
ORIGINAL RESEARCH
published: 09 December 2021

doi: 10.3389/fnins.2021.750458

Frontiers in Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 750458

Edited by:

Irem Boybat,

IBM Research-Zurich, Switzerland

Reviewed by:

Christopher Bennett,

Sandia National Laboratories,

United States

Wei Wang,

Technion Israel Institute of Technology,

Israel

*Correspondence:

Anders Lansner

ala@kth.se

Ahmed Hemani

hemani@kth.se

Zhuo Zou

zhuo@fudan.edu.cn

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 30 July 2021

Accepted: 11 November 2021

Published: 09 December 2021

Citation:

Wang D, Xu J, Stathis D, Zhang L,

Li F, Lansner A, Hemani A, Yang Y,

Herman P and Zou Z (2021) Mapping

the BCPNN Learning Rule to a

Memristor Model.

Front. Neurosci. 15:750458.

doi: 10.3389/fnins.2021.750458

Mapping the BCPNN Learning Rule
to a Memristor Model
Deyu Wang 1†, Jiawei Xu 1†, Dimitrios Stathis 2, Lianhao Zhang 3, Feng Li 1,

Anders Lansner 2,4*, Ahmed Hemani 2*, Yu Yang 2, Pawel Herman 2 and Zhuo Zou 1*

1 State Key Laboratory of ASIC and System, School of Information Science and Technology, Fudan University, Shanghai,

China, 2 School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden,
3Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark, 4Department of

Mathematics, Stockholm University, Stockholm, Sweden

The Bayesian Confidence Propagation Neural Network (BCPNN) has been implemented

in a way that allows mapping to neural and synaptic processes in the human

cortex0and0has been used extensively in detailed spiking models of cortical associative

memory function and recently also for machine learning applications. In conventional

digital implementations of BCPNN, the von Neumann bottleneck is a major challenge

with synaptic storage and access to it as the dominant cost. The memristor is a

non-volatile device ideal for artificial synapses that fuses computation and storage and

thus fundamentally overcomes the von Neumann bottleneck.0While the implementation

of other neural networks like Spiking Neural Network (SNN) and even Convolutional

Neural Network (CNN) on memristor has been studied, the implementation of BCPNN

has not. In this paper, the BCPNN learning rule is mapped to a memristor model and

implemented with a memristor-based architecture. The implementation of the BCPNN

learning rule is a mixed-signal design with the main computation and storage happening

in the analog domain.0In particular, the nonlinear dopant drift phenomenon of the

memristor is exploited to simulate the exponential decay of the synaptic state variables

in the BCPNN learning rule.0The consistency between the memristor-based solution

and the BCPNN learning rule is simulated and verified in Matlab, with a correlation

coefficient as high as 0.99. The analog circuit is designed and implemented in the SPICE

simulation environment, demonstrating a good emulation effect for the BCPNN learning

rule with a correlation coefficient as high as 0.98. This work focuses on demonstrating

the feasibility of mapping the BCPNN learning rule to in-circuit computation in memristor.

The feasibility of the memristor-based implementation is evaluated and validated in the

paper, to pave the way for a more efficient BCPNN implementation, toward a real-time

brain emulation engine.

Keywords: Bayesian Confidence Propagation Neural Network (BCPNN), learning rule, memristor, nonlinear dopant

drift phenomenon, synaptic state update, spiking neural networks, analog neuromorphic hardware

1. INTRODUCTION

In the last decade, Artificial Neural Networks (ANNs) have made rapid and significant progress
in real-world applications, demonstrating outstanding performance in a wide range of pattern
recognition problems such as speech recognition (Hinton et al., 2012), image classification
(Ciregan et al., 2012), and natural language processing (Yin et al., 2017). Despite the great success

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.750458
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.750458&domain=pdf&date_stamp=2021-12-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ala@kth.se
mailto:hemani@kth.se
mailto:zhuo@fudan.edu.cn
https://doi.org/10.3389/fnins.2021.750458
https://www.frontiersin.org/articles/10.3389/fnins.2021.750458/full

Wang et al. Mapping BCPNN Learning to Memristors

and popularity of ANNs in data-driven computational
paradigms, they have some limitations. First of all, most of
the existing ANNs adopt supervised learning, requiring a large
amount of labeled training data, which is different from the
unsupervised and reward modulated learning mechanisms
attributed to biological brains. Secondly, the most prominent
learning algorithm used by ANNs is error back-propagation,
which requires a high level of accuracy and is neither robust
nor biologically plausible. Thirdly, the current mainstream
ANN models do not account for the functionality underlying
human cognition and inspiring artificial intelligence, like e.g.,
associative memory, temporal association, and reward-based
trial-and-error learning. Unlike classical ANNs with non-spiking
units, Spiking Neural Networks (SNNs) use the same event-based
communication mechanism as the human brain where neurons
communicate with spikes.

The Bayesian Confidence Propagation Neural Network
(BCPNN) was originally derived from principles of Bayesian
inference (Lansner and Ekeberg, 1989; Lansner and Holst, 1996)
and was further developed into an architecture inspired by the
modularity of the mammalian cortex with hypercolumn units
(HCUs) and minicolumn units (MCUs). Later implementation
within the framework of SNNs allowed mapping to neural
and synaptic processes in the human cortex (Tully et al.,
2014). Compared with other SNN models, BCPNN provides
a compact and practical solution for the implementation of
large-scale neural networks due to its modular, coarse-grained,
and hierarchical architecture. Importantly, both reduced non-
spiking and biologically detailed spiking realizations of BCPNN
perform similar functions. They have been extensively used
to model brain-like cognitive capabilities such as associative
memory (Johansson and Lansner, 2007; Lundqvist et al., 2011),
episodic memory (Chrysanthidis et al., 2021), and working
memory (Fiebig and Lansner, 2017; Fiebig et al., 2020), which
play a key role in human intelligence. In a broader perspective, we
suggest that these advancements in simulating different aspects of
human cognitive function within a system framework of brain-
like BCPNN constitute a promising direction in the development
of artificial general intelligence (AGI).

Furthermore, the local associative nature of the Bayesian-
Hebbian BCPNN learning rule has also been leveraged in
cortex-inspired neural networks built for pattern recognition
problems in the machine learning domain. In particular, these
recent developments were facilitated by the addition of a novel
brain-like structural plasticity algorithm to build a hidden
layer using the original synaptic trace variables of BCPNN in
an unsupervised manner (Ravichandran et al., 2020, 2021a).
Classification performance on the MNIST and Fashion-MNIST
benchmark problems—98.6% and 88.9% on test sets, respectively
(Ravichandran et al., 2021a)—is competitive with e.g., single-
layer multi-layer perceptron (MLP) with backprop, restricted
Boltzmann machine (RBM), and overcomplete autoencoder. The
aforementioned unsupervised nature of the structural plasticity
lends itself to the efficient use of unlabeled training examples,
which has been exploited to perform semi-supervised learning
with competitive results on MNIST for only 10–1,000 labeled
training samples (Ravichandran et al., 2021b).

At present, BCPNN is usually implemented in high-
performance computers, such as clusters (Johansson and
Lansner, 2007), GPUs (Yang et al., 2020; Podobas et al., 2021),
and ASICs (Stathis et al., 2020). However, these systems do not
fully leverage the scalability of the modular BCPNN with its
local learning since they are all based on the von Neumann
architecture that separates computation and storage, which
puts a high demand on computing and memory access. We
observe that the ASIC implementation with its full customized
architecture with the 3D-RAM, achieved three orders better
efficiency compared to GPUs, but it is still many orders less
efficient compared to a biological brain.

Besides overcoming the von Neumann bottleneck, the non-
linearity of the memristor naturally mimics the behavior of
synapses. This paper shows how these properties of memristors
can be leveraged to implement the BCPNN learning rule.
The long-term goal of this research is to realize a large-scale
memristor-based BCPNN network that is 10–100x more efficient
than ASICs. However, the research presented in this paper
focuses on demonstrating the feasibility of mapping the BCPNN
learning rule to an in-circuit memristor-based computation.
Follow-up work to this paper will focus on addressing the non-
idealities of memristors and the energy efficiency analysis.

The contributions of this work are as follows:

• The non-linearity of the memristor is exploited to emulate
the synaptic traces in the BCPNN learning rule. On this
basis, a memristor-based architecture for the BCPNN learning
rule is proposed.

• The memristor-based design for the BCPNN learning rule is
simulated and verified in Matlab. The consistency between
the memristor-based solution and the reference model is
validated, and the correlation coefficient is as high as 0.99.

• The analog circuit for the BCPNN learning rule is designed
and implemented in the SPICE simulation environment. The
SPICE simulation results demonstrate a good emulation effect
for the BCPNN learning rule, and the correlation coefficient is
as high as 0.98.

The rest of this paper is organized as follows: Section 2 introduces
the background knowledge and details about BCPNN and the
memristor. Section 3 shows the similarity between the BCPNN
traces and the memristor non-linearity and demonstrates how
to map the BCPNN learning rule to in-circuit memristor-
based computation. Section 4 proposes the memristor-based
architecture for the BCPNN learning rule and explains the
corresponding analog circuit design. Section 5 presents the
results of Matlab and SPICE-level simulations. Section 6
summarizes the paper and further discusses several aspects of this
work. Finally, section 7 presents the prospects for future work.

2. PRELIMINARIES

2.1. BCPNN
2.1.1. BCPNN Overview
The BCPNN features a modular structure in terms of HCUs
and MCUs, based on a generalization of the structure of
the mammalian cortex, first described by Hubel and Wiesel

Frontiers in Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

(Hubel and Wiesel, 1977). In models of the mammalian cortex,
an HCU module has a diameter on the order of 500 µm
and comprises about 100 MCUs with 50 µm diameter. Each
MCU is composed of about 100 neurons, mainly excitatory
pyramidal cells and one or two local inhibitory double bouquet
cells (DeFelipe et al., 2006). Activity within an HCU is regulated
by lateral inhibition mediated via inhibitory basket cells. In the
abstract models, it takes the form of softmax that normalizes the
total HCU activity (sum of the corresponding MCU activities) to
1. The number of HCUs in the human cortex has been estimated
at around two million.

The BCPNN network can be represented with a H × M
configuration, which means it is composed of H HCUs, and each
HCU contains M MCUs. Generally, H is much larger than M.
The number of HCUs H can be increased without an upper
limit, while the number of MCUs M has an upper limit of about
100 based on biological data. Therefore, when it comes to the
configuration of large networks, the number of H tends to be
quite high. In a small network, each MCU can be fully connected
to its local HCU and other HCUs, as shown in Figure 1A. Such
full connectivity can not be employed in large networks due to
the extreme cost of computation and storage. Instead, a cortex-
inspired sparse patchy connection is adopted (Meli and Lansner,
2013), which greatly reduces the number of connections and yet
maintains proper function.

Figure 1B presents the structure of the HCU, which is
composed of 4 parts: 1) the presynaptic vector, used to store
presynaptic traces Zi, Ei and Pi; 2) the postsynaptic vector, used to
store postsynaptic traces Zj, Ej, Pj and the bias βj; 3) the synaptic
matrix, used to store synaptic traces Eij, Pij and the weight wij. 4)
a certain number of MCUs, which integrate the incoming spiking
activities and fire in a soft winner-take-all manner.

At a higher level, HCUs function like independent network
modules between which spikes are transmitted. The HCU
size depends on the number of incoming connections and
MCUs. The biologically constrained maximum number of
incoming connections and MCUs is 10,000 and 100, respectively.
Consequently, in amax-size HCU, a synaptic matrix with a size of
10, 000×100 is used, thus representing a million plastic synapses.

2.1.2. BCPNN Learning Rule
The BCPNN learning rule was derived from Bayes’ rule while
making some independent assumptions between neural activities
and by transformation to log-space to achieve a proper neural
activation function (Lansner and Ekeberg, 1989; Lansner and
Holst, 1996; Sandberg et al., 2002). Thus, rather than being
purely phenomenological as the commonly used Spike Timing
Dependent Plasticity (STDP) learning rule, it was derived from
the probabilistic inference. The BCPNN learning rule is in
essence another kind of Hebbian learning rule in which synaptic
updates are driven by co-activation between the pre- and post-
synaptic neural units. It generates positive weights if the activity
between neurons is positively correlated, zero weights if they are
uncorrelated, and negative weights if they are anti-correlated.
Besides, it has an intrinsic bias for each neural unit which reflects
the prior activation and also is observed experimentally (Tully
et al., 2014). The BCPNN learning rule equations estimate the

activation and co-activation of network units utilizing a cascade
of three exponential running averages, as shown in Figure 2A.

First, the incoming spikes drive pre- and
post-synaptic Z-traces:

dZi
dt

=
Si−Zi

τzi

dZj
dt

=
Sj−Zj

τzj
(1)

Here, i denotes pre- and j denotes post-synaptic variables and
S represents incoming and generated spiking activity. These Z-
traces in turn drive the E-traces and P-traces following the same
kind of dynamics with different time constants:

dEi
dt

=
Zi−Ei

τe

dEj
dt

=
Zj−Ej

τe

dEij
dt

=
ZiZj−Eij

τe
(2)

dPi
dt

=
(Ei−Pi)

τp
κ

dPj
dt

=
(Ej−Pj)

τp
κ

dPij
dt

=
(Eij−Pij)

τp
κ (3)

The learning rate κ in the dynamics of P traces modulates
the learning. The E-traces form a synaptic tag important for
delayed reinforcement learning. In many cases, the E-traces can
be omitted and the P-traces can be updated according to equation
(4) with an added parameter κ . The simplified BCPNN learning
rule without E trace is shown in Figure 2B.

dPi
dt

=
(Zi−Pi)

τp
κ

dPj
dt

=
(Zj−Pj)

τp
κ

dPij
dt

=
(ZiZj−Pij)

τp
κ (4)

Finally, as shown in equation (5), the P-traces are used to update
network unit biases, and weights with an additional parameter ε,
which originates from a minimum spiking activity assumed for
the pre- and postsynaptic units:

βj = log(Pj + ε) Wij = log(
Pij+ε2

(Pi+ε)·(Pj+ε)) (5)

2.1.3. BCPNN Application and Implementation
The BCPNN model has been used for neural computation
and machine learning applications as well as to model the
synaptic plasticity like long-term potentiation (LTP) and long-
term depression (LTD) in SNN models of cortical associative
memory. In the case of neural computation, BCPNN has
been used to model scalable self-organizing associative memory
(Johansson and Lansner, 2007). As for the classification of
the MNIST machine learning benchmarking, an accuracy of
98.6% can be achieved while maintaining a high neurobiological
plausibility (Ravichandran et al., 2020, 2021a). In the latter
case, the hidden layer had 200 HCUs, each with 100 MCUs.
Recent cortical associative memory models have focused on
synaptic working memory using BCPNN as a model for rapid
cortical synaptic plasticity (Fiebig and Lansner, 2017; Fiebig
et al., 2020). The positive BCPNN weights are used as excitatory
connections between pyramidal cells, while the negative ones
are disynaptically inhibiting pyramidal cells in distant HCUs via
e.g., double bouquet cells. These SNN models are tiny compared
to their biological counterparts, typically comprising up to a
thousand MCUs partitioned into some 30 HCUs.

The BCPNN model has been implemented in software
packages, GPU, and supercomputer clusters. It has also been

Frontiers in Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 1 | (A) The fully connected HCUs. The number of HCUs is H, each HCU contains M MCUs. For each HCU, the number of input connections is H×M, and

the number of output connections is M. (B) The structure of HCU. The upper limit of input connections and MCUs is 10,000 and 100, respectively.

FIGURE 2 | (A) The original BCPNN learning rule (adapted after Tully et al., 2014). (B) The simplified BCPNN learning rule without E trace.

implemented as custom hardware with 3D integration of DRAM
for the synaptic weights (Farahini et al., 2014; Lansner et al.,
2014; Stathis et al., 2020; Yang et al., 2020). The BCPNN learning

rule is amenable to low-precision implementation (Vogginger
et al., 2015), and the cortical memory models have proven quite
robust and tolerant to external as well as to intrinsic noise

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

and imprecision in weights and unit biases. Therefore, it is a
highly scalable, modular, and hardware-friendly neuromorphic
architecture with the potential for compact and low-power digital
or mixed-signal design.

2.2. The Memristor
The memristor was predicted as a fourth fundamental circuit
element following the resistor, capacitor, and inductor by
Chua (1971). In 2008, HP Labs demonstrated and fabricated
a memristor for the first time (Strukov et al., 2008). The HP
Memristor was based on a nanoscale TiO2 thin film, with a
doped region and an undoped region, as shown in Figure 3A.
The total resistance of the device is determined by the variable
resistances of these two regions. When an external bias voltage is
applied across the device, the charged dopants will drift, moving
the boundary between the two regions. The HP memristor
produces rich hysteretic current-voltage behavior, which can
be observed in many nanoscale electronic devices. However,
in nanoscale devices, a small voltage can yield enormous
electric fields, secondarily producing significant non-linearities
in ionic transport, which is called the non-linear dopant drift
phenomenon. This phenomenon can be represented with a
window function model, as shown in Figure 3B.

The memristor has many characteristics that can be utilized
in a variety of applications. To begin with, as suggested by its
name, a memristive device remembers the charge that passes
through it rather than storing the charge so that the memristor is
nonvolatile. What is more, the memristor device can store multi-
valued rather than binary values. The ability to represent multi-
bit values stems from the memristor’s ability to have multiple
intermediate points in its transfer curve. The transfer curve, with
its hysteretic behavior and ability to represent multiple values,
resembles biological synapses. This is the reason for memristors
attracting attention as ideal building blocks for neuromorphic
structures. The ability to remember multi-valued quantities in
response to voltages applied to its terminals mimics analog
computation. This in-situ computation has also been exploited
to build general-purpose computers (Zidan et al., 2018), content
addressable memory (Li et al., 2020a), and to implement neural
networks, both spiking and non-spiking, as discussed next.

For both non-spiking artificial neural networks and spiking
neural networks, the core operation is to reinforce or weaken
the synaptic weights. The algorithms used for deciding the time,
magnitude, and sign of reinforcement vary from one algorithm to
another. The commonality is in applying appropriate voltages for
an appropriate duration to the two terminals of the memristors.

In the ANN space, several memristor-based ANNs have been
studied and implemented. A single-layer perceptron (Prezioso
et al., 2015) was constructed based on transistor-free metal-
oxide memristor crossbars, performing the perfect classification
of images. The feasibility of a three-layer fully connected
neural network on MNIST and a 13-layer Convolutional Neural
Network (CNN) on CIFAR-10 using the flexible memristor are
studied and evaluated (Xu et al., 2018). A five-layer memristor-
based CNN (Yao et al., 2020) was demonstrated to perform
image recognition on MNIST, achieving an accuracy of over
96%. It is worth noting that it is challenging to take in-situ

training on memristor-based ANNs due to non-ideal device
characteristics. Prezioso’s work takes in-situ learning with a
simple learning rule called the Manhattan update rule. In Yao’s
work, a hybrid-training method is taken to compensate for
existing device imperfections.

In-situ computation in memristors has also been widely
studied for spiking neural networks. A supervised learning
model (Nishitani et al., 2015) that enables error backpropagation
for spiking neural network hardware was proposed, and the
memristor was employed as an electric synapse to store the
analog synaptic weight in the circuit. An all-memristor stochastic
SNN architecture (Wijesinghe et al., 2018) was proposed in
which the inherent stochasticity of nanoscale devices is utilized
to emulate the functionality of a spiking neuron. An area-efficient
memristor SNN for hardware implementation (Zhou et al., 2019)
was presented based on the modified SpikeProp-like supervised
learning algorithm. An STDP-based SNN (Zhao et al., 2020) was
proposed to achieve the mechanism of lateral inhibition and
homeostasis by memristor-based inhibitory synapses. A novel
memristive synapse model based on the HP memristor was
proposed, and a spiking neural network hardware fragment was
constructed (Huang et al., 2021).

However, the majority of the state-of-the-art memristor-based
SNNs are limited in scale and employ simple learning rules such
as STDP. Compared with small-scale SNNs using STDP, the
BCPNN learning rule is more complex, and its computational
structure is modular and cascaded. This paper exploits the non-
linearity of the memristor and elaborates how in-situ analog
computation in thememristor has been utilized to implement the
BCPNN learning rule.

3. A MEMRISTOR-BASED BCPNN
LEARNING RULE

3.1. BCPNN Model
The BCPNN learning rule has been depicted with ordinary
differential equations, representing the update process of Z, E, P
traces. To facilitate the hardware implementation, the ordinary
differential equations (1,2,3) are further transformed to equations
(6,7,8), respectively, with Euler’s method, as shown below:

Zi(t) = Zi(t − 1)× (1− kzi)+ Si(t − 1)× kzi

Zj(t) = Zj(t − 1)× (1− kzj)+ Sj(t − 1)× kzj
(6)

Ei(t) = Ei(t − 1)× (1− ke)+ Zi(t − 1)× ke

Ej(t) = Ej(t − 1)× (1− ke)+ Zj(t − 1)× ke

Eij(t) = Eij(t − 1)× (1− ke)+ Zi(t − 1)× Zj(t − 1)× ke
(7)

Pi(t) = Pi(t − 1)× (1− kp)+ Ei(t − 1)× kp

Pj(t) = Pj(t − 1)× (1− kp)+ Ej(t − 1)× kp

Pij(t) = Pij(t − 1)× (1− kp)+ Eij(t − 1)× kp

(8)

where,

kzi =
dt
τzi

kzj =
dt
τzj

ke = dt
τe

kp =
dt
τp

· κ (9)

Frontiers in Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 3 | (A) The HP model. (B) The window function.

The current values of Z, E, and P traces are all calculated from
their previous values. The kzi, kzj, ke and kp are all constants.
The simplified equation (4) can be transformed to equation (10)
in the same manner, as follows:

Pi(t) = Pi(t − 1)× (1− kp)+ Zi(t − 1)× kp

Pj(t) = Pj(t − 1)× (1− kp)+ Zj(t − 1)× kp

Pij(t) = Pij(t − 1)× (1− kp)+ Zi(t − 1)× Zj(t − 1)× kp
(10)

It should be noted that we do not consider the E trace in this
work to facilitate hardware implementation. Therefore, we adopt
simplified equation (10), whose update process and curve of
traces can be seen in Figure 2B.

3.2. The Memristor Model
In 2008, HP Labs proposed the linear model of a memristor
(Strukov et al., 2008). Following the HP model, a variety of
memristor models have been devised, such as the non-linear
ion drift model (Yang et al., 2008), Simmons Tunnel Barrier
Model (Pickett et al., 2009), the TEAM model (Kvatinsky et al.,
2013) and the VTEAM model (Kvatinsky et al., 2015). To
emulate the non-linear dopant drift phenomenon, the window
function is introduced as an essential part of a memristor model,
and dozens of window functions have been proposed so far.
However, most window functions are facing one or more of the
following problems: the boundary effect, the boundary lock, and
inflexibility (Xu et al., 2021). Joglekar’s window function (Joglekar
and Wolf, 2009) considers the boundary effect but suffers from
the boundary lock problem. Biolek’s window function (Biolek
et al., 2009) takes the current direction into account to solve
the boundary lock issue, but its parameter setting is not flexible
enough. Recently, Li’s window function (Li et al., 2020b) is
proposed to consider all three issues. However, Li’s window
function is complex, and its expression is associated with six
controlling parameters, which may increase the effort required
for simulation. The window function that we proposed in Xu
et al. (2021) is introduced to address this problem, which is both
flexible and concise.

The VTEAM model is adopted for this work because of
the following advantages: 1) the VTEAM model has a good
fitting effect for the nonlinear bipolar physical memristor

devices that we are concerned with (Johnson et al., 2010;
Chanthbouala et al., 2012; Li et al., 2018); 2) thismemristormodel
is voltage-controlled, and the threshold voltage phenomenon
has been observed in many physical devices; 3) the VTEAM
model is compatible with many window functions, which
demonstrates great flexibility to simulate the non-linear dopant
drift phenomenon. Besides, the window function that we
proposed in Xu et al. (2021) is used in this work due to its
flexibility and simplicity.

The VTEAMmodel is shown as follows:

dw(t)

dt
=

koff · (
v(t)
voff

− 1)
αoff

· f (x(t)), 0 < voff < v

0, von < v < voff

kon · (
v(t)
von

− 1)
αon

· f (x(t)), v < von < 0

(11)

x(t) =
w(t)

W
(12)

R(t) = Ron + (Roff − Ron) · x(t) (13)

v(t) = R(t) · i(t) (14)

where w(t) is an internal state variable in [0, W], W is the
maximum value of w(t), x(t) is an internal state variable in [0, 1],
f (x) is the proposed window function, v(t) is the voltage across
the memristor, i(t) is the current passing through the memristor,
R(t) is the resistance of the memristor, and t is the time. The
parameters von and voff are threshold voltages, Ron and Roff are
the corresponding resistances of the memristor when w(t) is
0 and W, respectively. The parameters kon, koff, αon and αoff

are constants.
The proposed window function is provided as below:

f (x) = j[sgn(−i) · (x− 1)+ stp(−i)]p

sgn(i) =

{

1, i ≥ 0
−1, i < 0

stp(i) =

{

1, i ≥ 0
0, i < 0

(15)

where i is the memristor current, and j and p are two tuning
parameters. The memristor current i is positive when the internal

Frontiers in Neuroscience | www.frontiersin.org 6 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 4 | Similarity between the BCPNN trace and the memristor nonlinearity: (A) The curve of Z trace. (B) The curve of resistance of the Ferroelectrc memristor.

(C) The curve of resistance of the NiO-based memristor.

FIGURE 5 | The basic memristor-based architecture for the BCPNN learning rule.

FIGURE 6 | The memristor-based architecture for an HCU with a configuration of 6× 6.

state x is moving toward 1. The parameter j determines the
magnitude, and the parameter p controls the decrease rate of
the window function when approaching the boundaries. When
p approaches 0, the non-linearity is weakened.

3.3. Similarity Between BCPNN Synaptic
Traces and the Memristor Non-linearity
To explore the similarity of the BCPNN traces and the
memristor non-linearity, the curve of the BCPNN trace (take

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 7 | (A) The diagram of the sample-and-hold circuit. (B) The switch between the sampling state and the holding state, controlled by switches S1, S2, and S3.

FIGURE 8 | (A) The diagram of the multiplication circuit. (B) The diagram of the logarithmic circuit.

Z trace as an example) and the curves of the resistances of
two physical memristor devices are depicted in Figure 4.
As shown in Figure 4A, the Z trace of BCPNN increases
when there is a spike and decreases when there is no
spike. While Figures 4B,C show that the resistances of
the ferroelectric memristor (Chanthbouala et al., 2012) and

the NiO-based memristor (Li et al., 2018) both increase
when a positive voltage is applied and decrease when a
negative voltage is applied. Therefore, a similarity can
be found from Figure 4 that both the BCPNN trace
and the resistance of memristor change in a similar
non-linear manner.

Frontiers in Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

To further analyze the similarity between the BCPNN traces
and the memristor non-linearity, their respective formulas are
listed and compared. Take the Z trace of BCPNN as an example,
when there is a spike or not, the formula of the Z trace is
as follows:

S = 1 : Z(t) = A · Z(t − 1)+ B

S = 0 : Z(t) = A · Z(t − 1)
(16)

Correspondingly, when the voltage is positive or negative, the
formula for the internal state variable of the memristor is
as follows:

vpositive : w(t) = C · w(t − 1)+ D

vnegative : w(t) = E · w(t − 1)
(17)

where A, B, C, D and E are all constants expressed as:

{

A = 1− kz

B = kz

C = 1− dt · koff
W · (v(t)voff

− 1)
αoff

D = dt · koff · (
v(t)
voff

− 1)
αoff

E = 1+ dt · kon
W · (v(t)von

− 1)
αon

(18)

Comparing formulas (16) and (17), a significant similarity can
be observed, which also demonstrates the similarity between
BCPNN traces and memristor non-linearity. Consequently, it is
inspired that the non-linearity dopant drift phenomenon found
in the memristor can be utilized to simulate the traces in the
BCPNN learning rule.

4. MEMRISTOR-BASED ARCHITECTURE
AND IMPLEMENTATION

4.1. Memristor-Based Architecture
The BCPNN learning rule involves the update of synaptic traces,
the bias, and the weight. Figure 5 presents the basic memristor-
based architecture for the BCPNN learning rule. In the basic
structure, five memristors are used to mimic the traces Zi, Zj,
Pi, Pj, and Pij respectively, and a multiplication circuit is used to
calculate the product of Zi and Zj. Besides, five sample-and-hold
circuits are used to provide the converted voltage input for the
memristors, and three logarithmic circuits are used to calculate
the weight wij and the bias βj. The circuit design of the sample-
and-hold circuit, logarithmic circuit, and the multiplication
circuit will be explained in section 4.2.

As illustrated in Figure 5, the incoming presynaptic spike Si
is filtered into the Zi trace through a sample-and-hold circuit.
Then the Zi trace is further filtered into the Pi trace with the
same sample-and-hold circuit. Similarly, the postsynaptic spike
Sj is first filtered into the Zj trace, and then the Zj trace is filtered
into the Pj trace, both via a sample-and-hold circuit. Besides, the
Zi, Zj traces are multiplied with each other, and then the obtained
Zi × Zj is filtered into the Pij through a sample-and-hold circuit.
Last but not least, the Pij, together with the Pi and Pj is used
to calculate the weight Wij through a logarithmic circuit. The
Pj trace is calculated through a logarithmic circuit to obtain the
value of bias βj. It should be noted that although the E trace is

TABLE 1 | Parameters for the Simulations.

Parameters Value Parameters Value

BCPNN Model

kzi 1/11 kzj 1/11

kp 1/500 ε 0.01

Memristor Model

p 1 j 1

αoff 1 αon 1

voff 0.02 V von –0.02 V

Roff 200 k� Ron 2 k�

koff 21 nm/s kon –28 nm/s

W 1 nm winit 0 nm

dt 1 ms

removed in this work, it could be added without any issue by
adding another level in the cascade if the E trace is needed.

What’s more, the basic memristor-based architecture
described above can be reused and scaled to build a memristor-
based HCU that includes more synaptic traces. As a typical
case for demonstration, Figure 6 presents the memristor-based
architecture for an HCU with a 6 × 6 configuration. The HCU
contains a presynaptic vector of length 6, a postsynaptic vector
of length 6, and a synaptic matrix of size 6× 6.

It should be noted that the intention of Figure 6 is to illustrate
the scalability of the basic architecture in Figure 5. In this work,
we focus on simulating and implementing the basic memristor-
based architecture for the BCPNN learning rule in Figure 5.

4.2. Analog Circuit Implementation
4.2.1. Pre- and Post-synaptic Trace
The spike-based BCPNN is implemented with local synaptic state
variables Zi, Zj, Pi, Pj and Pij, which keep track of presynaptic,
postsynaptic and synaptic activities. The implementation of pre-
and post-synaptic trace Zi, Zj, Pi, Pj can be divided into two
cascaded processing stages. In the first stage, the incoming pre-
and post-synaptic spike trains Si, Sj are low pass filtered into the
Zi, Zj traces, with time constants τzi and τzj. In the second stage,
the Zi, Zj traces are low pass filtered into the Pi, Pj traces with time
constant τp. To implement the above two cascaded processing
stages, two sample-and-hold circuits are cascaded in the analog
circuit implementation. Figure 7A presents the diagram of the
sample-and-hold circuit. The voltage input is used to represent
the incoming spike trains Si, Sj. The input spike is either 0 or 1,
while the voltage input is either excitatory 193.2 mV or inhibitory
–149.9 mV. The input of the current source is constant, which is
used to transform the resistance of the memristor into a voltage
value. Switches S1, S2, S3 are used to control the switch between
the sampling state and the holding state. Three capacitors C1, C2,
C3, are used to store voltage. Besides, an operational amplifier is
utilized to amplify the voltage value.

Figure 7B illustrates the switch between the sampling state
and the holding state. When switches S1, S3 are on and switch
S2 is off, the circuit is in the sampling state. The constant current

Frontiers in Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 9 | Matlab simulation results with dense or sparse incoming spikes. (A) Dense Spikes: 5-s simulation. (B) Dense Spikes: 1-s simulation. (C) Sparse Spikes:

presynaptic spike train Si overlaps with postsynaptic spike train Sj . (D) Sparse Spikes: presynaptic spike train Si is seperated with postsynaptic spike train Sj .

of the current source passes through the memristor to obtain the
voltage, which is stored in capacitor C1. Since switch S3 is on,
the voltage stored in capacitor C2 is equal to the voltage stored
in capacitor C1. Therefore, the resistance of the memristor is
converted into the corresponding voltage value, and the voltage
value is stored in the capacitor C2, thus completing a sampling

process. When switch S2 is on and switches S1, S3 are off, the left
part of the circuit is responsible for the update of synaptic traces,
and the right part of the circuit is in the holding state. The voltage
source is the input excitation of the memristor, thereby changing
the resistance of the memristor. At the same time, the sampled
voltage stored in the capacitor C2 is amplified by the operational

Frontiers in Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

amplifier, and the obtained voltage is stored in the capacitor C3
as the input voltage of the next-stage circuit. Similarly, the second
stage adopts the same circuit, and the only difference is that the
voltage input of the second circuit is the output of the first circuit
rather than a voltage source.

4.2.2. Synaptic Trace Pij
The pre- and postsynaptic traces Zi, Zj, Pi, Pj can be obtained
with the mentioned sample-and-hold circuit. However, to get
the value of synaptic trace Pij, an extra multiplier is required to
calculate the product of Zi and Zj, as illustrated in formula (10).

As shown in Figure 8A, the multiplication circuit is based
on the classic Gilbert cell. The resistance of the two resistors
are both 10k�. The aspect ratios W/L for M1, M2, M3, M4
are 1µm/0.18µm, while the aspect ratios W/L for M5, M6 are
2µm/0.18µm. Besides, the bias voltage Vdc for Zi and Zj are 1.5
v and 1.3 v respectively.

4.2.3. Weight and Bias Computation
The three P traces Pi, Pj, Pij represent the exponentially weighted
moving averages of firing probability for presynaptic spikes,
postsynaptic spikes, and spike co-activation respectively, which
are used to compute the weight wij and the bias βj. The
calculation formula (5) for wij and βj can be further rewritten as:

Wij = log(Pij + ε2)− log(Pi + ε)− log(Pj + ε)

βj = log(Pj + ε)
(19)

The key to the calculation of wij and βj lies in the logarithmic
calculation of the sum of P trace and the constant ε, as shown
in formula (19). Therefore, a logarithmic calculation circuit is
required. As shown in Figure 8B, the sampling voltage of P trace
(Pi, Pj, Pij) is added with the constant parameter ε, then the sum
is logarithmically calculated through a triode and an operational
amplifier. Using such a circuit, the bias βj can be obtained with
an input pair of Pi and ε. Similarly, using three such circuits,
whose input pairs are Pij and ε2, Pi and ε, Pj and ε respectively,
the results of the three circuits can be used to get the value of
weight wij.

5. EXPERIMENTAL RESULTS

In this section, we conduct simulations to verify the feasibility
of the memristor-based implementation for the BCPNN learning
rule at both the algorithm level and the circuit level. From the
algorithmic perspective, we conducted simulations in Matlab.
From the circuit-level perspective, we conducted SPICE-level
simulations. The typical values of the parameters used in the
simulations are shown inTable 1, including the parameters of the
BCPNN model and the memristor model.

5.1. Matlab Simulation Results
To verify the effectiveness of the memristor-based solution for
the BCPNN learning rule from an algorithmic perspective, a
simulation of the Z traces, P traces, the weight wij, and the bias
βj is conducted using a model of the memristor device in Matlab.
In the simulation, the results of the memristor-based solution

TABLE 2 | Five-second simulation results with dense spikes in matlab.

Trace Mean error Max error RMSE Correlation coefficient

Zi 0.0000 0.0000 0.0000 1.0000

Zj 0.0000 0.0000 0.0000 1.0000

Pi 0.0015 0.0064 0.0019 0.9961

Pj 0.0013 0.0045 0.0015 0.9973

Pij 0.0001 0.0008 0.0002 0.9984

wij 0.0418 1.4643 0.0862 0.9972

βj 0.0408 0.2795 0.0489 0.9979

are compared with those of the BCPNN reference model. The
simulation lasts for 5 s with a simulation step of 1 ms, which is
the simulation step in BCPNN.

In Figure 9 and Table 2, the simulation results are visualized
and analyzed. Figure 9A presents the memristor-based 5-s
Matlab simulation results with dense incoming spikes. To take a
closer look at the difference between the memristor-based results
and the reference model of BCPNN, the period from 0 to 1 s in
Figure 9A has been enlarged, as shown in Figure 9B. With the
same incoming pre- and post-synaptic spikes, the Z traces (Zi,
Zj) of the memristor-based solution are the same as those of the
BCPNN model. Therefore, in the Z traces part, the Zi, Zj curves
of the two models completely coincide. As for the P traces (Pi, Pj,
Pij), the weight wij and the bias βj, the curves of the two models
are not the same but very close. In particular, simulations with
sparse spikes are carried out to observe the change of the weight
in the long-lasting silent state. When the presynaptic spike train
Si overlaps with the postsynaptic spike train Sj, the weight rises
and finally decays to 0 in the long-lasting silent state, as shown
in Figure 9C. Similarly, when the presynaptic spike train Si is
separated from the postsynaptic spike train Sj, the weight drops
and gradually returns to 0 in a long-lasting silent state, as shown
in Figure 9D. In the analysis of the simulation results, the average
error, maximum error, Root Mean Square Error (RMSE), and
correlation coefficient are used as the main evaluation metrics,
as shown in Table 2. Due to the nonlinearity of the memristor,
the memristor-based emulation of the BCPNN learning rule is
accurate with a correlation coefficient of over 0.99.

5.2. SPICE Simulation Results
To further validate the feasibility of the memristor-based design
from a circuit-level perspective, a SPICE-level simulation is
conducted for the analog circuit implementation. In the SPICE
simulation, the cascade circuit in Figure 5 is implemented,
where 5 sample-and-hold circuit modules, 3 logarithmic circuit
modules, and 1multiplication circuit module described in section
4.2 are used. The parameters for the BCPNN model and the
memristor model used in the SPICE simulation are the same
as those used in the Matlab simulation, as shown in Table 1.
It is worth noting that the timestep in the Matlab simulation
is 1 ms, while the timestep in the SPICE simulation is 100 ns
because of the limitation of the timestep for transistors in the
simulation environment.

Frontiers in Neuroscience | www.frontiersin.org 11 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

FIGURE 10 | Analog circuit implementation results with dense or sparse incoming spikes. (A) Dense Spikes: 5-s simulation. (B) Dense Spikes: 1-s simulation. (C)

Sparse Spikes: presynaptic spike train Si overlaps with postsynaptic spike train Sj . (D) Sparse Spikes: presynaptic spike train Si is seperated with postsynaptic spike

train Sj .

With the same input of pre- and post-synaptic spikes, the
results of the SPICE-level simulation are compared with those
of the reference model and the error is analyzed. Figure 10A
presents the SPICE simulation results with the same dense
incoming spikes as in theMatlab simulation. Similarly, the period

from 0 to 1 s of the simulation results is magnified to show
more details of the curves, as shown in Figure 10B. Besides,
Figures 10C,D also demonstrates that the weight increases
with a pair of correlated Si and Sj and decreases with a pair
of uncorrelated Si and Sj. In a long-lasting silent state, the

Frontiers in Neuroscience | www.frontiersin.org 12 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

weight returns to 0 eventually. As shown in Table 3, the SPICE
simulation results of memristor-based solution demonstrate a
fairly high degree of fit with the reference model of BCPNN,
and a correlation coefficient of over 0.98 is achieved. All in all,
it is validated that the memristor-based solution for BCPNN can
achieve a high degree of fit with the reference BCPNN model in
the analog circuit implementation.

6. DISCUSSION

In this paper, the BCPNN learning rule is mapped to a
memristor model and implemented with a memristor-based
architecture. The similarity between the nonlinearity of the
memristor and the trace update rule of BCPNN is explored
and analyzed. The strong correlation between the simulated
memristor-based BCPNN traces and the reference BCPNN traces
has been validated in the Matlab simulation with a correlation
coefficient over 0.99. Moreover, the analog circuit design of the
memristor-based architecture is implemented, and the SPICE-
level implementation for the BCPNN learning rule can achieve a
decent emulation effect with a correlation coefficient of over 0.98.

6.1. Cumulative Error Analysis
The cumulative error of the memristor-based implementation
can be analyzed from three aspects: the BCPNN algorithm, the
memristor-based solution for BCPNN, and the analog circuit
implementation. Firstly, as described before, BCPNN employs a
correlation-based learning rule, which is robust and tolerant to
the intrinsic noise and imprecision. BCPNN has proven to be
able to function using lower precision (Vogginger et al., 2015).
Secondly, as shown in Table 2, the memristor-based solution for
the BCPNN learning rule presents a good simulation effect with
the reference model. Moreover, it can be seen from Figure 9 that
the simulation effect does not deteriorate with the increasing
simulation time, which means that there is no significant increase
of cumulative error. Thirdly, the same is true for the analog
circuit implementation, as can be seen in Figure 10 and Table 3.
Therefore, the cumulative error will not affect the stability of the
memristor-based implementation for the BCPNN learning rule.

6.2. Setting of the Parameter ε

In the BCPNN model, the setting of the parameter ε has an
impact on the performance of BCPNN-based tasks, as shown
in Figure 11. With ε less than 0.001, good performance was
achieved in an associative memory task and a standard machine
learning classification benchmark (MNIST, LeCun et al., 1998).
With ε equal to 0.01, the associative memory task still maintained
good performance, but the performance in the MNIST task
dropped a lot. For the experiments in section 5, the parameter
ε was set to be 0.01, due to the limitation of the resolution of the
logarithmic circuit. Later work will seek a higher-precision analog
logarithmic circuit design or adopt digital methods to implement
the logarithmic calculation of weight. In this way, the value of
ε can be set to be less than 0.001, which can likely meet the
requirement of most BCPNN-based tasks.

It should be noted that the intention of Figure 11 is to
analyze the impact of the value of ε (a parameter in the BCPNN

TABLE 3 | Analog circuit implementation results of 5-s simulation with dense

spikes.

Trace Mean error Max error RMSE Correlation coefficient

Zi 0.0046 0.0909 0.0147 0.9830

Zj 0.0041 0.0909 0.0138 0.9830

Pi 0.0014 0.0067 0.0018 0.9965

Pj 0.0012 0.0056 0.0015 0.9974

Pij 0.0001 0.0011 0.0002 0.9981

wij 0.0432 1.5765 0.1003 0.9957

βj 0.0483 0.3733 0.0631 0.9971

FIGURE 11 | Software simulation of the impact of ε on BCPNN performance

in associative memory (AM) storage capacity and handwritten digit recognition

(MNIST). For AM, a network configuration of H×M = 20× 20 was tested for

storage of 400 patterns. For MNIST, all 10,000 test patterns were used.

learning rule) on the BCPNN performance from the perspective
of software simulation. For the details about the working
mechanism of the whole BCPNNnetwork and how it implements
associative memory tasks and practical recognition functions like
MNIST classification, these works can be referred to (Johansson
and Lansner, 2007; Meli and Lansner, 2013; Ravichandran
et al., 2020, 2021a). The realization of the whole memristor-
based BCPNN network and the algorithmic benchmarking is
outside the scope of this paper and is what we plan to do in
follow-up work.

6.3. Consideration of Device Variation
In this paper, we focus on mapping the BCPNN learning rule
to a memristor model and validating the feasibility of the
memristor-based implementation at the algorithm and circuit
level. However, in reality, memristor-based structures suffer from
device variations due to process variation and age degradation.
These two factors lead to two different types of variations in
the memristors devices (Park et al., 2013; Le et al., 2018). The
first is spatial variations, where different devices in the crossbar
react differently to the applied voltage, i.e., identical voltage pulse

Frontiers in Neuroscience | www.frontiersin.org 13 December 2021 | Volume 15 | Article 750458

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

can drive different devices to different resistances. The second is
temporal variations, where the behavior of the same device will
change over time. Neural networks can adapt to such variations
by taking them into account during the training of the network.
This method has been used in deep neural networks (Long
et al., 2019) and spiking neural networks (Querlioz et al., 2013).
The authors in Querlioz et al. (2013) identify non-supervised
learning as one of the fundamental benefits of the STDP learning
rule that helps when dealing with device variations. Previous
work indicates that the BCPNN learning rule is amenable to
low-precision implementation (Vogginger et al., 2015), and the
cortical memory models have proven quite robust and tolerant
to external as well as to intrinsic noise and imprecision in
weights and unit biases. In the follow-up work, we will focus
on the non-idealities of memristors and study to what extent
BCPNN’s robustness can absorb the non-idealities and what
other measures could be needed to cope with the non-idealities.

7. FUTURE WORK

As a follow-up to this paper, we plan to rigorously address the
issue of nonidealities in memristors. Specifically, its variance in
both space and time. We plan to quantify the extent to which
BCPNN’s robustness can cope with the variances and if that is not
sufficient, we will study how the behavior diverges and use these
experiments to devise techniques to counter the nonidealities.

Next to addressing nonidealities, the aspect on our priority
list is to make the implementation more complete. This
would involve implementing the control logic in CMOS, data
converters, drive circuits, etc. It is also obvious, a large stack
of memristor devices cannot be driven by single drivers. For
this reason, we plan to experiment with and find out fragments
of memristor fabrics that can be stacked with scalable drive
circuits. Besides the above, we might also need to implement
compensation logic to deal with nonidealities in the spirit
of pre-distortion.

Having a good grip on nonidealities and more complete
implementation, we will then be in a position to have a fair
comparison of performance and energy efficiency between a
memristor-based implementation of BCPNN and pure digital

implementations that we have been experimenting with (Stathis
et al., 2020; Yang et al., 2020). Besides providing realistic
comparison, such an experiment will also provide us with inputs
to create a more optimized implementation.

Designing memristor-based systems, at present, is a circuit-
level effort. This is cumbersome and not accessible to everyone.
We plan to develop, a Lego-inspired design flow called SiLago
(Hemani et al., 2017), to enable automation of memristor-based
designs from higher abstractions. Some work toward building
such infrastructure has happened for CMOS-based conventional
digital designs (Gonzalez et al., 2021; Hemani et al., 2021). We
plan to enhance this for the memristors.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

The initial idea proposed in the manuscript came from DS,
AL, and AH. DW performed experiments and was responsible
for the manuscript writing. JX proposed the methodology and
guided the overall experimental design. LZ and FL contributed
in the SPICE and Matlab simulations. ZZ provided supervision
on DW, JX, and FL’s work. AL, AH, DS, YY, PH, and ZZ
helped with the refinement of this work and the revision of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported in part by the National Natural Science
Foundation of China under Grant 61876039 and 62011530132
(NSFC-STINT project), and Shanghai Municipal Science and
Technology Major Project No. 2021SHZDZX0103 and No.
2018SHZDZX01, and in part by the Shanghai Platform for
Neuromorphic and AI Chip under Grant 17DZ2260900. In part,
this work was financed by themobility grant from STINT Sweden
Dnr: CH2019-8357.

REFERENCES

Biolek, Z., Biolek, D., and Biolkova, V. (2009). SPICE model of
memristor with nonlinear dopant drift. Radioengineering 18, 201–214.
doi: 10.1049/el.2010.0358

Chanthbouala, A., Garcia, V., Cherifi, R. O., Bouzehouane, K., Fusil, S.,
Moya, X., et al. (2012). A ferroelectric memristor. Nat. Mater. 11, 860–864.
doi: 10.1038/nmat3415

Chrysanthidis, N., Fiebig, F., Lansner, A., and Herman, P. (2021). Traces of
semantization-from episodic to semantic memory in a spiking cortical network
model. bioRxiv. doi: 10.1101/2021.07.18.452769

Chua, L. (1971). Memristor-The missing circuit element. IEEE Trans. Circ. Theory

18, 507–519. doi: 10.1109/TCT.1971.1083337
Ciregan, D., Meier, U., and Schmidhuber, J. (2012). “Multi-column deep neural

networks for image classification,” in 2012 IEEE Conference on Computer Vision

and Pattern Recognition (Providence, RI: IEEE), 3642–3649.

DeFelipe, J., Ballesteros-Yá nez, I., Inda, M. C., and Mu noz, A. (2006).
Double-bouquet cells in the monkey and human cerebral cortex with
special reference to areas 17 and 18. Prog. Brain Res. 154, 15–32.
doi: 10.1016/S0079-6123(06)54002-6

Farahini, N., Hemani, A., Lansner, A., Clermidy, F., and Svensson, C. (2014). “A
scalable custom simulation machine for the Bayesian confidence propagation
neural network model of the brain,” in 2014 19th Asia and South Pacific Design

Automation Conference (ASP-DAC) (Singapore: IEEE), 578–585.
Fiebig, F., Herman, P., and Lansner, A. (2020). An indexing theory for

working memory based on fast hebbian plasticity. eNeuro 7, 1–22.
doi: 10.1523/ENEURO.0374-19.2020

Fiebig, F., and Lansner, A. (2017). A spiking working memory model
based on Hebbian short-term potentiation. J. Neurosci. 37, 83–96.
doi: 10.1523/JNEUROSCI.1989-16.2016

Gonzalez, J. A., Hemani, A., and Stathis, D. (2021). “Synthesis of predictable
global NoC by abutment in synchoros VLSI design,” in Proceedings 15th

Frontiers in Neuroscience | www.frontiersin.org 14 December 2021 | Volume 15 | Article 750458

https://doi.org/10.1049/el.2010.0358
https://doi.org/10.1038/nmat3415
https://doi.org/10.1101/2021.07.18.452769
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1016/S0079-6123(06)54002-6
https://doi.org/10.1523/ENEURO.0374-19.2020
https://doi.org/10.1523/JNEUROSCI.1989-16.2016
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

IEEE/ACM International Symposium on Networks-on-Chip – NOCS 2021

(Virtual Conference).
Hemani, A., Jafri, S. M. A. H., and Masoumian, S. (2017). “Synchoricity and

NOCs could make billion gate custom hardware centric SOCs affordable,” in
Proceedings2017 Eleventh IEEE/ACM International Symposium on Networks-

on-Chip (NOCS) (Seoul), 1–10.
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-,r., Jaitly, N., et al.

(2012). Deep neural networks for acoustic modeling in speech recognition:
the shared views of four research groups. IEEE Signal Process Mag. 29, 82–97.
doi: 10.1109/MSP.2012.2205597

Huang, Y., Liu, J., Harkin, J., McDaid, L., and Luo, Y. (2021). An memristor-
based synapse implementation using BCM learning rule. Neurocomputing 423,
336–342. doi: 10.1016/j.neucom.2020.10.106

Hubel, D. H., andWiesel, T. N. (1977). The functional architecture of the macaque
visual cortex. Ferrier Lect. 198, 1–59. doi: 10.1098/rspb.1977.0085

Joglekar, Y. N., and Wolf, S. J. (2009). The elusive memristor: properties of basic
electrical circuits. Eur. J. Phys. 30, 661–675. doi: 10.1088/0143-0807/30/4/001

Johansson, C., and Lansner, A. (2007). Towards cortex sized artificial neural
systems. Neural Netw. 20, 48–61. doi: 10.1016/j.neunet.2006.05.029

Johnson, S., Sundararajan, A., Hunley, D., and Strachan, D. (2010). Memristive
switching of single-component metallic nanowires.Nanotechnology 21, 125204.
doi: 10.1088/0957-4484/21/12/125204

Kvatinsky, S., Friedman, E. G., Kolodny, A., and Weiser, U. C. (2013). TEAM:
ThrEshold adaptive memristor model. IEEE Trans. Circ. Syst. I Regul. Pap. 60,
211–221. doi: 10.1109/TCSI.2012.2215714

Kvatinsky, S., Ramadan, M., Friedman, E. G., and Kolodny, A. (2015). VTEAM:
a general model for voltage-controlled memristors. IEEE Trans. Circ. Syst. II

Express Briefs 62, 786–790. doi: 10.1109/TCSII.2015.2433536
Lansner, A., and Ekeberg, Ö. (1989). A one-layer feedback artificial neural

network with a Bayesian learning rule. Int. J. Neural Syst. 1, 77–87.
doi: 10.1142/S0129065789000499

Lansner, A., Hemani, A., and Farahini, N. (2014). “Spiking brain models:
computation, memory and communication constraints for custom hardware
implementation,” in 2014 19th Asia and South Pacific Design Automation

Conference (ASP-DAC) (Singapore), 556–562.
Lansner, A., and Holst, A. (1996). A higher order Bayesian neural network with

spiking units. Int. J. Neural Syst. 7, 115–128. doi: 10.1142/S0129065796000816
Le, B. Q., Grossi, A., Vianello, E., Wu, T., Lama, G., Beigne, E.,

et al. (2018). Resistive RAM with multiple bits per cell: array-level
demonstration of 3 bits per cell. IEEE Trans. Electron. Devices 66, 641–646.
doi: 10.1109/TED.2018.2879788

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. IEEE 86, 2278–2324.
doi: 10.1109/5.726791

Li, C., Graves, C. E., Sheng, X., Miller, D., Foltin, M., Pedretti, G., et al. (2020a).
Analog content-addressable memories with memristors. Nat. Commun. 11,
1–8. doi: 10.1038/s41467-020-15254-4

Li, J., Dong, Z., Luo, L., Duan, S., and Wang, L. (2020b). A novel versatile window
function for memristor model with application in spiking neural network.
Neurocomputing 405, 239–246. doi: 10.1016/j.neucom.2020.04.111

Li, Y., Chu, J., Duan, W., Cai, G., Fan, X., Wang, X., et al. (2018). Analog
and digital bipolar resistive switching in solution-combustion-processed nio
memristor. ACS Appl. Mater. Interfaces 10, 24598–24606. doi: 10.1021/acsami.
8b05749

Long, Y., She, X., and Mukhopadhyay, S. (2019). “Design of reliable DNN
accelerator with un-reliable ReRAM,” in 2019 Design, Automation Test in

Europe Conference Exhibition (DATE) (Florence: IEEE), 1769–1774.
Lundqvist, M., Herman, P., and Lansner, A. (2011). Theta and gamma power

increases and alpha/beta power decreases with memory load in an attractor
network model. J. Cogn. Neurosci. 23, 3008–3020. doi: 10.1162/jocn_a_00029

Meli, C., and Lansner, A. (2013). A modular attractor associative memory
with patchy connectivity and weight pruning. Network 24, 129–150.
doi: 10.3109/0954898X.2013.859323

Nishitani, Y., Kaneko, Y., and Ueda, M. (2015). Supervised learning using spike-
timing-dependent plasticity of memristive synapses. IEEE Trans. Neural Netw.

Learn. Syst. 26, 2999–3008. doi: 10.1109/TNNLS.2015.2399491
Park, J.-K., Kim, S.-Y., Baek, J.-M., Seo, D.-J., Chun, J.-H., and Kwon, K.-

W. (2013). “Analysis of resistance variations and variance-aware read circuit

for cross-point ReRAM,” in 2013 5th IEEE International Memory Workshop

(Monterey, CA: IEEE), 112–115.
Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D.

R., et al. (2009). Switching dynamics in titanium dioxide memristive devices. J.
Appl. Phys. 106, 074508. doi: 10.1063/1.3236506

Podobas, A., Svedin, M., Chien, S. W., Peng, I. B., Ravichandran, N. B., Herman,
P., et al. (2021). “Streambrain: an hpc framework for brain-like neural networks
on cpus, gpus and fpgas,” in Proceedings of the 11th International Symposium on

Highly Efficient Accelerators and Reconfigurable Technologies, 1–6.
Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated
neuromorphic network based on metal-oxide memristors. Nature 521, 61–64.
doi: 10.1038/nature14441

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to
device variations in a spiking neural network with memristive nanodevices.
IEEE Trans. Nanotechnol. 12, 288–295. doi: 10.1109/TNANO.2013.22
50995

Ravichandran, N. B., Lansner, A., and Herman, P. (2020). “Learning
representations in bayesian confidence propagation neural networks,” in
2020 International Joint Conference on Neural Networks (IJCNN) (Glasgow:
IEEE), 1–7.

Ravichandran, N. B., Lansner, A., and Herman, P. (2021a). “Brain-like approaches
to unsupervised learning of hidden representations-a comparative study,” in
International Conference on Artificial Neural Networks (Bratislava: Springer),
162–173.

Ravichandran, N. B., Lansner, A., and Herman, P. (2021b). Semi-supervised
learning with bayesian confidence propagation neural network. arXiv

[Preprint] arXiv:2106.15546. doi: 10.14428/esann/2021.ES2021-156
Sandberg, A., Lansner, A., Petersson, K., and Ekeberg. (2002). A Bayesian

attractor network with incremental learning. Network 13, 179–194.
doi: 10.1080/net.13.2.179.194

Stathis, D., Chaourani, P., Jafri, S. M. A. H, and Hemani, A. (2021). “Clock tree
generation by abutment in synchoros VLSI design,” in Proceedings 2021 Nordic

Circuits and Systems Conference (NorCAS) (Oslo).
Stathis, D., Sudarshan, C., Yang, Y., Jung, M., Weis, C., Hemani, A., et al. (2020).

eBrainII: a 3 kW realtime custom 3D DRAM integrated ASIC implementation
of a biologically plausible model of a human scale cortex. J. Signal Process Syst.
92, 1323–1343. doi: 10.1007/s11265-020-01562-x

Strukov, D. B., Snider, G. S., Stewart, D. R., andWilliams, R. S. (2008). The missing
memristor found. Nature 453, 80–83. doi: 10.1038/nature06932

Tully, P. J., Hennig, M. H., and Lansner, A. (2014). Synaptic and nonsynaptic
plasticity approximating probabilistic inference. Front. Synaptic. Neurosci. 6:8.
doi: 10.3389/fnsyn.2014.00008

Vogginger, B., Schüffny, R., Lansner, A., Cederström, L., Partzsch, J., and Höppner,
S. (2015). Reducing the computational footprint for real-time BCPNN learning.
Front. Neurosci. 9:2. doi: 10.3389/fnins.2015.00002

Wijesinghe, P., Ankit, A., Sengupta, A., and Roy, K. (2018). An all-memristor
deep spiking neural computing system: a step toward realizing the low-
power stochastic brain. IEEE Trans. Emerg. Top. Comput. Intell. 2, 345–358.
doi: 10.1109/TETCI.2018.2829924

Xu, J., Huan, Y., Yang, K., Zhan, Y., Zou, Z., and Zheng, L.-R. (2018). Optimized
near-zero quantization method for flexible memristor based neural network.
IEEE Access 6:29320–29331. doi: 10.1109/ACCESS.2018.2839106

Xu, J., Wang, D., Li, F., Zhang, L., Stathis, D., Yang, Y., et al. (2021). “A memristor
model with concise window function for spiking brain-inspired computation,”
in 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and

Systems (AICAS) (Washington DC: IEEE), 1–4.
Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Stewart, D. R., and Williams, R. S.

(2008). Memristive switching mechanism for metal/oxide/metal nanodevices.
Nat. Nanotechnol. 3, 429–433. doi: 10.1038/nnano.2008.160

Yang, Y., Stathis, D., Jord ao, R., Hemani, A., and Lansner, A. (2020).
Optimizing BCPNN learning rule for memory access. Front. Neurosci. 14:878.
doi: 10.3389/fnins.2020.00878

Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. (2020). Fully
hardware-implemented memristor convolutional neural network. Nature 577,
641–646. doi: 10.1038/s41586-020-1942-4

Yin, W., Kann, K., Yu, M., and Schütze, H. (2017). Comparative study of CNN and
RNN for natural language processing. arXiv [Preprint] arXiv:1702.01923.

Frontiers in Neuroscience | www.frontiersin.org 15 December 2021 | Volume 15 | Article 750458

https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1016/j.neucom.2020.10.106
https://doi.org/10.1098/rspb.1977.0085
https://doi.org/10.1088/0143-0807/30/4/001
https://doi.org/10.1016/j.neunet.2006.05.029
https://doi.org/10.1088/0957-4484/21/12/125204
https://doi.org/10.1109/TCSI.2012.2215714
https://doi.org/10.1109/TCSII.2015.2433536
https://doi.org/10.1142/S0129065789000499
https://doi.org/10.1142/S0129065796000816
https://doi.org/10.1109/TED.2018.2879788
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/s41467-020-15254-4
https://doi.org/10.1016/j.neucom.2020.04.111
https://doi.org/10.1021/acsami.8b05749
https://doi.org/10.1162/jocn_a_00029
https://doi.org/10.3109/0954898X.2013.859323
https://doi.org/10.1109/TNNLS.2015.2399491
https://doi.org/10.1063/1.3236506
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.14428/esann/2021.ES2021-156
https://doi.org/10.1080/net.13.2.179.194
https://doi.org/10.1007/s11265-020-01562-x
https://doi.org/10.1038/nature06932
https://doi.org/10.3389/fnsyn.2014.00008
https://doi.org/10.3389/fnins.2015.00002
https://doi.org/10.1109/TETCI.2018.2829924
https://doi.org/10.1109/ACCESS.2018.2839106
https://doi.org/10.1038/nnano.2008.160
https://doi.org/10.3389/fnins.2020.00878
https://doi.org/10.1038/s41586-020-1942-4
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. Mapping BCPNN Learning to Memristors

Zhao, Z., Qu, L., Wang, L., Deng, Q., Li, N., Kang, Z., et al. (2020).
A memristor-based spiking neural network with high scalability and
learning efficiency. IEEE Trans. Circ. Syst. II Express Briefs 67, 931–935.
doi: 10.1109/TCSII.2020.2980054

Zhou, E., Fang, L., Liu, R., and Tang, Z. (2019). Area-efficient memristor spiking
neural networks and supervised learning method. Sci. China Inf. Sci. 62, 1–3.
doi: 10.1007/s11432-018-9607-8

Zidan, M. A., Jeong, Y., Lee, J., Chen, B., Huang, S., Kushner, M. J., et al. (2018).
A general memristor-based partial differential equation solver. Nat. Electron. 1,
411–420. doi: 10.1038/s41928-018-0100-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Wang, Xu, Stathis, Zhang, Li, Lansner, Hemani, Yang, Herman

and Zou. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 December 2021 | Volume 15 | Article 750458

https://doi.org/10.1109/TCSII.2020.2980054
https://doi.org/10.1007/s11432-018-9607-8
https://doi.org/10.1038/s41928-018-0100-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Mapping the BCPNN Learning Rule to a Memristor Model
	1. Introduction
	2. Preliminaries
	2.1. BCPNN
	2.1.1. BCPNN Overview
	2.1.2. BCPNN Learning Rule
	2.1.3. BCPNN Application and Implementation

	2.2. The Memristor

	3. A Memristor-Based BCPNN Learning Rule
	3.1. BCPNN Model
	3.2. The Memristor Model
	3.3. Similarity Between BCPNN Synaptic Traces and the Memristor Non-linearity

	4. Memristor-Based Architecture and Implementation
	4.1. Memristor-Based Architecture
	4.2. Analog Circuit Implementation
	4.2.1. Pre- and Post-synaptic Trace
	4.2.2. Synaptic Trace Pij
	4.2.3. Weight and Bias Computation

	5. Experimental Results
	5.1. Matlab Simulation Results
	5.2. SPICE Simulation Results

	6. Discussion
	6.1. Cumulative Error Analysis
	6.2. Setting of the Parameter
	6.3. Consideration of Device Variation

	7. Future Work
	Data Availability Statement
	Author Contributions
	Funding
	References

