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Photonic unsupervised learning variational
autoencoder for high-throughput and low-latency
image transmission
Yitong Chen1,2†, Tiankuang Zhou1,2†, Jiamin Wu1,2,3, Hui Qiao1,2, Xing Lin2,3,4*, Lu Fang2,3,4*,
Qionghai Dai1,2,3*

Following the explosive growth of global data, there is an ever-increasing demand for high-throughput process-
ing in image transmission systems. However, existing methods mainly rely on electronic circuits, which severely
limits the transmission throughput. Here, we propose an end-to-end all-optical variational autoencoder, named
photonic encoder-decoder (PED), which maps the physical system of image transmission into an optical gener-
ative neural network. By modeling the transmission noises as the variation in optical latent space, the PED es-
tablishes a large-scale high-throughput unsupervised optical computing framework that integrates main
computations in image transmission, including compression, encryption, and error correction to the optical
domain. It reduces the system latency of computation by more than four orders of magnitude compared
with the state-of-the-art devices and transmission error ratio by 57% than on-off keying. Our work points to
the direction for a wide range of artificial intelligence–based physical system designs and next-generation
communications.
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INTRODUCTION
Because of the prevailing development of intelligent society, the
transmission of images becomes a fundamental demand in
various fields in daily life (1–3). For example, an instant play of
one single Blu-ray movie requires a transmission throughput of
several gigabits per second. The transmission links require satisfy-
ing the throughput of a large number of such terminals simultane-
ously, which brings extreme challenges for image transmission (4–
7). In addition, because image transmission usually requires high
throughput and visualization quality, pre- and postprocessing,
such as compression and error correction with large operation
numbers are essential in image transmission (8–10).
However, although nowadays more than 95% of digital informa-

tion globally is transmitted through optical fibers (11), image pro-
cessing remains to base themselves mainly on electronic processors
(12, 13). For instance, in an optical fiber communication (OFC)
system for image transmission, it includes preprocessing (compres-
sion, encryption, and antinoise encoding), electro-optic modula-
tion (EOM), transmission, optical-to-electronic conversion
(OEC), and postprocessing (decompression, decryption, and error
correction decoding) to reconstruct messages from the received
signals (14). Different modulation and demodulation schemes, in-
cluding pulse amplitude modulation (PAM), phase-shift keying,
and on-off keying (OOK), are used to encode and decode the
digital signal. The EOM and OEC in an OFC system are usually
done by Mach-Zehnder modulators and photodetectors, while the
pre- and postprocessing are mostly implemented with digital signal

processors (5, 6, 15). Processing the transmitted massive optical
image signals, such as encryption and compression, has placed crit-
ical burdens on current electronic computing platforms. The gap in
the operating frequency between the state-of-the-art electronic cir-
cuits and the fiber transmission lines is orders of magnitude due to
the limited drift velocity of electrons, therefore becoming one of the
most time-consuming parts in high-throughput transmission (4, 7,
16–18).
The recent surge of intelligent photonic computing is considered

promising to provide a solution to overcome the electronic bottle-
neck by processing the images directly in the photonic domain (19–
23). Diffractive neural networks (24, 25), coherent nanophotonic
circuits (26), convolutional accelerators (27, 28), fiber computing
(29–31), and other optoelectronic devices (32–36) successfully
realize parallel photonic neural networks and increase the compu-
tational efficiency substantially. However, the existing all-optical
neural networks are mainly focused on classification tasks, for
example, the recognition of handwritten digits and letters. The pro-
cessing in image transmission requires not only feature extraction
and image clustering but also reconstruction after compression and
encryption. The recent development of electronic generativemodels
has proved their capability in photorealistic image generation,
which is promising for high-quality image transmission (37, 38).
In particular, the variational autoencoder (VAE)model can control-
lably transform between large-scale datasets and low-dimensional
representations (the latent space), which finds applications in data
encoding and generation (38). Although optoelectronic generative
models have been reported, existing photonic intelligent processors
are incapable of all-optical end-to-end generative neural networks
and, hence, fail in achieving ultralow-latency complicated image
processing in transmission (36, 39).
Here, we propose an unsupervised photonic VAE, named pho-

tonic encoder-decoder (PED), for end-to-end processing in image
transmission. To the best of our knowledge, PED is the first
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demonstration of all-optical generative neural networks. The end-
to-end learned PED structure enables it to encode the optical input
information into a compressed and encrypted optical latent space
(OLS) for transmission and decode the transmitted distorted
signals from the encrypted domain to the reconstructed images op-
tically. The elaborately designed diffractive neurons directly manip-
ulate the information in the optical domain without loss and
distortion caused by the convertors to increase the transmission
precision. Modeling the transmission noise as the variations in
the OLS and constraining it with the probability distribution
entitle the PED to learn an optimal coding scheme to maximize
its noise resilience. In our prototype optical system, the PED de-
creases the system latency of image transmission by more than
four orders of magnitude compared with the state-of-the-art
central processing unit (CPU). On benchmarking datasets, PED ex-
perimentally achieves 57% reduction in transmission error ratio
(ER) than OOK, one of the mainstream methods with the lowest
ER. In addition, the PED increases the transmission throughput
by two orders of magnitude than PAM-8 and 87 times than the con-
ventional compression method discrete cosine transform (DCT), as
we demonstrate in medical images.

RESULTS
Modeling of the PED
In the proposed PED architecture (Fig. 1A), the input messages are
encoded into an OLS with an optical artificial neural network
encoder and are later correspondingly coupled into the single-
mode fiber bundle. The noise during transmission is modeled as
the variation in the OLS in a VAE-based architecture. An optical
artificial neural network decoder decodes the transmitted latent
space representations, i.e., the combination of the Gaussian speckles
after the collimating lenses, for the faithful reconstruction of input
messages. Because the OLS highly encrypts the input messages, it
prevents tapping and guarantees the security of transmission.
Figure 1B is the system design of the all-optical PED, establishing

the encoding-transmission-decoding flow without the requirement
of any analog-digital/digital-analog and opt-electrical conversions
by carrying out all processes in the analog optical field, which
notably improves the speed and efficiency of communication. As
depicted in Fig. 1B, after an all-optical encoder composed of train-
able diffractive layers, the PED passively couples the light field into a
fiber bundle through a lens array and decodes the OLS with an all-
optical decoder back to the original data. Every lens in the lens array
couples one corresponding area of the optical field to one single-
mode fiber in the fiber bundle. The coupling efficiency depends
on the light field and the characteristics of the fibers and lens.
The light field in the fiber can be considered as a linear superposi-
tion of different spatial frequencies with respective coupling coeffi-
cients (see Materials and Methods for the modeling of the coupling
process). In addition, PED is naturally compatible with most exist-
ing OFC systems as they both use single-mode fiber bundles for
transmission, which are already buried underground over the
world (see details about the compatibility in note S5).
The PED allows two operation modes: general and data-specific

modes, as shown in Fig. 1 (C andD, respectively). The general mode
provides fundamental secure and noise-resistant transmission for
arbitrary images optically. When some prior information is ob-
tained, not necessarily labels, the data-specific mode additionally

allows notable compression to improve the transmission
throughput.
The latent space of the VAE architecture is a hyperspace repre-

sentation of inputs that is subject to a continuous distribution func-
tion (38). In the PED, we generate and evaluate the OLS by dividing
the output plane of the encoder into subregions and sum the low-
frequency component of the optical field at each subregion by cou-
pling it into a single-mode optical fiber. Different subregions cor-
respond to different single-mode fibers of the fiber bundle. The
number of subregions, which corresponds to the number of
optical fibers for spatial multiplexing, determines the dimensional-
ity of the OLS. After transmission, the OLS is collimated into the
optical decoder to reconstruct the inputs.
In the general mode, Fig. 2A shows an example of the PED trans-

mission results under a signal-to-noise ratio (SNR) of 9 dB. The
SNR usually depends on the transmission situations (see an
example of optical fiber transmission in note S2). The input data
are coded into binary blocks as bits (the first column), and the trans-
mission noise deteriorates the input bit codes and generates incor-
rect bit codes after binarization (the second and third columns).
During PED-based communication, messages are encrypted by
the encoder into the OLS as a complex optical field for transmission,
where the same amount of transmission noise is introduced. The
intensity of the optical field and its binarized result are shown in
the fourth and fifth columns of Fig. 2A. By modeling the transmis-
sion noise as the variation of the OLS during the unsupervised
training of the PED, the decoder reconstructs the correct bit code
from a distorted OLS (Fig. 2A, sixth and seventh columns).
Furthermore, the OLS allows unsupervised compression when

some prior information of the transmission messages is obtained,
which is common in data centers and factories. Figure 2B demon-
strates an example in the data-specific mode over fashion products,
i.e., the Fashion-MNIST,a Modified National Institute of Standards
and Technology (MNIST)–like fashion product database (40). The
PED encoder maps the 28 × 28 input image (a shirt here) into a
hyper-point L0 in a 36-dimensional OLS, and the decoder recon-
structs the input faithfully from the compressed and encrypted
OLS (see the complete inputs, outputs, and masks in fig. S1). The
variation during training allows the PED to obtain a continuous and
noise-resistant OLS, as depicted in Fig. 2B. We interpolate between
different hyper-points in the OLS, such as L−1, L0, and L1, to which
the PED encoder maps a pair of trousers, a shirt, and a sneaker, re-
spectively. The interpolation step is uniform between each image,
whereas the PED outputs remain close to these fashion products
around each hyper-point instead of reconstructing inexistent
items. It shows that the unsupervised OLS can correctly reconstruct
the items even disturbed by distinct transmission noise, implying
the exceeding robustness of the PED transmission.
The compression ratio, which depends on the dimensionality of

the OLS, influences the reconstruction quality as shown in Fig. 2C.
The image fidelity (correlation) of the transmission outputs, aver-
aged over the MNIST testing dataset (10k images, 28 × 28 grayscale
pixels each) under different OLS dimensions, is displayed. The
results demonstrate that the transmission performance improves
with the increasing OLS dimensionality rapidly when the compres-
sion ratio is huge and gradually improves when the dimensionality
is adequately large. Example results of the transmitted digit “2”
under different OLS dimensionalities are shown. As the quantitative
accuracy is finite, the PED can implement full precision because the
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analog signal theoretically has infinite precision. Figure S13 shows
some examples of reconstruction images by the PED whose recon-
struction fidelity is 1.00.

General mode for secure and high-accuracy image
transmission
Arbitrary images are encoded into binary bits and transmitted on
the basis of OOK in the general mode, while applying a pretrained
non–data-specific PED provides photonic encryption for image
transmission as the encoder embeds the information into the
OLS. High precision can be achieved simultaneously with the
noise-resistant coding scheme optimized by the PED. To facilitate

the evaluation of PED performance, we capture the output intensity
of each layer to reuse the spatial light modulator (SLM), named op-
toelectronic PED. Optoelectronic and all-optical PED have compa-
rable performance, as proved in fig. S5 (see Materials and Methods
for the details of experimental modeling and setup). Figure 3A dis-
plays the experimental results of encryption by the PED over a
binary image (the logo of Tsinghua University). Bits (3 × 3) are
transmitted in each frame, as shown in Fig. 2A, and arranged
back into the image. The information transmitted in fiber
bundles, which may potentially be eavesdropped, is distorted into
an unrecognizable image with the ER orders of magnitude higher
than the reconstructed image (25.48, 21.90, 25.95, and 21.67%

Fig. 1. Image transmission using the PED neural network architecture. (A) The PED, implemented with photonic VAE, is used for end-to-end designing of an image
transmission system, which comprises the optical neural network of an encoder and a decoder and transmits the OLS with an optical fiber bundle. ANN, artificial neural
network. (B) System design of the PED. It couples the light-field output by the encoder into fiber bundles and decodes the information by the decoder all-optically. (C)
General mode: The PED allows optically encrypting the digital inputs and reducing the transmission error with a non–data-specific pretrained coding architecture. (D)
Data-specific mode: The PED compresses the grayscale inputs into low-dimensional representations with the encoder and reconstructs them with its decoder for high-
throughput image transmission. en (n = 1, 2) is the n-th layer of the encoder, and dn (n = 1, 2) is the n-th layer of the decoder.
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and 0, 0, 0, and 0, relatively). The letters (“VER”), digits (“191”), and
Chinese characters are effectively encrypted beyond recognition.
The OLS produces the coupling relationship between all latent
values, which makes interception with only some of the channels
relatively impossible.
Besides effective encryption on characters, the PED shows ex-

ceeding encryption performance over natural grayscale images,
such as the painting exhibited in Fig. 3B, i.e., a 150 × 125 image
with 256 grayscale levels. Each grayscale pixel is encoded in one
frame that has nine binary bits. We do not change the number of
bits in each frame according to the image because the grayscale
depth of the image may not always be prior information under
real transmission situations. The PED experimentally achieves an
ER of only 0.26% in reconstruction, while the ER in OLS is
90.56% on the whole image. Zoomed-in features are shown in
Fig. 3B, where all details are unrecognizable in OLS, including the
facial details, the hair and ear of the child, fingers, and plants in the
background, with the ER encrypted to 91.25, 93.25, 91.75, and
92.00% and reconstructed to 0.25%, 0, 0.50%, and 0, respectively.
We also display the experimental performance of the PED over

variousmedia, such as audio (Fig. 3C).We use four classes of audios
(instrument, speech, animal, and vehicle) in the Google AudioSet
(41), from which 20 ms each is selected and tested in a pretrained
non–data-specific PED. The input (the red line) and the PED
output (the blue dots) coincide well, while the information in the

OLS (the green dotted line) acutely changes. The overall ER of
OLS is 88.69% (3129 of 3528), and the output audio reduces it to
0.14% (5 of 3528).
Another important purpose of coding in an image transmission

system is to resist transmission noise, which is realized with a PED
by transmitting trained OLS. We use additive white Gaussian noise
channels to test the performance of the PED based on different
transmission distances (see note S2 for the modeling of transmis-
sion noise). Each grayscale pixel with a maximum grayscale depth
of 512 is encoded into nine bits in one frame.We train the PED over
all 29 instances with random noise, as shown in Fig. 3E (each line for
one instance). The SNR is 9 dB for both with and without the PED,
which can also be inferred from the error of the input (the second
column) and the OLS (the fourth column). The threshold is grid-
searched during calibration, such as Fig. 3E, and fixed during prac-
tical communications, such as Fig. 3D. We demonstrate the trans-
mission of a grayscale painting (“Madonna and Child with Book,”
cropped and resized into 150 ×125 pixels), and each grayscale
pixel of the transmitted image is encoded into nine bits in one
frame. The variance in the OLS dexterously models the transmis-
sion noise during training, which notably increases the anti-trans-
mission noise ability of the model under different SNRs, i.e.,
different transmission distances or systems. We compare the PED
with OOK (Fig. 3D), forward error correction (FEC; table S1), and
QAM-16 (quadrature amplitude modulation; table S3). OOK is one

Fig. 2. Modeling of the PED. (A) OLS in the general mode: The encoder encrypts the inputs into their OLS representations, where the decoder can correct the bit error
induced by the transmission noise and reduce the bit ER. Numerical results of the general mode are shown here. A.U., arbitrary units. (B) OLS in the data-specific mode:
The OLS representations of inputs (the fiber outputs) are imposed by a continuous Gaussian distribution function, where the interpolation is uniform, while the recon-
structions assemble around the original items. Numerical results of the data-specific mode are shown here. (C) Reconstruction quality (fidelity) improves with the in-
creasing of the OLS dimensionality rapidly when the compression ratio is large and turns gradually when the OLS dimensionality is adequate. Numerical examples of the
reconstructed digit “2” at different OLS dimensionality are displayed.
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Fig. 3. Experimental results of PED for the generalmode. (A to C) Experimental encrypted transmission of binary images, grayscale images, and audios. All successfully
distort the information in OLS and reconstruct after decoders. (D) Experimental ER of the PED under different transmission noise levels. We encode the grayscale image (a
150 × 125 painting) into binary bits and transmit it with simulated noise. PED reduces the ER by more than 57% (relatively) compared with OOK (one of the existing
methods that are most robust to transmission noise). One example of the face is shown at 14 dB. (E) Experimental denoising results of the general mode on all 512
instances. We transmit all coding instances (512 images) to calibrate and test the global encryption and denoising capability of PED at a noise level of 9 dB. The same level
of noise is added in both the OOK and the OLS. The PED encrypts the information with the bit ER (BER) of 35.20% and reconstructs it to the BER of 2.86%. After coding, it
reduces the BER by 12.80% (relatively) with respect to OOK.
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of the most noise-robust modulation methods in existing optical
communications that is widely used in today’s intensity modulation
and direct detection systems, while FEC is one of the most com-
monly used error correction methods nowadays in digital electronic
processors. QAM-16 is a coherent modulation that is commonly
used in long-distance OFCs. The PED decreases the ER by 57.20,
37.21, and 100% (relatively) at 14, 15, and 16 dB, respectively, com-
pared with OOK. The all-optical multilayer PED also achieves two
orders of magnitude lower bit ER than QAM-16 (table S3) and
similar error rates to FEC when reducing the latency and energy
consumption by orders of magnitude.
As the noise level increases, the effect of the PED first rises and

subsequently decreases because when the SNR is high, the experi-
mental error of the PED dominates the results, while the PED may
be unable to correct the OLS if it diverges from the ground truth too
much when the SNR is quite low. Both the quantitative evaluation of
the ER and the appearance of the images are distinctly improved
compared with OOK at a large range of SNRs (one example at 14
dB is shown in Fig. 3D).

Data-specific mode for high-throughput image
transmission
When applied in situations with some prior information of the
transmission images, such as some unlabeled examples of the
images, the PED allows extra compression in addition to secure
transmission after unsupervised data-specific learning. Figure 4A
shows an example of the PED trained to transmit the images of
handwritten digits using the MNIST training set, where both the
encoder and decoder are implemented with diffractive neural net-
works. The input digits with a size of 28 ×28 are transmitted by
transforming into the OLS representations with a dimensionality
of 6 × 6. Figure 4A displays the experimental results of transmitting
10 example digits, i.e., 0, 1,…, 9, from the test set (the first row). The
OLS representations of the input images are generated by experi-
mentally coupling the optical fields at different subregions of the
encoder output plane with single-mode fibers and combining
them. As the single-mode fiber transmits only the fundamental
mode inside, it decreases the dimensionality of the transmission in-
formation. The transmission noise is modeled by setting the SNR to
24 dB with the phase noise obeying an additive Gaussian distribu-
tion (see note S2 for an example of noise modeling). After the trans-
mission, the fiber outputs (the second row) are decoded by the
decoder to reconstruct the inputs (the third row). Figure 4B displays
the phase patterns of the encoder and decoder that PED uses in the
task of Fig. 4A. Each layer includes 400 × 400 optical neurons.
We exhibit the comparisons with the DCT compression (the

fourth row), with the reconstruction fidelities labeled on each
corner. The results demonstrate that the PED successfully encrypts
the inputs for optical transmission and reconstructs the input digits
from their low-dimensional OLS representations at a high compres-
sion ratio. Compared with the transmission results using DCT com-
pression, the proposed PED reconstructs input digits with notably
improved quality under the same compression ratio. The average
fidelity of the experimental PED results over the MNIST testing
set with 10k images is 0.81, whereas the transmission with DCT
compression only achieves 0.72 (Fig. 4C). We also calculate the per-
centage of bad matching pixels, which is a common evaluation
index for reconstructions (Fig. 4D), in which the PED outperforms
DCT over both thresholds, indicating the advantage of PED in both

details (smaller threshold) and outlines (larger threshold). We
further validate the PED on the transmission of a medical dataset:
adrenal computed tomography (CT) images (42). Because medical
images usually require frequent transmission between departments
and clouds and normally have prior information, we choose clini-
cally collected CT images to inspect the practical performance of the
PED. The original binary three-dimensional (3D) CT images are
projected by one axis to generate a 28 × 28 grayscale 2D image
for each adrenal gland. Figure 4E displays the experimental results
of the PED over two examples from normal and pathological
classes, respectively, under different compression ratios. When the
compression ratio is 31 and 87, the corresponding dimensionality of
the OLS is 25 and 9. The PED successfully reconstructs the shape
and features of the adrenal gland (the second and fourth columns),
while the DCT fails to retain any details at such high compression
ratios (the third and fifth columns). The reconstruction quality of
the PED remains stably high even at a quite huge compression ratio
(87 times), and different classes can be easily distinguished after
compression and reconstruction, which is unfulfillable to DCT
(the fifth column). It not only demonstrates the powerful capability
in transmission and compression of the PED but also indicates its
potential to do intelligent computations such as disease diagnosis
and semantic comprehension during transmission. We compare
the PED with DCT and fast Fourier transform (FFT), which are
one of the most widely used compression methods in image pro-
cessing. The fidelity of the reconstructed image after transmission
by the PED, DCT, and FFT is 0.86, 0.77, and 0.43 when the com-
pression ratio is 31; 0.85, 0.69, and 0.42 when the compression ratio
is 49; and 0.85, 0.61, and 0.40 when compression ratio is 87, respec-
tively, as depicted in Fig. 4F. The PED notably outperforms main-
stream compression methods DCT and FFT experimentally. Taking
the adrenal images as an example, the PED improves the transmis-
sion throughput by orders of magnitude than PAM-8 and QAM-
512, and ~87 times than DCT.
Besides, the PED corrects the errors in the input images after en-

coding and decoding. It is especially helpful when the error accu-
mulates during long-distance transmission and plenty of optical-
electrical conversions, resulting in noisy input when transmitted
to downstream links. Therefore, we further demonstrate the PED
dealing with noisy input in fig. S3. It shows the experimental
results of transmitting 10 examples of MNIST handwritten digits,
i.e., 0, 1, …, 9 (the first row), with additive Gaussian noise. The
encoder encrypts and extracts the information before the coupling
system subsamples the light field into a 6 × 6 OLS. The transmission
noise in the fiber bundle, with the SNR of 24 dB and additive Gauss-
ian phase noise, is modeled as the variation in OLS (the second
row). The PED achieves comparable reconstruction performance
(the third row) as in Fig. 4A because the lossy compression with
the PED entitles the PED to powerful denoising capability. The
results prove that the PED is qualified for a wide range of transmis-
sion distances and multilevel transmission.

DISCUSSION
By effectively extracting features from the original images, PED
achieves orders of magnitude higher throughput compared with ex-
isting methods in image transmission. On the medical dataset, PED
improves the transmission throughput by 232.3 times, 77.4 times,
and 87.1 times compared with PAM-8, QAM-512, and DCT
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when achieving the same transmission fidelity experimentally (see
note S3 for calculation details). In the general mode, because the
PED solves the bottleneck of system latency by all-optical process-
ing, its bit rate theoretically achieves 24.6 Tbit/s (see note S4 for cal-
culation details). In addition, adjusting the parameters in the
network helps further improve the performance of PED. We
analyze the four main parameters that influence the performance
of the PED, which are the layer number of the encoder/decoder
(fig. S7A), the diffractive distance between the layers (fig. S7B),
the diffractive distance after the last layer in the encoder/decoder
(fig. S7C), and the pixel size, i.e., size of neurons (fig. S7D). The per-
formance of the PED improves notably when the layer number of
the PED decoder increases from 1 to 2 and grows gradually when
the layer number continues to increase for both general and data-
specific modes. For the distance between the diffractive masks, 15
cm achieves the best performance for both general and data-specific
modes. The performance of the PED increases as the diffractive

distance after the last layer of the encoder/decoder increases in
the range of 10 to 50 cm. The PED shows better performance
with smaller pixel sizes in the range of 10 to 25 μm.
Simultaneously, the all-optical PED experimentally improves the

computation latency by five orders of magnitude than the state-of-
the-art CPU (Intel, CA, Intel Core i7 6500U CPU @2.5 GHz). In
addition, we calculate the end-to-end system latency of PED in a
fiber communication system, including computation, opt-electron-
ic conversions, and analog-to-digital converters (fig. S11), and the
PED improves the system latency by more than four orders of mag-
nitude than the state-of-the-art CPU. It shows that the PED opti-
mizes the time-consuming bottleneck that restricts the
improvement of throughput instead of some parts that are fast
enough already. Even when compared with the state-of-the-art
graphics processing unit (GPU) with ultra-high computing speed
(~47 TOPS/S) (43), PED remains to achieve one order of magnitude
improvement in system latency (see note S3 for calculation and

Fig. 4. Experimental results of PED for the data-specific mode. (A) Inputs, i.e., handwritten digits from 0 to 9, 28 ×28 grayscale pixels each (the first row), are optically
transformed by the encoder and transmitted using their OLS representations. The OLS with a dimensionality of 6 × 6 is obtained by fiber coupling the optical field of
different subregions on the encoder output plane, where the transmission noise is included as the variation of the OLS representations (the second row). Both amplitude
noise (24 dB) and phase noise in transmission are simulated in the fiber link. The optical fields of fiber outputs are optically decoded by the decoder to reconstruct the
input handwritten digits (the third row), demonstrating superior performance than DCT compression under the same compression ratio (the fourth row). Their recon-
struction fidelities are labeled on each corner. Experimental results are shown here. (B) Phase masks of the diffractive layers of the PED in this task. en (n = 1, 2) is the n-th
layer of the encoder, and dn (n = 1, 2) is the nth layer of the decoder. (C and D) The experimental reconstruction fidelity and percentage of bad matching pixels (BMP) of
the PED and DCT averaged over the MNIST test dataset (10k images). (E) Experimental reconstruction of the PED compared with DCT at different compression ratios over
the projected adrenal CT images fromMedMNIST (42). C.R., compression ratios. (F) Experimental reconstruction fidelity of the PED, DCT, and FFT (fast Fourier transform) at
different compression ratios. The PED surpasses the other two mainstream methods notably overall demonstrated compression ratios.

Chen et al., Sci. Adv. 9, eadf8437 (2023) 15 February 2023 7 of 10

SC I ENCE ADVANCES | R E S EARCH ART I C L E



measurement details). We note that the commercial image commu-
nication systems can only achieve a computing speed much lower
than this example with the state-of-the-art CPU or GPU consider-
ing the cost. Therefore, the actual improvement may be higher.
Compared with existing optical neural networks, the PED

extends the application beyond decision-making tasks to notably
wider generative scopes. Figure S4 demonstrates applications of
the PED as a universal unsupervised optical generative model in
style transferring and human action video enhancement. Because
decision tasks and labeled images are only a small portion in real
life, the demonstration of an unsupervised generative photonic
model with ultra-high speed and the ability of parallel computation
will be capable of revolving plenty of application fields, including
augmented reality, edge computing, and virtual reality.
In conclusion, we propose an unsupervised PED for OFC. It not

only provides an end-to-end learned processor for image processing
in OFC, including encoding, encryption, compression, and decod-
ing all optically but also improves the communication quality by
processing in the optical domain directly. Two modes of the PED
have introduced: the general mode for arbitrary image coding and
encryption and the data-specific mode for notably high throughput.
The transmission ER experimentally decreases by 57% by the PED,
as demonstrated on a benchmarking dataset. The PED widens the
transmission throughput by two orders of magnitude than PAM-8
and 87 times than DCT over displayed medical images. The all-
optical PED reduces the system latency by more than four orders
of magnitude compared with the state-of-the-art CPU.
By codesigning the encoder, decoder, and fiber system all in the

optical domain, our work makes inherent connections between the
unsupervised learning architecture and the physical model of fiber
communication systems, inspiring the next-generation all-optical
communication systems with higher throughput, accuracy, and
data security. We believe that the proposed generative photonic
computing system and the end-to-end unsupervised photonic
learning method will facilitate a wide range of artificial intelligence
applications, including 6G, medical diagnosis, robotics, and edge
computing.

MATERIALS AND METHODS
PED modeling and training details
We use a VAE architecture to establish the PED, which is one of the
most mainstream unsupervised generative models with various ap-
plication scopes (38). The encoder-decoder structure perfectly
matches the OFC process, and its ability to reconstruct data from
a low-dimensional domain enables the PED to compress and
encrypt the transmitted information. In addition, the VAE provides
better performance in noise resistance due to the variation in latent
space when training. The loss function of the PED for optimization
can be described as

L ¼ αlKLD þ βlMSE þ γlOP
where lKLD is the Kullback-Leibler divergence that guarantees the
distribution in the OLS close enough to the ideal distribution, i.e.,
Gaussian distribution; lMSE is the mean square error between the
PED output and the input; and lOP is a penalty term. To prevent
the middle results from changing fiercely between the diffractive
layers to make the images sick or sensitive to noise, we use an

optical penalty term in the loss, similar to what many electronic
deep neural networks do (44). lOP is usually composed of an l1-
or l2-norm between the middle results and the ideal output; α, β,
and γ are constant coefficients that balance these losses.
We use the optical fields in the fibers to characterize the high-

dimensional latent values in the optical networks. The all-optical
PED encodes the information in both the amplitude and phase
domains. During training, the phase and amplitude are calculated
on the basis of the optical field in front of the coupling lens array
with corresponding complex coupling coefficients. For experimen-
tal convenience, we also establish the model of optoelectronic PED.
It allows the PED to achieve comparable performance with only one
phase modulator. The output of each diffractive layer is captured
with a sensor, and the measured intensity is fed back to reuse the
diffractive system. In this way, the optoelectronic PED achieves non-
linearity from the sensor but loses phase information to encode.
Figure S5 presents the comparison of the performance between
the all-optical and optoelectronic PED on both general and data-
specific modes. The all-optical and optoelectronic PED achieves
tantamount results in the reconstruction fidelity and noise resis-
tance. In addition, the latency of this reusing architecture in opto-
electronic PED has been proved ultra-low (45). Therefore, the
optoelectronic PED provides a convenient way to validate the all-
optical PED. More details for the experimental implementation in
Figs. 3 and 4 are included in the “Experimental setup” section below.
During training, the proposed OLS complies with the assump-

tion of a biased Gaussian distribution because the intensity of the
optical signals is nonnegative. The deviation is set as a constant
instead of learning during training to mimic the real fiber commu-
nication situations. Adjusting the deviation to different values helps
the PED handle different noise levels. The phase masks for the
general and data-specific modes are shown in fig. S6.

Experimental setup
The system design and experimental setup are shown in fig. S2. We
use a single-mode 532-nm laser (Changchun New Industries Opto-
electronics Tech. Co., Ltd., MGL-III-532-200 mW) to generate the
collimating incident light. A cascaded beam expander system is
used to expand the diameter of the beam to ~25 mm. We use an
amplitude-modulation SLM (HOLOEYE Photonics AG,
HES6001) to generate the grayscale input and a phase-only SLM
(Meadowlark Optics Inc., P1920-400-800-PCIE) as the diffractive
layer in the optical neural network. It has a frame rate of up to
714 Hz. The pixel size of the optical neurons that we use in the
PED is 18.4 μm. A 4f system is placed between the two SLMs to con-
jugate the input image onto the phase modulation plane. The dif-
fractive distance between the second SLM and the sensor is 300mm.
We use a scientific complementary metal-oxide semiconductor
(Tucsen Photonics Co. Ltd., Dhyana 400BSI) to measure the inten-
sity output from the optical neural network. In the optoelectronic
PED, the multilayer network is realized by iteration with this
system. The coupling of the fiber is measured in sequence by one
fiber to mimic the effect of the array (fig. S2C). An equivalent ex-
periment of all-optical PED is demonstrated in fig. S15, which
shows similar exceeding performance to optoelectronic PED. The
long-distance transmission noise is simulated according to the
SNR as modeled in the Supplementary Materials. We use the
single-mode fiber (Daheng Optics, DH-FSM450-FC) at 532 nm.

Chen et al., Sci. Adv. 9, eadf8437 (2023) 15 February 2023 8 of 10

SC I ENCE ADVANCES | R E S EARCH ART I C L E



Adaptive training of the PED
The layers in the PED should be aligned precisely, or the signal
cannot be processed with the correct corresponding weights. In
an integrated all-optical PED shown in Fig. 1B, it is aligned with
the high-resolution microscope and fixed with bonding, which
has submicrometer alignment precision. For evaluation setup
with commercial devices, the alignment precision depends on the
precision of the translation stages (Daheng Optics, GCM-930602
M), which provides an alignment error below 6 μm in PED. The
PED has the robustness to small misalignment errors and, for
larger alignment errors, we use adaptive training to correct some
of the errors in the experimental system. By retraining the last few
diffractive layers with experimental middle outputs over a small
scale of the training dataset, adaptive training achieves distinct im-
provement on the test dataset. Because of the leverage of reconfig-
urable equipment in the setup, we can easily change the weight in
the PED after adaptive training.
General mode
Because the training and testing datasets are the same and the scale
is small, we go through the whole dataset (512 instances). The noise
is randomly added in each training epoch. Adaptive training fine-
tunes the decoder masks for several epochs over data with
random noise.
Data-specific mode
We experimentally test the output of the encoder on a small part of
the training dataset (~3%) and fine-tune the decoder with this small
amount of training data.

Modeling of the coupling in the PED
The corresponding lenses in the microlens array divide the light-
field output from the encoder into m areas, where m is the dimen-
sionality of the OLS. Each lens Fourier transfers the corresponding
area to its frequency domain on its Fourier plane. Given single-
mode fibers with a proper numerical aperture, only the low frequen-
cies are coupled into the fibers. The light in the fiber is a combina-
tion of light with different incident angles with corresponding
complex coupling coefficients. The coupling efficiency is based on
the data because the nonplanar wavefront affects the coupling.
Figure S8 (A and B) gives an example of the modulated light field
on the front focal plane and the results after coupling by the lens
array. Light with different incident angles has different complex
coupling coefficients.
In this work, we simulate the complex coupling coefficients at

different incident angles with the finite-difference time-domain
(FDTD) method (fig. S8C). In this way, any complicated incident
wavefront can be decomposed into components from different
angles to add up.
We take the vertical incidence as an example to verify the FDTD

simulation with theoretical predictions. We use the Gaussian ap-
proximation of the zeroth-order Bessel function. The electric field
of the fundamental mode on the edge is (46)

Eff ¼
2
ffiffiffi
π
p
ω0
exp �

r
ω0

� �2
" #

where r is the radial coordinate and ω0 is the radius of the single-

mode field. The coupling efficiency is usually defined as (46)

η ¼
j
ÐÐ

E�ifEffds j
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐÐ
jEif j2ds �

ÐÐ
jEff j2ds

q ;

where Eif is the electric field of the incident light on the back focal
plane and Eff is the electric field on the fiber edge. The FDTD sim-
ulation corresponds well with the theoretical result in this example.
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