosis (117, 123, 124).
Indeed, enhancing autophagy in vivo by administration of the
phytoecdysteroid, b-ecdysone, to GC-treated mice prevents GC-
induced bone loss by reversing the suppression of bone
formation and the induction of apoptosis in osteoblasts and
osteocytes (121, 124). Likewise, pharmacological inhibition of
autophagy was associated with an increase in GC-induced
osteoblast apoptosis in vitro (117, 120). Nevertheless, the
significance of autophagy in the detrimental effect of GCs on
cells of the osteoblast lineage remains overwhelming (122, 125).
Targeting apoptosis and autophagy of osteoblasts and osteocytes
has been highlighted as a therapy for not only GC-driven bone
loss (125), but also in age-related osteoporosis (126, 127).

Several studies using in vitro osteoblast and osteocyte cultures
revealed some of the molecular mechanisms underpinning GC-
induced apoptosis. Not only mechanisms related to regulation of
transcription, but also rapid non-genomic mechanisms have been
attributed to the apoptotic impact of GCs on the osteoblast lineage.
The most evident subcellular apoptotic pathways in osteoblasts
and/or osteocytes influenced by genomic GR actions have been
upregulation of pro-apoptotic proteins such as BIM, BAK, p53
and p21 (67, 71, 128–130), as well as the suppression of survival,
anti-apoptotic factors such as BCL-2, BCL-Xl andMCL-1 (67, 112,
131, 132). In addition, suppression of MAPK – ERK pathway
through upregulation of MKP1/DUSP1 may act as another
mechanism for GC-driven apoptosis in osteocytes and
osteoblasts, as a non-selective protein tyrosine inhibitor was able
to prevent GC-driven osteoblast apoptosis in vitro and in vivo
(133). An increase in oxidative stress in the endoplasmic reticulum
(ER) is one of the non-genomic pathways implicated in
accumulation of reactive oxygen species (ROS), which may
activate JNK signaling and programmed cell death in osteoblasts
(84, 131, 134–136). Generally, prevention of oxidative stress exerts
protective effects on osteoblasts and osteocytes thus preserving
bone formation in addition to mediating anti-resorptive effects on
osteoclasts (137). Prevention of ER stress and ROS accumulation
via knocking down Eif2a (Eukaryotic Translation Initiation Factor
2A) not only prevented GC-induced apoptosis in vitro and in vivo,
but also was associated with protection against bone loss (138).
Inducing the protein tyrosine kinase 2 beta (PYK2) pathway and
blocking focal adhesion kinase (FAK) signaling may contribute to
GC-induced apoptosis in cells of the osteoblast lineage (136). In a
recent report, genetic and pharmacological inactivation of Pyk2
signaling was proven effective in preventing not only apoptosis in
osteoblasts and osteocytes, but also GC-induced bone loss,
although reversing compromised osteoclast function was shown
to likely contribute to such protective effects (139). Moreover,
induction of Fas receptor/CD95 may advance apoptotic pathways
in osteoblasts and osteocytes (140). Two recent studies
hypothesized that long-non coding (lnc) RNAs are involved in
GC-induced osteoblast apoptosis. Long-non coding RNAs are a
large family of RNA molecules that are able to regulate protein
Frontiers in Endocrinology | www.frontiersin.org 6
expression and/or function. Lnc-MALAT1 and lnc-EPIC1
expression were shown to be altered in human osteoblasts
treated with dexamethasone and to interact with AMP-activated
protein kinase signaling and MYC [a regulator of osteoblast
survival] (141, 142). However, the role of lncRNA in GIO
remains to be validated in vivo.
THE EFFECTS OF EXCESS GCs ON THE
FUNCTION OF OSTEOCYTES

Osteocytes play a crucial role in bone homeostasis through
modulating the formation and activity of osteoblasts and bone
formation via the release of WNT signaling inhibitors, sclerostin
and dickkopf1 (DKK1) (143). In a number of studies, an
upregulation of sclerostin gene and protein expression has been
observed in the cortical-rich bones from GC-treated mice, where
osteocytes are generally more abundant than osteoblasts (39, 49,
87, 144). Strong evidence for the significant contribution of the
GC-driven upregulation of sclerostin in osteocytes to GIO has
come from studies of abrogated sclerostin action in rodent models
of excess GCs. Administration of anti-sclerostin antibodies to rats
and mice prevented the development of GC-induced bone loss
largely via preserving the function and number of osteoblasts and
maintaining bone formation and mineralization (46, 145). In
addition, knocking out Sost (the gene encoding sclerostin) in
mice provided protection from GC-driven bone loss (144). In
humans, the contribution of sclerostin to GC-induced bone loss is
less clear. One study described a trend increase in serum levels of
sclerostin in patients receiving pharmacological GCs (36).
However, the serum levels of sclerostin were decreased in the
patients treated with GCs in comparison to matched controls (39),
and similar results were observed after acute treatment with
therapeutic GCs in another study (146). DKK1, another WNT
inhibitor expressed in osteocytes, is upregulated in GC-treated
animals, and anti-sense silencing of Dkk1 in mice was effective in
preserving bone mass as well as bone formation during GC excess
(49, 89). In a recent study, conditional knockout of Dkk1 in
osteoblasts and/or osteocytes prevented the development of GC-
induced bone loss via reversing the adverse effects of GCs on
osteoblasts and bone formation (41). Notably, both sclerostin and
DKK1 have emerged as promising therapeutic targets in a number
of bone diseases (147), and may be utilized clinically for the
management of GIO in the future.

Aside from affecting the regulatory role of osteocytes through
sclerostin and DKK1, several alterations in the bone environment
around the osteocyte-lacunar environment have been reported in
response to pharmacological levels of GCs. In bones from GC-
treated mice, changes in the bone matrix surrounding osteocyte
lacunae were observed, specifically an increased lacunae size as well
as perilacunar hypomineralization (17). Additionally, these effects
were associated with compromised bone strength (17). Moreover,
osteocyte perilacunar remodeling was shown to be adversely
affected by exogenous GCs: a GC-induced suppression of the
expression of matrix metalloproteinases (MMPs) leads to
collagen disorganization and degeneration of the lacuno-
March 2022 | Volume 13 | Article 835720

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Gado et al. GCs and Osteoblasts
canalicular network (148). In the in vitro setting, Gao et al. were
able to show that the gap-junction connectivity of osteocytes was
adversely affected by dexamethasone treatment of an osteocyte cell
line (MLYO-cells). These dexamethasone-induced changes
resulted in a suppressed amount of Connexin 43 due to
degradation by autophagy, thus leading to shortening of
osteocyte dendrites, which likely contributes to the compromised
connectivity between osteocytes (149). Furthermore, GCs were
shown to impair the skeletal vasculature leading to a reduction in
solute transport from the circulation to the osteocyte-lacunar-
canalicular network and a decrease in the interstitial fluid,
thereby compromising bone strength (150). Interestingly, PTH
treatment was able to rescue skeletal vascularity during GC
exposure (151). More recently, two studies highlighted the role of
the skeletal vasculature in the context of GCs during growth. GC-
exposure in young mice (typically around 3 weeks of age) impaired
angiogenesis and osteogenesis simultaneously (152, 153). Liu et al.
were able to show that osteoclast-derived angiogenin was decreased
in response to elevated levels of GCs, leading to an increase in
blood vessel senescence (153).

In summary, GCs exert a detrimental impact on the function
and lifespan of osteocytes leading not only to compromised bone
formation but also to disruptions in the lacunar-canalicular network
(Figure 1). The GC-induced dysfunction of the osteocyte-
canalicular network may represent a potential mechanism
underlying the predisposition to developing fractures shortly after
initiation of GC treatment prior to any significant decreases in BMD
– a frequent clinical observation (8). The role of the skeletal
vasculature in GIO has been highlighted through recent studies
and its role needs further exploration – particularly its connection to
bone cells (i.e. osteoblast, osteocytes and osteoclasts) as well as its
link to fracture risk.
THE EFFECTS OF GC EXCESS ON
OSTEOCLASTS

While the adverse effects of GCs on osteoblasts and osteocytes
contribute to the long-term phase of bone loss and compromised
bone strength in GIO, the initial rapid phase of bone loss
typically observed in humans and rodents originates from a
rapid induction of osteoclast-mediated bone resorption. In a
number of in vivo studies, treatment of rodents with GCs results
in a rapid elevation of systemic parameters of bone resorption
including serum and/or urinary bone resorption markers, such
as carboxy-terminal collagen crosslinks (CTX) and tartrate-
resistant acid phosphatase-5b (TRAP-5b), upon exposure to
supra-physiological levels of GCs (17, 41, 43, 46, 49). In
addition, in the bones from GC-treated rodents, an increase in
the number of osteoclasts, as well as an increase in gene
expression of osteoclast-mediated bone resorption have been
reported shortly after exposure to exogenous GCs (17, 45, 46, 48,
49). While some studies also showed upregulation of osteoclast
activity and bone resorption markers at later time-points (41, 47,
154, 155), other studies failed to detect increases in bone
resorption especially after prolonged GC exposure (45, 156). In
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addition, one study by Henneicke et al. showed that treatment
with corticosterone affected osteoclasts in a site-specific manner
in rodents: an increase in osteoclasts was detected in the
endocortex, while they were reduced in the pericortex of tibia
from GC-treated mice (43).

Several in vivo and in vitro studies have determined that the
mechanisms of elevated osteoclast-mediated bone resorption in
GIO originate not only from direct effects of GCs in osteoclasts, but
also from indirect effects via the osteoblast lineage. It has been
shown that the early increase in osteoclastic bone resorptionmay be
accounted for by an increase in the survival of mature osteoclasts
and reduced predisposition to apoptosis (48, 56, 57, 157). However,
the direct impact of excess GCs on osteoclastogenesis and osteoclast
activity has been controversially discussed due to conflicting results
from in vitro studies. While some authors observed that
pharmacological GCs augmented osteoclast formation and
resorptive activity (158–160), others reported a reduction in
proliferation of osteoclast precursors (56, 157). Additionally, bone
marrow macrophages (osteoclast precursors) from GC-treated
animals gave rise to a lower number of osteoclast precursors ex
vivo than their placebo controls (45, 48). Furthermore, exposure of
in vitro-formed osteoclasts to GCs increased their longevity, yet, in
the same study, it decreased their resorptive function due to defects
in cytoskeleton reorganization (56, 157). Interestingly, a recent
study found that dexamethasone delayed the formation of
multinucleated osteoclasts on plastic surfaces yet increased the
formation of resorption pits on dentin slides (161). Ultimately,
the contribution of direct effects of GCs on osteoclasts to the overall
phenotype of GIO remains unclear due to the large amount of
conflicting data.

In contrast, the indirect effects of GC excess on
osteoclastogenesis and bone resorption have been well
characterized across both in vivo and vitro studies. The
receptor activator of NF-kB ligand (RANKL) – osteoprotegerin
(OPG) system, which plays a crucial role in the differentiation of
osteoclasts, is affected to a large degree by pharmacological levels
of GCs. Several studies demonstrated that supraphysiological
levels of GCs induce the expression and production of RANKL
from osteoblasts in culture (162–165), a finding also confirmed
in vivo (144, 166). Administration of a human anti-RANKL
antibody to mice expressing human RANKL conferred
protection from GC-induced bone loss (166). Some studies
suggest that osteocytes – rather than osteoblasts – are the
principle source of RANKL in vivo (167, 168); however, a
more recent study failed to show an increase in RANKL in the
osteocyte-enriched bones from GC-treated rodents (47).
Interestingly, in the same study a genetic knockdown of Rankl
specifically in osteocytes provided partial protection from GC-
induced bone loss via reversal of the osteoclast induction (47).

Aside from RANKL, GCs have been shown to reduce the
production of OPG, the decoy receptor of RANKL, from
osteoblasts and/or osteocytes, which may aide GC-driven
osteoclastogenesis (47, 144, 162–165, 169, 170). Additionally,
administration of OPG was able to reduce GC-induced bone
resorption in calvarial organ culture (165) as well as prevent GC-
induced bone loss in rodents (116). Indeed, some studies suggest
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that the increase in the ratio between RANKL and OPG in bone
may be largely due to suppressed OPG rather than due to increased
RANKL (47, 144, 169). Other indirect contributors to GC-induced
bone resorption include macrophage colony-stimulating factor (M-
CSF): exposure of osteoblasts to pharmacological levels of GCs was
shown to induce the expression of M-CSF, which acts as an
essential factor for osteoclast differentiation (171).

In summary, GCs certainly exert direct effects on osteoclasts;
however, whether these direct effects contribute to the phenotype
of GC-induced bone loss remains controversial. In contrast, in
vivo and in vitro studies clearly demonstrate that GCs readily
induce osteoclast formation indirectly through upregulation of
pro-osteoclastogenic factors derived from cells of the osteoblast
lineage (Figure 1).
TARGETING OSTEOBLASTS AS A
THERAPEUTIC APPROACH FOR THE
MANAGEMENT OF GIO

As the mainstay of osteoporosis therapy anti-resorptive
bisphosphonates have been widely used in the therapy of GIO.
Generally, the use of bisphosphonate in GIO leads to an increase
in bone mineral density compared to placebo or calcium and
vitamin D supplements (15). Thus, three different
bisphosphonates are currently approved for the treatment of
GIO, namely risedronate (172, 173), alendronate (174) and
zoledronic acid (175). Zoledronic acid has been shown to be
superior to risedronate in GIO and postmenopausal osteoporosis
(175) and is generally considered the most potent
bisphosphonate. Although not an osteoanabolic therapy,
denosumab, a RANKL inhibitor, counteracts a key mechanism
of GCs in bone – the induction of RANKL release from
osteoblasts and osteocytes. Clinical studies showed a larger
increase in bone mineral density (BMD) during denosumab
therapy compared to risedronate confirming its superiority to
one of the bisphosphonates in GIO (176, 177). Unfortunately,
denosumab has not yet been evaluated against the most potent
bisphosphonate zoledronic acid in the context of GC use, but its
value in the treatment of GIO is undeniable.

While bisphosphonates and denosumab have been
successfully utilized to combat GIO, they only offset the GC-
induced activation of osteoclasts – which is of particular
importance during the initial stage of GC-therapy. However, as
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outlined above, bisphosphonates fail to address the suppression
of osteoblast and osteocyte function, which are a crucial part of
the pathogenesis of GIO. The development of targeted
osteoporosis therapies opens up the possibility of targeting the
mechanism underlying GIO more specifically.

Currently only one osteoanabolic agent, targeting bone
formation directly, is approved for the treatment of GIO. As a
parathyroid hormone (PTH) analog (1-34 PTH), teriparatide
primarily stimulates bone formation – even though bone
resorption is activated in response to teriparatide as well.
However, bone resorption is initiated much later than bone
formation resulting in an ‘anabolic window’, during which new
bone is formed (178). Mechanistically, as an anabolic therapy it
mitigates the GC-induced suppression of osteoblast (and
osteocyte) activity, which forms a key part of the mechanism
underpinning GIO. In the clinical setting, teriparatide has been
shown to increase BMD to a larger extent than risedronate (179)
and alendronate (180, 181) during GC exposure, thus
highlighting the key role of osteoanabolic therapy for GIO. At
this stage, no adequate comparison between teriparatide and
denosumab exists during GIO (182), hence, no conclusions may
be drawn regarding their relative potency in the context of
GC therapy.

Novel osteoanabolic therapies such as the PTH-related
protein analogue abaloparatide (183) and the anti-sclerostin
antibody romosozumab (184, 185), which have been approved
for the use in postmenopausal osteoporosis, have not yet been
evaluated in GIO. Given their osteoanabolic properties, they may
prove similarly effective as teriparatide.

In summary, all available pharmacological therapies are
effective in GIO, this includes bisphosphonates, denosumab as
well as teriparatide (Table 1). Therapies, which target the
molecular and cellular mechanisms of GCs in the skeleton
such as denosumab and teriparatide, have been shown to be
superior to bisphosphonates in GIO. Some (186) but not all (187)
guidelines reflect this by recommending the use of teriparatide in
severe cases of GIO or following the occurrence of fractures
under treatment with bisphosphonates.
SUMMARY

Glucocorticoids affect the three main cell types within the
skeleton – osteoblasts, osteocytes and osteoclasts – ultimately
leading to a loss of bone mass and bone quality as well as causing
TABLE 1 | Current and future pharmacological GIO therapy.

Drug Administration Mechanism of action Renal function Approval for GIO

Risedronate oral, 5 mg daily or 35 mg weekly anti-resorptive (bisphosphonate) avoid if GFR < 50 (35) mL/min/1.73 yes
Alendronate oral, 70 mg weekly anti-resorptive (bisphosphonate) avoid if GFR < 50 (35) mL/min/1.73 yes
Zoledronic acid i.v., 5 mg every 12 months anti-resorptive (bisphosphonate) avoid if GFR < 50 (35) mL/min/1.73 yes
Denosumab s.c., 60 mg every 6 months anti-resorptive (RANKL antibody) no adjustment yes
Teriparatide s.c., 20 µg daily osteo-anabolic [recombinant PTH (1-34)] no adjustment yes
Abaloparatide s.c., 80 µg daily osteo-anabolic [recombinant PTH (1-34)] no adjustment no
Romosozumab s.c., 210 mg every month osteo-anabolic (synthetic PTHrp analog) no adjustment no
March 2022 | Volume 1
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a substantial increase in fracture risk. Preclinical studies have
highlighted the key role of osteoblasts and osteocytes in the
pathogenesis of glucocorticoid-induced osteoporosis and
emerging clinical evidence supports the superiority of
osteoblast-targeted therapies. Future studies should develop
and evaluate therapeutic strategies that not only alleviate GC-
induced bone resorption but also prevent the GC-induced
damage to osteoblasts and osteocytes and activate bone
formation. Furthermore, novel aspects of GIO such as the role
of the skeletal vasculature ought to be explored in greater detail.
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