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of the 4-anilinoquin(az)oline
scaffold as epidermal growth
factor receptor (EGFR) inhibitors
for chordoma utilizing a toxicology
profiling assay platform
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The 4-anilinoquin(az)oline is a well-known kinase inhibitor scaffold incorporated in clinical inhibitors
including gefitinib, erlotinib, afatinib, and lapatinib, all of which have previously demonstrated
activity against chordoma cell lines in vitro. We screened a focused array of compounds based on the
4-anilinoquin(az)oline scaffold against both U-CH1 and the epidermal growth factor receptor (EGFR)
inhibitor resistant U-CH2. To prioritize the hit compounds for further development, we screened

the compound set in a multiparameter cell health toxicity assay. The de-risked compounds were
then screened against a wider panel of patient derived cell lines and demonstrated low micromolar
efficacy in cells. We also investigated the properties that gave rise to the toxophore markers,
including the structural and electronic features, while optimizing for EGFR in-cell target engagement.
These de-risked leads present a potential new therapeutic avenue for treatment of chordomas and
new chemical tools and probe compound 45 (UNC-CA359) to interrogate EGFR mediated disease
phenotypes.

Cancer is the leading cause of death worldwide, responsible for nearly 10 million deaths in the last year. Pro-
tein kinases have presented promising drug targets, with more than 70 inhibitors targeting the ATP binding site
of kinases approved for use in the clinic’. This promising treatment avenue is currently being explored to treat
chordomas using afatinib*.

Chordoma is an osseous cancer, contained within the spine and central nervous system, with invasive and
metastatic potential which is driven by the notochord transcription factor brachyury®. Treatment of chordoma
is challenging, with initial treatment focused on radical resection combined with proton beam therapy. Surgical
and chemotherapeutic options are limited, meaning recurrent or metastatic disease is often fatal>®.

Epidermal growth factor receptor (EGFR) is highly expressed in 40% of chordomas, and targeting EGFR has
been shown to be both effective in chordoma cell lines and murine xenograft models*”. Several quinazoline-
based clinical kinase inhibitors whose main target is EGFR have been shown to inhibit chordoma cell lines,
including gefitinib, erlotinib, afatinib and lapatinib (Fig. 1)*5-12,
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U-CH1-1C59 = 1.4 uM
U-CH2 - IC5¢ = 23 uM
EGFR in-cell - ICgy = <15 nM

U-CH1 - ICs0 = 5.1 uM
U-CH2 - ICg0 = 18 uM
EGFR in-cell - ICsg = 30 nM

Afatinib
U-CH1 - 1C50 = 0.10 pM
U-CH2 - IC5 = 6.4 pM
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Figure 1. Previously reported inhibitors of chordoma and EGFR.
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Scheme 1. General synthetic procedure.

While these drugs were designed to target EGFR, they show similar or higher affinity for several other kinases,
making them limited tools for direct interrogation of EGFR and other kinase biology'?>™”. They are also not effec-
tive at targeting some of the more resistant patient derived cell lines”!*!2. While exploring cyclin G associated
kinase (GAK) as a potential collateral target to treat chordoma, we identified a series of potent EGFR inhibitor
starting points based on the 4-anilinoquinazoline scaffold, exemplified by 1'*!%

Results

Our objectives are to simultaneously improve the chordoma cellular potency and compound preclinical safety
profile. Our strategy was to interrogate the structure activity relationships (SAR) of these literature starting points,
using our in-house GAK inhibitor knowledge and library, along with a safety risk estimation screen, to optimize
the 4-anilinoquin(az)oline scaffold'®-**. We initially synthesized and tested a panel of compounds based around
compound 1. We synthesized compounds 1-45 through nucleophilic aromatic displacement of 4-chloroquin(az)
olines (Scheme 1) to furnish the products in good overall yields (20-97%) in most cases. Several lower yielding
analogues included 10 (23%) and 16 (21%) both containing the trifluoromethyl quinazoline, and the 6,7-difluo-
roquinazoline analogue 6 (20%), all of which were consistent with previous reports'®*2,

We set about optimizing the cellular potency of compound 1 with a series of modifications, on both U-CH1
and U-CH2 chordoma cell lines. N-(3-ethynylphenyl)-6,7-dimethoxyquinazolin-4-amine (1) was previously
identified as a narrow spectrum inhibitor of EGFR with only two other off-targets (GAK and Receptor-interacting
serine/threonine-protein kinase 2 (RIPK2)) in a kinome wide screen'®. Compound 1 was shown to be a low
micromolar inhibitor of the U-CH1 cell line, consistent with our previous screen (Table 1)'*!2 The corresponding
6-methoxy 2 had a slight drop in U-CHI activity, while the unsubstituted analog 3 showed a substantial 25-fold
drop. The introduction of a 6-methyl 4 restored half the lost inhibition on U-CH1 but removed all inhibition on
U-CH2. Switching from a methyl to a fluorine 5 was equipotent; however, the 6,7-difluoro 6 doubled potency
against U-CH1 back to IC5,=6.8 uM while having no effect on U-CH2. The removal of the 7-fluoro and increas-
ing of the size of the halogen from chloro to iodo 7-9 increased potency from IC;y=25 uM to IC5y=8.7 uM
against U-CH1. The 6-trifluoromethyl 10 showed no improvement against U-CH1 but restored sub-100 uM
activity against U-CH2 at IC5, =42 uM.

Switching the 7-position back to the methoxy 11 yielded a compound with a potent activity profile against
both cell lines, for the first time, with an IC;,= <2 uM in both cases. Switching to a halogen at the 7-position,
from fluorine to iodine (12-15), significantly reduced activity against U-CH1 compared with 11, with no inhi-
bition activity at all (IC5,=>100 uM) on U-CH2. The 7-trifluoromethyl 16 showed some improvement against
U-CHI1 with an ICs;=12 pM and some inhibition of U-CH2 (ICs,=15 pM). The 6-cyano 17 and 7-cyano 18
substitutions demonstrated a sixfold reduction in inhibition of U-CH1 compared with 16. The 6-methylsulfone
19 showed little improvement. However, reverting to an electron donating substituent cyclizing the catechol first
with a methyl spacer 20 and then with an ethyl spacer 21 moved potency back toward single digit micromolar
IC;, values against U-CH1. Compound 21 had a similar inhibition profile to erlotinib on U-CHI, but while
erlotinib showed activity against U-CH2 (IC5,= 18 uM), 20 and 21 did not (IC5y=> 100 uM).

We then switched to the 3-cyanoquinoline scaffold, to evaluate if it was possible to increase the potency on
U-CH1 and U-CH2, as had been demonstrated previously'. The initial compound 4-((3-ethynylphenyl)amino)-
6,7-dimethoxyquinoline-3-carbonitrile (22) with the 6,7-dimethoxy substitution showed good inhibition against
U-CH1 with an IC5y=4.1 uM, and a weaker inhibition of U-CH2 (Table 2). Removal of the 7-methoxy to yield
compound 23 afforded a compound with a fivefold reduction in U-CH1 inhibition and no observed effect on
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Name R! R? ICs (uM)*

1 OMe OMe | 0.63 66

2 OMe H 1.4 47

3 H H 35 52

4 Me H 15 >100
5 F H 19 >100
6 F F 6.8 >100
7 Cl H 25 >100
8 Br H 16 >100
9 I H 8.7 >100
10 CF, H 21 2

11 H OMe |19 1.2
12 H F 41 >100
13 H Cl 21 >100
14 H Br 54 >100
15 H 1 17 >100
16 H CF; 12 15

17 H CN 65 >100
18 CN H 74 >100
19 SO,Me H 45 52
20 OCH,0 22 >100
21 OCH,CH,0 8.8 >100
Erlotinib | 6,7-(OCH,CH,0OMe), 5.1 18

Table 1. Initial screening of quinazolines against chordoma cell lines. *Cell viability assay (n=4).

U-CH2. The unsubstituted analogue 24 showed a slight reduction in potency against U-CH1 compared with 23.
Smaller 6-position halogen substitutions were less favorable; as the size of the halogen increased from fluoro to
iodo (25-28), so did the potency of the compound in both U-CH1 and U-CH2 cell lines. The 6-iodo substitution
28 was the most potent with U-CH1 IC5y=8.7 uM and U-CH2 IC;, = 14 uM. The 6-methylsulfone 29 had only
limited potency against both cell lines, while the 7-position halogens (30-32) showed no affect at all on either
cell line. However, switching back to the 7-methoxy 33 recovered activity to levels observed in 22.

We then selected a subset of the most potent compounds on U-CH1 and U-CH2, along with some struc-
turally diverse compounds (Table 3), to screen on four additional patient-derived chordoma cell lines (CH22,
UM-Chorl, U-CH12, and U-CH?7) and a human fibroblast cell line as a toxicity control (WS1)!®1224 In addition,
we ran an EGFR in-cell target engagement assay, measuring in-cell EGFR phosphorylation, using the human
epidermoid carcinoma cell line A431. This cell line endogenously expresses a high level of EGFR, and stimulation
of these cells with human epidermal growth factor (EGF) results in receptor tyrosine autophosphorylation®.

N-(3-ethynylphenyl)-6,7-difluoroquinazolin-4-amine (6) displayed weaker activity against EGFR in A431
cells (ICs,=12 uM), and no potency in the four additional patient-derived chordoma cell lines or WS1 control
(ICs50=>100 uM). The 6-iodo 9 was more potent against EGFR (IC5,=0.83 uM), but was still weak in the four
additional chordoma cell lines (IC5y= >100 pM) and WS1 (IC5,=98 uM). Similar results were observed for
7-methoxy 11 and 7-iodo 15. The 6-trifluoromethyl 16, while showing limited EGFR activity (ICs,=>20 uM),
displayed moderate activity against all four patient-derived chordoma cell lines, but this appeared to be driven by
non-specific toxicity (WS1, IC5,= 18 uM). The 7-cyano 17 was selected for structural diversity but was inactive
at the top concentration in all chordoma cell line assays (IC5,= >100 uM). The closing of the 6,7-dimethoxy to
form a 6-member ring 21 showed some activity against EGFR (ICs,=1.9 uM), but only weak activity on UM-
Chorl (ICsy=64 uM). Erlotinib performed consistently as previously described'®'?, with good potency against
EGFR (IC5,=0.030 pM), weak activity in four of the patient-derived chordoma cell lines, but also with similar
non-specific toxicity observed with compound 16 (IC5,=19 uM). Switching to the 3-cyanoquinoline scaffold,
4-((3-ethynylphenyl)amino)-6-iodoquinoline-3-carbonitrile (28) showed an improvement in potency in three
of the four chordoma cell lines: CH22 (IC5,=8.4 uM), UM-Chor1 (IC5,=6.9 uM), and U-CH12 (IC5,=7.7 uM),
with only moderate non-specific toxicity in the WS1 control cells (IC5, =34 uM) despite an eightfold reduction in
EGFR activity compared to erlotinib. The observed potency could be related to a target other than EGFR, as the
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U-CHI | U-CH2

Name |R! R? IC;, (nM)?
22 OMe |OMe |4.1 36
23 OMe H 20 >100
24 H H 34 >100
25 F H 23 >100
26 cl H 14 40
27 Br H 2 30
28 I H 8.7 14
29 SO,Me |H 92 52
30 H ca o |>100 |>100
31 H Br |>100 |>100
32 H I >100 | >100
33 H OMe |41 40

Table 2. Initial screening of 3-cyanoquinolines against chordoma cell lines. *Cell viability assay (n=4).

///©\NH .
x z
@CL
EGFR® \ CH22 \ UM-Chorl \ U-CH12 \ U-CH7 \ WS1
Name X R! R? IC5 (uM)*
6 N F F 12 >100 | >100 >100 >100 | >100
9 N I H 0.83 >100 | >100 >100 >100 |98
11 N H OMe |0.53 >100 >100 >100 95 88
15 N H 1 28 >100 | >100 >100 >100 | >100
16 N H CF, |>20 |80 31 7.5 63 18
17 N H CN >20 >100 >100 >100 >100 >100
21 N OCH,CH,0 1.9 >100 |64 >100 >100 | >100
Erlotinib | N 6,7-(OCH,CH,OMe), 030 |>100 |19 68 95 19
28 C-CN |1 H 25 8.4 69 7.7 >100 |34
32 C-CN |H 1 2.7 >100 | >100 >100 >100 | >100

Table 3. Investigation of screening hits across four additional patient-derived chordoma cell lines and WS1
control. *Cell viability assay (n=4). "ProQinase in-cell EGFR assay (n=1).

corresponding 7-iodo 32 has similar EGFR activity to 28, but was not potent in the patient-derived chordoma
lines or the WS1 control (IC5,= > 100 uM).

To prioritize further optimization, in addition to cellular potency, we utilized the AsedaSciences® SYSTEM-
ETRIC® Cell Health Screen. This live cell flow cytometry (FC) screen was developed to assess human safety risk
for candidate pharmaceutical small molecules at the early hit-to-lead stage of development?. The screen works
by estimating the risk using a supervised machine learning (ML) classifier to assess a multiparametric cellular
stress phenotype, produced by the test compound, relative to a training set of known compounds (Table S1).
This screen has been designed for early pipeline risk estimation regardless of pharmaceutical class/disease type,
so it uses HL60 as the reporter cell line. While HL60 is not a direct chordoma model, it exhibits characteristics
of practical importance for an automated flow cytometry platform assessing cell stress: suspension culture and
optimal dynamic range with respect to the required physiological reporting dyes®.

The ML classifier was trained with 300 historically known compounds (on market or withdrawn drugs,
research compounds, etc.), which were divided into two outcome classes based upon literature, clinical trials,
and market histories where applicable?. This external curation informed an outcome of “high-risk” or “low-risk”.
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Cell Health Toxicity Profile*®
Name X R! R?
CM CMI ROS GSH NMI1 CC NMI2 MMP | CHI
1 N OMe OMe 0.11 0.32 0.18 0.47 0.41 0.39 0.41
6 N F F 0.34 . 0.11 0.26 | 0.26
9 N I H 0.11
11 N H OMe
15 N H 1
16 N H CF;
17 N H CN
21 N OCH,CH,O
Erlotinib N 6,7-(OCH,CH,OMe),
28 C-CN I H
32 C-CN H 1

Table 4. Toxicity profiling of the initial screening hits. *Abbreviations from columns left to right. CM: Cell
morphology; CMI: Cell membrane integrity; ROS: Reactive superoxide species; GSH: Glutathione; NMI1:
Nuclear membrane integrity 1; CC: Cell Cycle; NMI2: Nuclear membrane integrity 2; MMP: Mitochondrial
membrane depolarization; CHI: Cell Health Index. bAlln=2.

All 300 compounds were also processed through the automated FC screen, populating each of the two classes
with frequency distributions of empirical cell-based phenotypes.

To estimate human safety risk for an unknown compound, the ML classifier assesses the similarity of the test
compound’s cell-based phenotype to the distributions of phenotypes in the two outcome classes. The final quan-
titative score, or Cell Health Index (CHI), is the probability (0-1) that the test compound’s phenotype belongs
in the distribution observed for the high-risk outcome class in the training set (Table 4). Phenotypes are derived
from twelve FC detection parameters, including light scatter and a series of fluorescent physiological reporter
dyes, that track cell stress-related endpoints.

To produce the Cell Health Index, the ML classifier uses all twelve FC parameters simultaneously in a mul-
tidimensional logistic regression model, so the CHI contains the most predictive power. In addition to the Cell
Health Index, Table 4 also reports probability scores for eight cell stress-related endpoints. These scores are pro-
duced individually by passing information to the ML classifier relating to parameters that inform that endpoint.
For example, to produce the cell morphology (CM) score, the ML classifier only uses the FC detection parameters
for forward scatter (informing change in cell diameter) and side scatter (informing change in optical granular-
ity of the cell) to inform the model. Together, these eight endpoints provide a “biological fingerprint’, allowing
assessment of the degree to which SAR series members behave differently across endpoints.

The starting point N-(3-ethynylphenyl)-6,7-dimethoxyquinazolin-4-amine (1) produced an intermediate risk
estimate, consistent with the WS1 toxicity counter screening'? The toxicity is potentially driven by cell morphol-
ogy changes, but this is currently unclear. Compounds 6, 9, 11, 17 and erlotinib were consistent and found to
be non-toxic in both assays; in contrast liabilities were consistently found in 16 and 21. The 7-iodo derivatives
15, 28 and 32 all performed poorly in the cell health secondary screening but showed no toxicity in the initial
WS1 (IC5=>100 pM) counter screen. Interestingly, the 6-iodo derivative 9, appears to be more tolerated in this
assay (for the complete data set see Tables S2-S3).

In order to optimize the scaffold further, the 6- and 7-positions on the quinazoline ring were fixed, and the
aniline portion was modulated with different halogens (Table 5). The encouraging data across the panel of patient
derived cell lines and toxicity profiling of the 6-iodo compound 9 meant the first set of analogues focused on
small changes of the aniline on 9. Shielding the anilino N-H group with a fluoro at the distal ortho-position 34,
maintained EGFR activity, but decreased U-CHI1 inhibition by fourfold compared with 9. Moving the fluoro to
the proximal ortho-position 35 between the acetylene and quinazoline recovered the activity on U-CHI. The
para-fluoro 36 was a threefold improvement in U-CH1 inhibition with EGFR activity maintained. Interestingly,
switching to a para-chloro 37 reduced activity on U-CH1 by 11-fold, however, demonstrated relatively high
activity on the difficult to treat U-CH2 cell line>'*'?, with an IC5,=5.0 pM compared with no activity from the
rest of the mini-series (9, 34-36).

The encouraging results with the 6-iodoquinazoline led to the exploration of the 7-iodo based around 15. A
fluoro at the distal ortho-position 38 showed no overall improvement, whereas in the proximal ortho-position
39 the fluoro improved potency on U-CH1 by sixfold (ICs5,=2.4 uM). Compound 39 also showed activity on the
difficult to treat U-CH2 cell line (ICs, = 15 uM)*'*!2. The para-fluoro analog 40 showed no activity on U-CH1 or
U-CH2, whereas the para-chloro derivative 41 demonstrated moderate inhibition on both U-CH1 (IC5,=9.1 uM)
and U-CH2 (ICjy =16 uM) with low single digit micromolar EGFR inhibition (IC5,=3.7 uM).

The 6,7-dimethoxy substitution present in 1 has demonstrated potent inhibition on U-CHI below 1 uM,
suggesting that this substitution pattern may yield a more potent compound across multiple cell lines. The distal
ortho-fluoro 42 reduced activity on the U-CH1 by tenfold compared to 1, whereas there was a threefold increase
on U-CH2. This was despite 42 showing a tenfold decrease in in-cell EGFR activity. The proximal ortho-fluoro
between the meta-acetylene and quinazoline ring system 43 demonstrated a threefold increase across U-CH1 and
U-CH2 with EGFR activity increased by fivefold. The para-substituted analogues 44 and 45 both lost activity on
U-CH1, but maintained some activity on U-CH2, and EGFR inhibition was maintained. The loss of inhibition
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RS R3
//ﬁR"ENH .
NTX
QN/ R?
U-CHI1 \ U-CH2 \ EGER®
Name |R' |R® |R® [R' |R® |ICs(uM)*
9 1 H H H H 8.7 >100 0.83
34 I H F |H |H |27 >100 | 0.76
35 I H H [F [H |89 >100 |19
36 1 H H H F 2.7 >100 2.7
37 1 H H [H |[a |31 5.0 2.0
15 H 1 H [H |H |17 >100 |28
38 H 1 F H H 15 >100 52
39 H I H F H 2.4 15 1.7
40 H 1 H [H |[F |>100 [>100 [36
41 H I H [H |a |1 16 37
1 OMe |OMe |H |H |H |063 66 0.019
12 OMe |OMe |F |H |H |67 20 0.29
43 OMe |OMe |H |F |H |20 7.1 0.060
44 OMe |OMe |H |H |F |[>100 |22 0.030
45 OMe |OMe |H H Cl |>100 35 0.018

Table 5. Optimisation of 9, 15 and 1 on EGFR and UCH-1 and UCH-2 chordoma cell lines. *Cell viability
assay (n=4). *ProQinase in-cell EGFR assay (n=1).

on U-CH1 for 41, 44 and 45 is not easily explained and highlights the degree to which target-ligand interactions
in cells may be governed by energetic phenomena that classical models inadequately address®.

In order to better characterize these optimized compounds 34-45, we screened them against the four addi-
tional patient-derived chordoma cell lines (CH22, UM-Chor1, U-CH12 and U-CH?7) and WS1 as a nonspecific
cytotoxicity control (Table 6). The 6-iodo analogues 34-37 demonstrated no inhibition against any of the four
additional cell lines. The same was observed for the 7-iodo fluorinated analogues 38-40, with the inhibition
of 39 likely driven by nonspecific toxicity (WS1, ICs,=40 uM). However, the 6-iodoquinazoline, para-chloro
aniline analogue 41 showed some of the most potent inhibition to date on CH22 (IC5,=0.48 uM) and U-CH12
(IC5,=0.96 uM), along with good inhibition on the other two cell lines UM-Chorl (IC5,=25 uM) and U-CH7
(IC50=8.0 uM). There was some observed toxicity on WS1 (IC5,=36 uM), but the ratios of inhibition to toxic-
ity are 75-fold in the best case (CH-22/WS1). The 6,7-dimethoxy substitution analogues 42-45 showed good
potential against the four cell lines but also showed some nonspecific toxicity in some cases. Compound 42
demonstrated good inhibition of CH22 (ICs,=4.2 uM) but showed evidence of some non-specific toxicity (WSI,
IC5,=20 uM). The same was observed for 43, with good inhibition of CH22 (IC5y=5.8 uM) but some toxicity
(WS1, IC5p =12 puM). The para-fluoro analogue 44 demonstrated excellent potency, but this was unfortunately
likely driven by nonspecific toxicity (WS1, IC5,=0.33 uM). However, this nonspecific toxicity liability was able
to be modulated with the para-chloro analogue 45 that showed potent inhibition on CH22 (IC5,=1.2 uM) and
U-CH12 (IC5=3.0 uM) with no observed toxicity (WS1, IC5,=>100 puM).

To further understand the toxicity liabilities in this scaffold we screened the optimized analogues 34-45 on
the toxicity profiling platform and compared the results to some existing clinical compounds that have activity
against chordoma (Table 7). N-(3-ethynylphenyl)-6-iodoquinazolin-4-amine (9) performed well in the toxicity
profile platform, while a fluoro substitution in the distal ortho-position 34 and a para-position chloro 37 were
not well tolerated. However, other substitutions, such as an ortho-position fluoro 35 and a para-position fluoro
on the same core, were tolerated. Interestingly, moving the iodo from the 6-position 9 to the 7-postion 15 led
to an increase in toxicity risk estimation in the assay. However, the modifications to the pendant aniline 38-41
were well tolerated, demonstrating that trends cannot always be easily defined. The original starting point 1 was
also tolerated but near the middle of the Cell Health Index at 0.41. The modifications 42-45 were consistent with
the profile of 1 showing an acceptable toxicity window consistent with the WS1 data. Erlotinib demonstrates
low-to-intermediate risk for toxicity, but other relevant literature inhibitors show high toxicity risk, including
gefitinib and tesevatinib®-°.

We modelled the progress of compounds in EGFR, using the full EGFR kinase domain (Fig. 2) to understand
how the compounds orientate in the ATP binding site using erlotinib and gefitinib as a guide'>*!. We noted that
each compound, while having a similar binding mode in the active site, presented the quinazoline rings system
at a slightly different angle. Interestingly, when the aniline substituent is the same, this appeared to be solely
driven by the solvent exposed 6,7-position. The lead compounds 41 and 45 have the same binding mode as the
previous analogues (Figure S1). The key difference is that they are better able to displace the high energy water
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CH22 |UM-Chorl |U-CHI2 |U-CH7 |Wsl
Name | IC;, (uM)?
9 >100 | >100 >100 >100 |98
34 >100 | >100 >100 >100 | >100
35 >100 | >100 >100 >100 |85
36 >100 | >100 >100 >100 | >100
37 >100 | >100 >100 >100 | >100
15 >100 | >100 >100 >100 | >100
38 >100 | >100 >100 >100 | >100
39 40 62 33 49 40
40 50 >100 >100 >100 | >100
41 048 |25 0.96 8.0 36
1 >100 |28 >100 23 15
12 42 >100 >100 >100 |20
43 5.8 >100 >100 57 12
44 030 |72 0.87 0.68 033
45 12 60 3.0 74 >100

Table 6. Optimized derivatives of 1, 9 and 15 across four additional patient-derived chordoma cell lines and
WSI control. *cell viability assay (n=4).

Cell Health Toxicity Profile*®
GSH NMI1 CC

Name

ROS

9
34
35
36
37
15
38
39
40
41
1
42
43
44
45
Erlotinib
Gefitinib
Tesevatinib
Afatinib

0.18
0.37

Lapatinib

Table 7. Optimization of 1,9 and 15 on EGFR and UCH-1 and UCH-2 chordoma cells lines. *Abbreviations
for columns from left to right. CM: Cell morphology; CMI: Cell membrane integrity; ROS: Reactive superoxide
species; GSH: Glutathione; NMI1: Nuclear membrane integrity 1; CC: Cell Cycle; NMI2: Nuclear membrane
integrity 2; MMP: Mitochondrial membrane depolarization; CHI: Cell Health Index. ball n=2.

present in the hydrophobic part of the ATP binding site (Fig. 3)!***. We then did a series of one microsecond
molecular dynamic simulations on 41 and 45, using erlotinib as a control, and found stable binding that further
supported our water network theory (Figures S2-S3).

To understand the selectivity profile across the kinome we screened 41 and 45 using radiometric protein
kinase assays (**PanQinase® activity assay) to measure the kinase activity of the 320 protein kinases at two con-
centrations (10 uM and 1 uM) (Table S6). Compound 41 only inhibited EGFR at 1 uM (>50%), while at 10 uM
(>50%), several other kinases in addition to EGFR were moderately inhibited including Aurora-B, ERBB4,
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Figure 2. Docking of compounds in the EGFR ATP binding site (PDB:1M17): (A) erlotinib, (B) gefitinib, (C)
1, (D) 9, (E) 15, (F) 17 showing key interactions with the hinge and hydrophobic pocket, along with the overall
orientation of the quinazoline ring system.

Figure 3. WaterMap simulation of Docking of compounds in the EGFR ATP binding site (PDB:1M17): (A)
erlotinib, (B) 41 and (C) 45. Red sphere shows locations of hight energy hydration site, which is replaced upon
ligand binding. Light blue spheres behind the quinazoline scaffold are showing favourable hydration sites at back
pocket are acting as bridge between quinazoline ring nitrogen and polar protein groups.

MAP4K4, PRKG2 and SLK. Compound 45 had a similar profile with only EGFR potently inhibited at 1 uM
(>50%), with some moderate inhibition of ERBB2 and ERBB4. The higher concentration of 10 uM (>50%)
affected several additional kinases in addition to EGFR including Aurora-C, DDR2, EPHA6, EPHB2, LCK,
MAP4K4, MAP4K5, MINK1, MKNK1, MKNK?2, NIK, PIM1, RIPK2, SLK, and VEGFR2. Beyond the kinases
that can be screened in this assay format, GAK'?°, NLK'>?°, STK10 also known as LOK*? and ADCK3 also
known as COQ8A!*2%*2 could also be potentially inhibited by this scaffold.

Discussion

Chordoma tumors are challenging to effectively treat. The integrated nature of the tumor, combined with slow
growth, creates a uniquely complex situation where standard treatment options are not well suited. These fac-
tors, combined with highly variable presentation and susceptibility to treatment, prevent a readily available and
generalizable therapeutic approach. There have been a number of clinical trials that have evaluated EGFR inhibi-
tors to treat chordomas, but treatment outcomes are highly variable, and molecular mechanisms underlying this
observed variability are not well understood”!.
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Increased EGFR inhibition generally increased the efficiency of inhibition on the chordoma cell lines. This
further emphasizes the empirical observations in the literature and clinic. There are a number of reports that
support EFGR’s involvement in chordoma®!®!2. This was supported by the observation that 6, 11, 21, 28 and
erlotinib all had single digit micromolar inhibition on U-CH1 and good EGFR activity (Tables 1, 2, 3). However,
when screening on a broader range of 5 cell lines, 6, 11, 21, 28 each showed limited efficacy. This was the case
despite both 6-iodo 9 and 7-methoxy 11 displaying very potent in-cell activity against EGFR (IC5,=0.83 uM and
0.53 uM, respectively). However, in later optimized derivatives (34-45), more correspondence between EGFR and
cell line inhibition was observed (Tables 5, 6). There were still exceptions, including 44 and lead compound 45,
both showing potent EGFR inhibition (IC5,= < 100 nM) but no activity against U-CHI1 (ICs,=> 100 uM), again
highlighting the complexity of chordoma biology. This was despite 45 showing exciting results across all other
cell lines with limited toxicity on WS1 and potent in-cell activity against EGFR, with ICs,=0.018 pM. U-CH2
proved difficult to inhibit with the most potent compound 11 already known'?, and even the lead compounds
presented here, 41 and 45, only moderately inhibited U-CH2 (IC5,= 16 pM and 35 pM, respectively). Compounds
41 and 45 both have good inhibition across the remaining chordoma cell lines screened. This activity, combined
with limited toxicity in WS1 (IC5,=36 uM and > 100 uM, respectively), support from the flow cytometry toxic-
ity assay and a very narrow kinome spectrum at 1 uM, are all desirable characteristics for a lead compound.
Compounds 41 and 45 not only have potent inhibition of EGFR, and good in-cell target engagement (IC5,=3.7
and 0.018 uM, respectively), they also appear to have stronger retention in the EGFR binding site than erlotinib
via MD simulation (Figure S1).

The two lead compounds 41 and 45 are potent narrow spectrum EGFR inhibitors that provide exciting start-
ing points for further optimization towards a potenital clinical compound to combat chordoma. Compound 45
(UNC-CA-359) is a probe quality compound for EGFR, fulfilling several of the following criteria: (1) in vitro
biochemical IC5=<50 nM, (2) 2 30-fold selectivity relative to other kinases in a large assay panel, and (3) cellular
activity or target engagement IC5o=<1 uM".

Conclusion

This screening and optimization effort has produced a series of useful tools for further interrogation of EGFR
biology, and more specifically, chordoma inhibitor development. The lead compounds 41 and 45 (UNC-CA359)
both show very narrow kinome profiles and excellent activities across an array of patient derived chordoma cell
lines. This is a potentially exciting step forward for a disease with a poor clinical prognosis.

Experimental methods

Biology and screening. Cell culture method. Chordoma cell lines were cultured as described
previously'®%333_ Briefly, U-CHI1 and U-CH2 cell lines were cultured in 4:1 IMDM:RPMI medium supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin in gel-coated flasks. The WS1 cell
line (ATCC:CRL-1502) was cultured in DMEM medium supplemented with 10% FBS and 1% penicillin/strep-
tomycin. CH22, UM-Chorl, U-CH12, and U-CH?7 cell lines were cultured in RPMI medium supplemented with
10% FBS and 1% penicillin/streptomycin. The cell lines all undergo regular mycoplasma screening’.

Cell viability assays. ~Cells were seeded in 384 well plates and were treated with test compound in quadrupli-
cate 24 h after plating. Cell viability was assessed at 72 h using alamarBlue (ThermoFisher, USA). Fluorescence
was measured using a Tecan Infinite 200 PRO plate reader with excitation at 535 nm and emission at 590 nm.
ICs, values were determined by four-parameter nonlinear regression analyses using GraphPad Prism™ version 8
software (San Diego, CA).

Computational molecular modelling. Computational modelling was performed using Schrédinger
Maestro software.

Protein preparation. Prior to docking studies, the selected x-ray structure of EGFR complexed with 4-anilino-
quinazoline inhibitor erlotinib (PDB:1M17)*' was downloaded from RCSB, pre-processed and minimized using
the protein preparation wizard tool of Schrodinger Suite 2020-4 (Protein Preparation Wizard uses modules:
Epik; Impact and Prime, Schrodinger, LLC, New York, NY, 2020). Structures of small molecule ligands were
parametrized and minimized using LigPrep module (LigPrep, Schrodinger, LLC, New York, NY, 2020) using
OPLS3e force field®.

Molecular docking studies. Docking was computed using Induced Fit Docking workflow of Schrodinger
employing SP-setting for Glide docking (Glide, Schrodinger, LLC, New York, NY, 2020) and side chains 5 A
from initiative ligand poses were consider for conformational refinement with Prime module. At both stages of
docking hydrogen bond was required to hinge amine of Met769. Graphical illustrations are made using PyYMOL
Molecular Graphics System, Version 2.4.1. Schrodinger, LLC.

Hydration site analysis. Schrodinger suite 2020-4 WaterMap (WaterMap, Schrédinger, LLC, New York, NY,
2020) was used to evaluate the hydrations sites replaced upon ligand binding?>***. WaterMap links molecular
dynamics (MD) simulations with statistical thermodynamic analysis of water molecules within a protein struc-
ture. Water molecules were analyzed within 6 A from the docked ligand, and the 2 ns simulation was conducted
with OPLS3e force field*%%.
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Molecular dynamics. simulations were carried out using Schrodinger Desmond (Schrodinger Release 2020-
2: Desmond Molecular Dynamics System, D. E. Shaw Research, Maestro-Desmond Interoperability Tools,
Schrédinger, New York, NY, 2020). Selected favorable Induced fit docking poses of corresponding EGFR inhibi-
tors were selected as template structures. Prior to simulation set up each kinase-inhibitor complex structure was
first minimized using Protein preparation wizard of Schrodinger with default heavy atom rmsd constraint of
0.3 A and OPLS3e force field. In Desmond system builder the orthorhombic periodic the system was created,
and it was solvated using TIP3 waters and 0.1 M NaCl- salt buffer. At the beginning of the simulation, the sys-
tem was subjected to default relaxation protocol of Desmond and heated up to simulation temperature of 300 K.
Unconstrained 1 s simulations were run using NPT protocol at temperature of 300 K, pressure of 1.01325 bar,
Noe-Hoover thermostat and timestep of 2 fs. Trajectories were visually examined to see whether docking poses
are stable, and interactions remain along the 1 s. The numerical analyzes were calculated in assistance of simula-
tion quality analysis and simulation event analysis tools.

Flow cytometry toxicity profiling. AsedaSciences SYSTEMETRIC Cell Health Screen.
1. Physical execution summary

In a 384-well platform, HL60 cells were exposed to a 10-step, 3 x dilution series of each test compound
(5 nM-100 uM) for 4 h at 37 °C with 5% CO,. Each dilution series was screened in duplicate, occupying a
total of 20 wells, allowing 16 test compounds to be assayed per plate. Each row contained one positive and one
negative control well, for a total of 16 replicate positive/negative control pairs on each assay plate. Compound
formatting, cell deposition, and dye application were performed robotically so that final assay conditions com-
prised 100,000 cells in a 40 puL volume. After the 4 h compound exposure, cells were immediately stained with
a panel of fluorescent dyes that report physiological signatures of both mitochondrial dysfunction and gross
cell stress. Fluorescence and forward/side-scatter data were collected using automated FC with no gating. FC
data are processed by an automated algorithm for producing quality control measures and ML classification of
compound phenotypes.

2. HL6O cell culture production

HL60 cells were produced as suspension cultures in glass 850 cm? roller bottles with vented caps, at 1 RPM, 5%
CO,, and 37 °C. Culture medium was RPMI 1640 without glucose, supplemented with 10 mM galactose and 10%
dialyzed heat-inactivated FBS (Atlanta Biologicals). Culture density was maintained at or below 1 x 10° cells/mL.
Standard protocol for the Cell Health Screen is that a new production lineage of HL60 cells is started each month,
and a crossover screen is performed in which the old and new production lineages are compared by using a set
of 16 reference compounds to produce a known set of stress phenotypes (see supporting information). In this
way, variation of screen performance is minimized by producing all screening cell populations within a narrow
range of passage numbers, each checked for consistency of phenotypic performance with reference compounds.
This process was performed prior to using cells to produce data for this study.

3. Test compound format, cell exposure, and staining

All compound formatting, cell exposure, and staining with reporter dyes was performed in this study accord-
ing to a standard protocol for the Cell Health Screen, which is described as follows. Compounds were format-
ted in groups of 16, with DMSO blanks loaded in unused screen positions for any smaller compound groups
required to finish the complete study set. Each set of 16 test compounds was formatted in two replicate 384-well
plates (Eppendorf Protein LoBind®, catalog number 951040589) for assays with two subsets of fluorescent dyes
(Spectral overlap and DMSO limitation prevent simultaneous use of the complete dye panel in a single plate.).
Compounds in these replicate plates were identical except for the positive controls, which were chosen to produce
an optimal response within each subset of fluorescent reporter dyes. Test compound dilution series and controls
were formatted on a Biomek® 4000. Each compound was formatted as a 10-step, 3 x dilution series, in duplicate,
on each of the two plates. Negative control wells contained the diluent used for both the test compound dilution
series and positive controls. The diluent was RPMI 1640 (supplemented as above) with final working concentra-
tion of DMSO normalized to 1% in all wells. The positive and negative controls were distributed to plate wells
from a single initial reservoir of each control mixture. Final assay concentration range for test compounds was
5nM-100 uM. Prior to cell deposition, assay plates containing formatted compounds were sealed and stored at
room temperature, protected from light, for 2 h, to allow binding equilibrium between serum components and
test compounds. A Biomek NX (Beckman Coulter) was used to deposit cells in all wells, at a density of 2.5 x 10°
cells/mL, in a final assay volume of 40 pL per well (approximately 100,000 cells per well). After cell deposition,
each assay plate was sealed with breathable plate sealer, shaken at 2200 RPM for 10 s (Illumina® High-speed
microplate shaker), and incubated for 4 h at 37 °C with 5% CO,.

3a. First fluorescent dye mix staining conditions

The following protocol was applied to the first plate in each assay plate pair, inclusive of all compounds in this
study. Dye mix buffer was 1 x PBS with 4% FBS, filter sterilized. The dye set consisted of Calcein AM, SYTOX™
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Red, MitoSOX™ Red, and Monobromobimane (Life Technologies catalog numbers C1430, S34859, M36008, and
M20381, respectively). Dye concentrations were previously optimized, during the screen prototyping phase, to
produce maximum dynamic range between positive and negative control wells. Prior to deposition of dye mix,
the assay plate was removed from its 4-h incubation, and cells were gently pelleted at 300xg for 2 min. A Biomek
NXP? (Beckman Coulter) was then used to aspirate 20 pL of each well volume, after which 20 pL of dye mix was
deposited in all wells. After dye deposition, the plate was re-sealed with its breathable plate sealer, shaken 2 x at
2200 RPM for 5 s each time (1 s interval), and incubated for 10 min at 37 °C with 5% CO,. The plate was then
rapidly cooled to room temperature for 1 min in a shallow water bath, after which acquisition of flow cytometry
data was started immediately.

3b.  Second fluorescent dye mix staining conditions

The following protocol was applied to the second plate in each assay plate pair, inclusive of all compounds
in this study. Dye mix buffer was 1xPBS with 4% FBS, filter sterilized. The dye set consisted of JC-9, propid-
ium iodide, and Vybrant® DyeCycle™ Violet (Life Technologies catalog numbers D22421, P3566, and V35003,
respectively). Dye concentrations were previously optimized, during the screen prototyping phase, to produce
maximum dynamic range between positive and negative control wells. Cell pelleting and dye deposition were
performed as above, in 3a. After dye deposition, the plate was re-sealed with its breathable plate sealer, shaken
2 xat 2200 RPM for 5 s each time (1 s interval), and incubated for 30 min at 37 °C with 5% CO,. The plate was
then allowed to sit at room temperature for 15 min, protected from light. Acquisition of flow cytometry data was
started immediately after this 15-min period.

4. Acquisition of flow cytometry data

FC data were acquired with a CyAn™ ADP flow cytometer (Beckman Coulter) with automated sampling
performed by a HyperCyt® autosampler (Intellicyt). Autosampler settings were optimized to aspirate > 10,000
cells per well. As described in section “Discussion”, the complete set of fluorescent dyes was applied as two non-
overlapping mixtures on replicate assay plates. Therefore, two separate FC acquisition protocols with different
sets of detection channels were used. Note that all channels were acquired with no gating. Triggering was on
Forward Scatter with Threshold =5%. Acquisition channel settings in Summit (version 4.3) for these two pro-
tocols are reported in Bieberich et al.?®.

5. Data processing and analysis

All well-specific FC data and matching plate map files were transferred to an EC2 server instance on Amazon
Web Services (AWS). An automated algorithm converts the raw data to risk scores for each compound in two
stages:

5a. Feature reduction

For each test each compound, all 12 ungated FC detection parameters were converted to a feature vector as
follows. For each of the 10 concentration steps in a test compound dilution series, quadratic form (QF) distance
was calculated between the empirical distribution of an FC detection parameter and that same parameter in the
negative control®. This effectively quantitates the amount of change, in test cells relative to the negative control
cells, that each concentration of the test compound caused in one of the 12 FC detection channels. For each FC
detection parameter, the amount of change between each test well and the negative control was thus converted to
a dose-response curve of QF distance values. The same process was executed for all 12 FC detection parameters,
after which each of the 12 QF distance value curves was further reduced to two values: the point of the maximum
rate of change and the range within which change occurs®. These two feature values for each FC parameter were
then assembled into a vector representing all 12 FC parameters. This vector serves as the quantitative digital
phenotype for the test compound, to be used in subsequent ML classification?.

5b.  Machine learning classification

Risk scores were produced for test compounds with an ML classifier employing supervised learning, with a
multidimensional logistic model. The classifier was trained on a set of 300 known compounds drawn from on-
market pharmaceuticals, withdrawn drugs, research compounds, and a few industrial/agricultural compounds
(representative set shown in Table S1). First, all training set compounds were assigned to one of two binary out-
come classes: the “yes” (expectation of high cell stress) or “no” class. This assignment was based upon manually
curated external information from the scientific literature, clinical trial results, and commercial histories (where
applicable). Each training compound was also screened to produce an empirical phenotypic feature vector, as
described above. In this way, each of the two outcome classes in the training set was populated with an empirical
distribution of cell-stress phenotypes from the FC screen. With these two data types attached to each training
compound, historical outcome and empirical cellular phenotype, the goal of classifier training was to quantify
the dependence of class membership on phenotype. This is a classic problem for an optimized logistic regres-
sion model. The classifier was trained by repeated cross-validation. Using the two training outcome classes, the
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logistic model optimization process sought the most parsimonious model allowing for maximum separation of
the two populations of phenotypes. The optimally fit model then became the classification tool, allowing calcula-
tion of the probability that a feature vector, from any compound, could be assigned to the “yes” (high cell stress)
class. Subsequently, for any test compound, the final risk score, or Cell Health Index (CHI), was the probability
(maximum likelihood) with which the test compound’s phenotypic feature vector could be assigned to the “yes”
class defined by the training set. In addition, a series of lower-dimensional classifiers were trained on the same
training set, calculating the probability of “yes” class assignment if only data for specific endpoints were con-
sidered. For example, the two FC detection parameters forward-scatter and side-scatter, from the 488 nm laser,
were input to the classifier to produce the score called “cell morphology” (CM). These endpoint classifications
produced a “biological fingerprint” of scores that can be interpreted as indicating relative contributions of each
endpoint to the final multiparameter CHI score. However, note that the predictivity of the individual endpoints
is not assumed to be equal, among themselves or to the CHI.

Chemistry. General procedure for the synthesis of 4-anilinoquin(az)olines. 4-Chloroquin(az)oline deriva-
tive (1.0 eq.), aniline (1.1 eq.) were suspended in ethanol (10 mL) and refluxed for 18 h. The crude mixture was
purified by flash chromatography using EtOAc:hexane followed by 1-5% methanol in EtOAc. After solvent re-
moval under reduced pressure, the product was obtained as a free following solid or recrystallized from ethanol/
water. Compounds (1-45) were prepared as previously reported and were consistent with previous reports?.
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