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Abstract

Where classical epidemiology has proven to be inadequate for surveillance and control of foodborne pathogens, molecular 
epidemiology, using genomic typing methods, can add value. However, the analysis of whole genome sequencing (WGS) data 
varies widely and is not yet fully harmonised. We used genomic data on 494 Listeria monocytogenes isolates from ready-to-eat 
food products and food processing environments deposited in the strain collection of the German National Reference Labora-
tory to compare various procedures for WGS data analysis and to evaluate compatibility of results. Two different core genome 
multilocus sequence typing (cgMLST) schemes, different reference genomes in single nucleotide polymorphism (SNP) analysis 
and commercial as well as open-source software were compared. Correlation of allele distances from the different cgMLST 
approaches was high, ranging from 0.97 to 1, and unified thresholds yielded higher clustering concordance than scheme-
specific thresholds. The number of detected SNP differences could be increased up to a factor of 3.9 using a specific reference 
genome compared with a general one. Additionally, specific reference genomes improved comparability of SNP analysis results 
obtained using different software tools. The use of a closed or a draft specific reference genome did not make a difference. 
The harmonisation of WGS data analysis will finally guarantee seamless data exchange, but, in the meantime, knowledge on 
threshold values that lead to comparable clustering of isolates by different methods may improve communication between 
laboratories. We therefore established a translation code between commonly applied cgMLST and SNP methods based on 
optimised clustering concordances. This code can work as a first filter to identify WGS-based typing matches resulting from 
different methods, which opens up a new perspective for data exchange and thereby accelerates time-critical analyses, such 
as in outbreak investigations.

DATA SUMMARY
The authors confirm all supporting data, codes and protocols 
have been provided within the article or through supplemen-
tary data files.

Sequencing data have been deposited in the European 
Nucleotide Archive (ENA) at EMBL–EBI under the acces-
sion number PRJEB38495, except for isolate 16-LI00360-0, 
which is available under the accession number ERS4418852 
(SAMEA6659390).

INTRODUCTION
Listeria monocytogenes is the causative agent of the infectious 
disease listeriosis. While infections may be asymptomatic in 
otherwise healthy individuals, vulnerable population groups, 
like immunocompromised or elderly people, pregnant women 
and newborns, are likely to suffer from severe clinical symp-
toms, sometimes with a fatal outcome [1]. Although listeriosis 
is comparatively rare, a hospitalisation rate of 98.6 % and a 
case fatality rate of 13.8 % in the European Union (EU) in 
2017 clearly show the serious public health hazards [2]. The 
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vast majority of L. monocytogenes infections are foodborne 
[3]. Consequently, tracing back clinical cases to contaminated 
food products is one of the key requirements for disease 
control. However, classical epidemiology alone has proven 
to be inappropriate for that purpose. The main reasons for this 
are the very broad range of potentially affected food vehicles 
and the long incubation period and severity of disease, which 
complicate patient interviews on food consumption [4–7]. As 
a result, molecular typing methods have long been applied in 
L. monocytogenes surveillance and outbreak investigations. 
During recent years, whole genome sequencing (WGS) has 
revolutionised this field through its unprecedented resolution 
[8–11].

There are basically two different approaches for WGS-based 
typing. The first approach is a gene-by-gene comparison 
where the analysis focuses on allele differences. An example 
of this approach is core genome multilocus sequence typing 
(cgMLST), an extension of classical MLST to a larger set of 
genes that is shared among members of a single species. In 
the case of L. monocytogenes, two main cgMLST schemes 
are currently in use. One comprises 1701 loci and is built 
into the software Ridom SeqSphere+ [12], whereas the 
other one comprises 1748 loci and is built into the software 
BioNumerics [13]. This incorporation of cgMLST schemes 
into commercial tools with a graphic user interface has the 
great advantage of a straightforward operation, including for 
users lacking bioinformatics skills. However, cost-intensive 
software licenses might not be affordable for all users. In 
these cases, it is helpful that both cgMLST schemes are also 
publicly available and can be used within open-source tools 
such as the Blast-score-ratio-Based Allele Calling Algorithm 
(chewBBACA [14]). Although a little bioinformatics training 
is required, tools like this provide a low-cost alternative. 
The second approach for WGS-based typing is the single 
nucleotide polymorphism (SNP) analysis. In this case, single 
nucleotide variations are used as a distance measure between 
bacterial sequences. Both, commercial (e.g. BioNumerics) 
and open-source (e.g. Snippy [15]) solutions are available for 
analysis. SNP analysis is commonly based on a comparison 
against a selected reference genome. However, the genome 
chosen as reference can affect analysis results [16, 17].

For effective surveillance and control of human listeriosis, not 
only comprehensive molecular typing of L. monocytogenes 
isolates from food, food processing environments and clinical 
cases, but also communication of results between different 
sectors (food safety, public health) and countries is needed. 
However, procedures for WGS-based typing are diverse 
and not yet fully harmonised. Starting from the sequencing 
protocol through quality filtering (e.g. read trimming) to algo-
rithms for assembly, mapping or variant calling and finally 
distance assessment, there is considerable space for variation. 
The ideal way to go for the future will be the harmonisation 
of all these methods between different laboratories to enable 
the seamless exchange of analysis results. To date, several 
international initiatives have been commenced to deal with 
this issue [18–20]. However, until a generally accepted solu-
tion has been found, an interim solution is urgently needed.

In order to assess the transferability of results, we compared 
the most commonly used WGS-based typing methods for 
L. monocytogenes. Our aim was to provide a translation 
code as a first filter for the identification of typing matches 
resulting from the different methods. In addition, we describe 
a procedure that can also be applied to the comparison of 
other methods.

METHODS
Study dataset
A total of 494 isolates from ready-to-eat food products and 
food processing environments sampled in official controls in 
2016 were selected from the strain collection of the German 
National Reference Laboratory for L. monocytogenes as 
a representative dataset for the population structure of  
L. monocytogenes in the food chain in Germany.

Bacterial strain cultivation
Pure cultures of L. monocytogenes isolates were routinely 
stored at −80 °C in brain heart infusion medium with 20 v/v 
% glycerol. Prior to downstream analysis, bacteria were plated 
onto Sheep Blood Agar and incubated overnight at 37 °C.

Genomic DNA extraction and whole genome 
sequencing (WGS)
Overnight cultures of L. monocytogenes strains were 
harvested and lysed following the PulseNet standardised 
laboratory protocol for WGS of Gram-positive bacteria 
(https://www.​cdc.​gov/​pulsenet/​pdf/​pnl32-​miseq-​nextera-​
xt.​pdf). For DNA extraction, the QIAamp DNA Mini Kit 
(Qiagen) was used following the manufacturer’s instruc-
tions. Purity of extracted DNA (OD260:280 and OD260:230 ratio) 
was measured with the NanoDrop spectrophotometer  
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(Thermo Fisher Scientific) and extracted DNA was quantified 
using the Qubit dsDNA BR Assay Kit with a Qubit 2.0 fluo-
rometer (Invitrogen). Sequencing libraries were constructed 
with the Nextera XT Sample Preparation Kit (Illumina) for 
sequencing in paired-end mode with 2×300 bp reads on an 
Illumina MiSeq sequencer using the MiSeq Reagent v3 600-
cycle Kit (Illumina).

Sequencing quality control and genome assembly
Raw sequencing reads were quality checked using FastQC 
version (v) 0.11.5 [21] and trimmed using Trimmomatic v 
0.36 [22]. Subsequently, trimmed reads were assembled and 
analysed using the pipeline Assembly-based QUality Assess-
ment for Microbial Isolate Sequencing (AQUAMIS) v 0.9.0 
at default parameters [23]. This pipeline includes the tools 
unicycler v 0.4.4 for assembly and assembly polishing, mash v 
2.1 for reference search, and quast v 4.6.3 for assembly quality 
control. Genome assemblies obtained from the AQUAMIS 
pipeline served as a starting point for cgMLST-based typing, 
whereas trimmed reads were used as the basis for SNP 
analysis. Detailed information on tools and parameters can 
be found in Supplementary File S1 (available in the online 
version of this article).

Classical multilocus sequence typing (MLST)
Classical seven-gene MLST sequence types (STs) and corre-
sponding MLST clonal complexes (CCs) were determined 
from assembled draft genomes according to the scheme avail-
able at https://​bigsdb.​pasteur.​fr/​listeria/​listeria.​html using 
Ridom SeqSphere+ (Ridom).

Closed genomes of L. monocytogenes available at NCBI were 
analysed with the software mlst [24] and a reference genome 
was chosen for each MLST CC (https://​github.​com/​crarlus/​
refseq-​MLST/).

Core genome (cg) MLST analysis
Ridom SeqSphere+
Assembled draft genomes were analysed in Ridom 
SeqSphere+with the ‘Process assembled genome data’ 
function at default parameters for L. monocytogenes. The 
integrated 1701 loci scheme was used [12]. A cgMLST 
allele coverage of at least 98 % was set as quality threshold, 
assuming that this value is representative of the entire 
genome quality [25]. If the threshold was not reached, 
sequencing was repeated. Resulting allele profiles were 
exported in tsv format. This method will be referred to as 
Ridom_Ruppitsch.

BioNumerics
The WGS tools plugin of BioNumerics v 7.6.3 (Applied 
Maths) was used for analysis with the integrated 1748 loci 
cgMLST scheme [13]. Resulting cgMLST allele profiles were 
exported in tsv format. This method will be referred to as 
BioNumerics_Moura.

chewBBACA
chewBBACA is a freely available software suite that allows 
scheme creation, allele calling and scheme evaluation [14]. 
Allele calling starts with the identification of coding sequences 
(CDS) using prodigal [26]. If an exact match to the allele data-
base is found, the corresponding allele number is assigned. 
Otherwise, a blastp score ratio (BSR) approach evaluates 
whether a novel allele is present, or no allele can be inferred. 
Newly inferred alleles are updated in a local allele database.

Here, we used the pipeline chewieSnake [27] that calls alleles 
for a set of samples using chewBBACA v 2.0.12, combines 
their allele profiles and infers an allele distance matrix as well 
as a minimum spanning tree using GrapeTree v 1.4.1 [28]. 
Subsequently, samples can be hierarchically clustered and a 
cgMLST report is compiled. As we used chewieSnake with the 
cgMLST scheme developed by Ruppitsch and colleagues [12], 
this method will be referred to as chewBBACA_Ruppitsch.

SNP analysis
Reference genomes
The application of three different kinds of reference genomes 
was compared: 1) general, species-specific, closed; 2) 
subgroup-specific, closed; 3) subgroup-specific, draft. The 
genome of the L. monocytogenes reference strain EGDe 
(NC_003210.1) was used as general reference. Isolates were 
assigned to subgroups according to MLST CCs. As far as 
possible, MLST CC-specific closed reference genomes were 
selected as described by the European Food Safety Authority 
[16]. To identify reference genomes for those MLST CCs for 
which the European Food Safety Authority had not specified 
one, closed genomes of L. monocytogenes available at NCBI 
were subjected to MLST CC determination. In the case of 
more than one closed genome per MLST CC, the reference 
genome was selected randomly. For MLST CC-specific draft 
reference genomes, draft genomes with the best assembly 
quality (highest N50, lowest number of contigs) per MLST CC 
were selected from our dataset. Only MLST CCs containing 
more than five isolates and with a closed reference genome 
available in NCBI were included in MLST CC-specific 
analyses.

BioNumerics
For SNP analysis in BioNumerics, the basic version of BioNu-
merics v 7.6.3 without the WGS tools plugin was used. Strict 
filtering of SNPs at software default settings was applied. This 
method will be referred to as SNP_BioNumerics.

Snippy
Snippy was chosen as a representative open-source SNP 
pipeline since it is recognised as one of the most reliable SNP 
pipelines [29].

SNPs were detected with the variant calling pipeline snippy-
snake [30]. In short, SNPs were called with snippy v 4.0 [15], 
the core alignment was determined using snippy-core and the 
SNP distance matrix using snp-dists [31]. Subsequently, the 
pipeline clustered all samples into cluster types for a range of 
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thresholds using hierarchical clustering and generated a SNP 
report. This method will be referred to as SNP_Snippy.

Filtering of isolates for MLST CC-specific analyses
While generally applicable typing methods may give an 
adequate overview, it can be useful to repeat certain analyses 
only for a subgroup of isolates to gain deeper insights. We used 
MLST CC-specific analysis for this purpose. However, isolates 
belonging to different MLST CCs may vary in diversity, for 
example depending on the number of individual STs within 
the CC. This can result in exceptionally large SNP distances, 
which will distort the results. Actually, the establishment of 
the largest core genome is required for detailed SNP analysis. 
Therefore, after initial SNP analysis, very distantly related 
isolates within each MLST CC were identified (>800 SNPs 
in SNP_BioNumerics and >18 000 SNPs in SNP_Snippy) and 
excluded from further MLST CC-specific analyses.

Properties and correlations of distance matrices
For all selected cgMLST methods, distance matrices were 
calculated with GrapeTree v 1.4.1 [28] (using the option 
‘--missing 0’ to deal with missing loci) based on allele profiles. 
Distance matrices for SNP analyses were used as yielded from 
primary analysis.

All downstream analyses from distance matrices were 
performed in R using the packages plyr, reshape2 and ggplot2. 
Distance matrices were linearized and sorted to compare pair-
wise distances. For MLST CC-specific analyses, the resulting 
sub-settings of distance matrices per MLST CC were merged 
to one. Boxplots were generated to visualise the magnitude 
of detected distances and Spearman correlation was used to 
quantify the similarity of pairwise distances between different 
methods. Correlations were visualised using the package 
corrplot.

Concordance of clustering
Distance matrices were used for single linkage clustering 
at different threshold values in R. The clustering results 
dependent on methods and thresholds served as inputs for 
the Comparing Partitions online tool available at http://www.​
comparingpartitions.​info [32]. The adjusted Wallace coeffi-
cient was selected as pairwise agreement measure because 
it directly indicates the concordance between clusters. The 
coefficient can be regarded as the probability that a cluster 
calculated by method 1 matched that calculated by method 
2, and vice versa. Always two adjusted Wallace coefficients 
deriving from two comparison directions were determined.

Establishment of a translation code between methods
We assessed the degree of concordance between three different 
cgMLST methods (comprising three software solutions and 
two cgMLST schemes) and six different SNP methods (two 
software solutions with three types of reference genomes 
each). Our aim was to define threshold values that can be 
communicated for a comparable interpretation of clustering 
results. As they are epidemiologically well defined, we chose 
two published allele distance thresholds for the cgMLST 

schemes (seven and ten allele differences, referred to in 
previous work [12, 13]) as references to establish our transla-
tion code. More precisely, the clustering information derived 
from one of the three cgMLST methods with one of the two 
threshold values was set as a reference and was compared with 
the clustering at various threshold values in a comparison 
method (other cgMLST method or SNP method) using the 
Comparing Partitions online tool as described above. The 
threshold value of the comparison method, at which the sum 
of the two adjusted Wallace coefficients reached a maximum, 
was defined as the ‘adjusted threshold’.

Practical test of the translation code
The translation code was tested with the cgMLST dataset 
retrieved from BioNumerics_Moura at an allele threshold of 
seven as reference method. The five largest clusters, for which 
also MLST CC-specific analyses had been performed, were 
selected. Thus, one cgMLST cluster each from MLST CC9, 
CC121, CC3, CC8 and CC2 was included in our analysis. One 
isolate per cgMLST cluster was randomly selected and used 
for cluster search at adjusted threshold values in the other 
methods. This approach reflects the generally valid workflows 
during international disease outbreaks, when the sequence of 
an individual reference isolate is shared between laboratories 
as the basis for local cluster identification.

RESULTS
Quality control
All 494 isolates were sequenced with coverage between 32 
and 231 (median 99). Raw reads could be assembled into 15 
to 72 contigs (median 29) with an N50 between 9.6×104 and 
1.5×106 (median 3.6×105). Median cgMLST allele coverage 
using Ridom SeqSphere+was 99.8 %.

Comparison based on distance matrices
Generally applicable methods
In cgMLST analysis, pairwise allele distance between isolates 
ranged from 0 to 1687 (median 1347) using Ridom_Ruppitsch, 
from 0 to 1687 (median 1351) using chewBBACA_Ruppitsch 
and from 0 to 1740 (median 1409) using BioNumerics_Moura. 
The differences in pairwise distances resulting from Ridom_
Ruppitsch and BioNumerics_Moura varied between −89 and 
24 (median −55), from chewBBACA_Ruppitsch and BioNu-
merics_Moura between −87 and 27 (median −54), and from 
Ridom_Ruppitsch and chewBBACA_Ruppitsch between −12 
and 4 (median −1). Method correlations were 0.97 and 0.98 
using different cgMLST schemes and 1 with the same scheme 
(Fig. 1). A visual comparison between distances derived from 
different methods can be found in Supplementary file 2.

Pairwise SNP distance between isolates with EGDe as the 
reference genome ranged from 0 to 12 694 (median 3504) 
using SNP_BioNumerics and from 0 to 107 646 (median 
26 884) using SNP_Snippy. Method correlation was 0.89.

Correlations of cgMLST_Ridom_Ruppitsch and 
cgMLST_chewBACCA_Ruppitsch were 0.89 and 0.88 to 
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SNP_Snippy_EGDe and 0.91 and 0.9 to SNP_BioNumerics_
EGDe, respectively (Fig. 1). Correlation of cgMLST_BioNu-
merics_Moura was 0.85 to SNP_Snippy_EGDe and 0.9 to 
SNP_BioNumerics_EGDe.

Subgroup (MLST CC)-specific methods
The 494 isolates belonged to 39 different MLST CCs (Tables 
S1 and S2), out of which 19 MLST CCs contained at least 
five isolates, but a closed reference genome was only avail-
able for 16 of them at NCBI. Accordingly, 409 isolates were 

selected for initial MLST CC-specific analyses. After filtering 
out those isolates with too large SNP distances within an 
MLST CC, 394 isolates from 15 different MLST CCs were 
left (Table 1). Filtered isolates came from CC8 (n=3), CC4 
(n=1) and CC14 (n=9). As for CC14, only two isolates were 
left after filtering, the entire MLST CC was excluded from 
further analyses.

In SNP_BioNumerics, use of an MLST CC-specific closed 
reference genome led to pairwise SNP distances between 0 
and 292 (median 68), whereas use of a specific draft reference 
genome yielded 0 to 290 (median 70) pairwise SNP distances 
(Fig. 2). Applying SNP_Snippy, SNP distances with a specific 
closed reference genome ranged between 0 and 622 (median 
68) and between 0 and 714 (median 69) with a specific draft 
reference genome. In the MLST CC-specific analyses with 
EGDe as a reference, SNP distances were 0 to 64 (median 
17) using SNP_BioNumerics and 0 to 240 (median 59) using 
SNP_Snippy.

The median ratio of pairwise distances resulting from SNP 
analysis with the same software but with a closed or draft 
specific reference genome was 1. The median ratio between 
a closed or a draft specific reference and EGDe was 3.8 and 
3.9, respectively, using SNP_BioNumerics, and 1.2 using 
SNP_Snippy. When EGDe was used as reference genome, the 
median ratio of pairwise distances between SNP_Snippy and 
SNP_BioNumerics was 3.1.

Overall, there was near perfect (0.99) to perfect (1) correla-
tion between different software and closed or draft specific 
reference genome usage in SNP analysis. Lowest method 
correlations were found with SNP_BioNumerics when using 

Fig. 1. Correlations of generally applicable typing methods, based on 
linearized distance matrices. Colour scale indicates the strength of 
correlation.

Table 1. MLST CCs and references used for MLST CC-specific analyses (sorted by frequency in our dataset)

MLST CC Closed reference (GenBank Accession) Draft reference Coverage Contigs

CC121 HG813249 16-LI01132-0 91 21

CC9 FR733649 16-LI00873-0 77 17

CC8 CP006862 16-LI00415-0 84 19

CC2 CP006046 16-LI01038-0 119 25

CC3 CP006594 16-LI00227-0 148 27

CC1 AE017262 16-LI00258-0 61 19

CC37 CP011397 16-LI00295-0 113 20

CC6 CP006047 16-LI00782-0 85 16

CC5 CP006592 16-LI00750-0 133 21

CC101 CP025221 16-LI00284-0 117 20

CC18 CP020830 16-LI00319-0 119 15

CC155 CP002004 16-LI00862-0 90 25

CC224 CP016629 16-LI00391-0 91 24

CC7 CP002002 17-LI00007-0 112 21

CC4 FM242711 16-LI00480-0 93 27
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EGDe as reference (0.77 to 0.85). All other correlations were 
larger than 0.96 (Fig. 3).

Distances to the reference and size of the core genome
When having a more detailed look into the results from 
SNP_Snippy (Table S3), isolates had a smaller SNP 
distance to the draft than to the closed MLST CC-specific 
reference genomes. On the one hand, more SNP positions 
were missing when the isolate reads were mapped to the 
closed references. On the other hand, however, the size of 
the closed reference genomes tended to be larger than that 
of the draft ones (by 26 kbp on average). Altogether, the 
core genome size (defined as the number of positions in 
the reference that are neither missing nor masked in any 
of the isolate’s mapping to the reference) was in the end 
very similar between draft (median size 2 809 303 bp) and 
closed reference (median size 2 802 508 bp) genomes. In 
SNP_Snippy, the isolates had a distance of 25 000 SNPs to 
the EGDe reference on average. Furthermore, we observed 
a substantial increase in the number of missing as well as 
masked positions compared with the specific reference 

Fig. 2. Boxplot of SNP distances from BioNumerics and Snippy using 
different reference genomes for SNP analysis (applied to a subset of 
394 isolates of 15 different MLST CCs), based on linearized distance 
matrices.

Fig. 3. Correlations of MLST CC-specific typing methods (applied to a subset of 394 isolates of 15 different MLST CCs), based on linearized 
distance matrices. Colour scale indicates the strength of correlation.
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genomes. Therefore, the core genome size when using EGDe 
as reference was only 2 281 008 bp.

Comparison of clustering
cgMLST methods
To compare the clustering of isolates, threshold values 
published for the two cgMLST schemes were applied to the 
different cgMLST approaches. For the Ruppitsch scheme this 
is ten alleles [12], and for the Moura scheme seven alleles [13] 
between neighbouring isolates. Agreement was perfect when 
comparing clusters at a seven-allele threshold with clusters 
at a ten-allele threshold (adjusted Wallace coefficient 100 %). 
The other way around (from ten to seven), however, concord-
ance was only between 70.4 and 86.5 % (Fig. 4). When using 
the same threshold values for different methods, overall 
concordance was higher than with different thresholds. 
At a threshold of seven alleles, concordance was 97.6 and 
100 % when using the same cgMLST scheme in different 
software and between 90.6 and 92.8 and 99.3 % (depending 
on the direction) for different schemes. At a threshold of ten 
alleles, concordance was 99.8 and 100 % when using the same 
cgMLST scheme in different software and between 89.2 and 
89.4 and 99.9 % (depending on the direction) for different 
schemes.

Optimisation of clustering and translation code between 
cgMLST and SNP methods
The cgMLST clustering at described threshold values 
[12, 13] was set as the reference for the adjustment of clus-
tering thresholds for other methods. Our idea was to define 
threshold values, which allow for the communication of clus-
tering information between laboratories. Table 2 displays the 
resulting translation code, which can be applied as follows: 
in a case in which Laboratory A uses cgMLST analysis with 
BioNumerics_Moura at the published allele threshold of 
seven, an allele threshold of eight in cgMLST analysis with 
Ridom_Ruppitsch used in Laboratory B would result in the 
best cluster agreement. The corresponding adjusted Wallace 
coefficients, 97.3 and 98.2 %, can be found in Fig. 5a. If Labo-
ratory C uses SNP analysis with Snippy_EGDe, a threshold 
of 13 SNPs should be applied to yield comparable clustering 
to Laboratory A. If Laboratory C, however, uses a different 
reference genome in SNP analysis, for example a draft MLST 
CC-specific one (Snippy_draft), a threshold of 12 SNPs will 
be best suited to fit the clustering from Laboratory A.

Although use of identical thresholds in different cgMLST 
methods already led to higher concordance of clustering 
than use of different cgMLST scheme-specific thresholds, 
slight adjustment of thresholds (±1 allele) could increase 

Fig. 4. Matrix of adjusted Wallace coefficients (direction-dependent values) for cgMLST methods at common thresholds (seven and ten 
alleles). Colour scale indicates percentage of concordance.
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concordance even more (Table 2, Fig. 5). For example, clus-
tering at an allele threshold of seven in BioNumerics_Moura, 
compared with Ridom_Ruppitsch setting a threshold of eight 
instead of seven alleles, led to a method concordance of at 
least 97.3 % (Fig. 5a) instead of only 90.6 % (Fig. 4).

Overall, at an allele threshold of seven, achievable method 
concordance with cgMLST and SNP methods was at least 
90.9 % (Fig. 5a) and at a threshold of ten alleles in cgMLST at 
least 77.9 % (Fig. 5b).

When using a general reference genome (EGDe) in SNP anal-
ysis, threshold values for optimised clustering concordance 
with cgMLST were lower than with an MLST CC-specific 
reference. Additionally, thresholds differed between SNP_
Snippy_EGDe and SNP_BioNumerics_EGDe, but threshold 
values were similar for MLST CC-specific approaches irre-
spective of whether closed or draft references or the two 
different software tools were applied (Table 2).

Practical test of the translation code
For the cgMLST cluster from CC121 retrieved from BioNu-
merics_Moura at an allele threshold of seven (16 isolates), 
clustering differed by one to six isolates (median 3.5) when 
using other methods (Fig. 6).

In contrast, for the cgMLST clusters from CC3 (15 isolates) 
and CC2 (seven isolates), agreement was perfect, apart from 
a single isolate that was missing in the clustering results from 
SNP_Snippy_EGDe. For the clusters from CC9 (26 isolates) 
and CC8 (eight isolates), exactly the same isolates were 
found to form a cluster at the adjusted threshold values in 
all methods.

DISCUSSION
cgMLST
Use of the Moura cgMLST scheme mostly resulted in higher 
allele distances than the Ruppitsch scheme. Given that the 
number of loci included in the two schemes differs by 47, 
this was to be expected. Overall correlation of the different 
cgMLST approaches was high, probably due to the 1261 loci 
overlap between the two schemes [13]. However, use of the 
Ruppitsch scheme either in Ridom SeqSphere+or in chewB-
BACA resulted in slightly different allele distances. This can 
be attributed to differences in the way the two algorithms 
work. While the query sequence is compared to the loci via a 
nucleotide blast (BLASTn) in Ridom SeqSphere+, chewB-
BACA is centred on the prediction of CDS and a subsequent 
protein blast (BLASTp). The idea behind making a blastp 
instead of a blastn is that silent mutations are ignored 
because they are biologically irrelevant [14]. However, a major 
problem with blastp arises from frameshifts – either biologi-
cally present or due to assembly errors – which can change 
an entire protein (all amino acids). In a blastn approach, a 
frameshift is perceived as a single nucleotide change.

Apart from the pure distances between isolates, in outbreak 
investigations especially, clustering of isolates is important to Ta
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provide enough evidence for potential epidemiological links. 
Due to its ease of use and the possibility of a unified nomen-
clature, gene-by-gene approaches are recommended for that 
purpose by the PulseNet International global consortium 

[20, 25]. We, therefore, applied cgMLST together with 
epidemiologically well-defined clustering threshold values 
to establish a translation code between different WGS typing 
approaches (Table 2). It is important to note that the idea 

Fig. 5. Adjusted Wallace coefficients (direction-dependent values) at optimised clustering thresholds. (a) Threshold seven alleles, (b) 
Threshold ten alleles. Grey text colour indicates that the method was used as the reference for threshold adjustment. Percentage values 
of concordance are presented. Each method has a specific colour and rows and columns of the same colour represent the two directions 
of cluster comparison. adj.: adjusted threshold from Table 2.
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of fixed clustering thresholds is controversial, as has been 
discussed previously [33, 34]. WGS trace-back analysis always 
has to be used in combination with epidemiological evidence 
and published thresholds should be seen more as guidelines 
than as absolute rules [35]. Isolates that fall into a cluster at 
a certain threshold do not necessarily have to be epidemio-
logically linked [33]. Nevertheless, threshold values can be a 
valuable tool for a first delimitation of possibly linked isolates.

Despite the different numbers of loci in the different cgMLST 
schemes, application of unified thresholds yielded higher 
clustering concordance than application of scheme-specific 
thresholds. Slight adjustment of the thresholds could further 
increase concordance and led to identical clustering in four 
out of five tests of the translation code. However, method 
concordance did not reach 100%, even when using the same 
cgMLST scheme. This shows that not only the agreement on 
a specific scheme but also on specific software is important 
to achieve unambiguous comparability of clustering results.

SNP
While generally applicable typing methods may provide a 
valuable overview, further analyses on a subgroup of isolates 
will help to gain deeper insights. A potential outbreak cluster, 
for instance, can be initially identified by using cgMLST or 
SNP analysis with a general reference genome. A higher reso-
lution of the closely related isolates within the cluster can be 
achieved by subsequent SNP analysis with a specific reference 
genome. To this end, the use of MLST CC-specific references 
has been proposed [16].

SNP analysis, limited to closely related isolates (in our case 
isolates of a specific MLST CC) using a closely related reference 

genome, reduced differences between the tools Snippy and 
BioNumerics when compared with analysis with a general 
reference. This indicates that such a restriction to closely 
related genomes improves method robustness. Additionally, 
in agreement with results from previous studies [17], using 
a closed or a draft specific reference genome did not have a 
decisive effect (neither on distance matrix nor on clustering). 
Both approaches have advantages and disadvantages. While 
a closed genome resolves repetitive regions, those will most 
probably not be present in a draft assembly. This phenomenon 
could decrease the number of detected SNPs actually present 
in unresolved regions and close to contig borders in a draft 
reference genome. Conversely, a draft genome from a certain 
study population is likely to have a higher degree of similarity 
to the rest of the isolates than a closed genome from a public 
repository, which may increase the core genome size and thus 
potentially the number of detected SNPs. As we have shown 
above (similar size of core genomes in SNP_Snippy with draft 
and closed reference genomes), the two effects (closeness and 
completeness) appeared to offset each other in our dataset. 
Therefore, if closed reference genomes specific for MLST 
CCs are not available, draft genomes from the dataset to be 
analysed can be used equivalently as references without losing 
analytical accuracy.

As an alternative to reference-based SNP calling, also 
reference-free, k-mer based approaches exist [36, 37]. They 
may have the advantage that no bias is introduced due to 
the selection of a certain reference. However, results are 
thereby highly dependent on the dataset and more difficult to 
compare than results derived from standardised, pre-defined 
references. Therefore, reference-based SNP calling using 

Fig. 6. Practical test of the translation code taking a cgMLST cluster of 16 isolates belonging to MLST CC121 as an example. The 
cgMLST dataset retrieved from BioNumerics_Moura at an allele threshold of seven (grey text colour) was used as reference method 
for clustering. Labelling on the right, ‘method_threshold’. Upper labels: isolate identifiers. An asterisk indicates the isolate that was 
used for cluster search in the different methods. Members of a cluster are coloured. Corresponding distance matrices can be found in 
Supplementary file S3.
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pre-defined references in the form of MLST CC-specific refer-
ence genomes will lead to more standardised results when 
different datasets are compared.

While there was no difference between different software 
when using a specific reference genome, differences were 
large between Snippy and BioNumerics when using a general 
reference genome. The clustering threshold in the transla-
tion code for SNP_BioNumerics, in turn, was generally lower 
than for SNP_Snippy. As filter settings were similar in the 
two tools, the reasons for this effect remain unclear. Differ-
ences in the size of the core genome used in SNP analysis 
might have played a role. At this point, a major disadvantage 
of commercial over open-source tools becomes obvious. 
Although a closed-source software solution may be easier to 
use, open-source tools offer higher transparency since they 
allow for full comprehension of all steps in the analysis and 
provide intermediate and final results in standardised bioin-
formatics file formats.

CONCLUSIONS
In case of international disease outbreaks, for instance, one 
country needs to know whether related strains are found in 
other countries so that appropriate measures can be taken 
to prevent human infections. However, different laboratories 
frequently have different preferences for WGS data analysis. 
Such missing standards might hamper collaboration between 
sectors and countries [38]. Although web servers can be used 
for shared data analysis, the great advantage of local data anal-
ysis over submitting results to a web server is that the period 
between sequencing experiment and analysis results can be 
influenced. Of course, time also depends on the computa-
tional infrastructure at a certain institute. However, especially 
in time-critical applications like outbreak investigations, this 
could be a limiting factor. Even when primary analysis is 
performed locally, use of harmonised methods would open 
the opportunity to exchange intermediate results, like allele 
profiles in the case of cgMLST or variant files in the case of 
SNP analysis. These could then be used for global clustering 
with little computational effort.

Until harmonisation of methods is achieved, a translation 
code based on method concordances can work as a first 
filter to identify typing matches resulting from the different 
WGS analysis methods. This gives a new perspective for data 
exchange. The main advantage of our approach is the free 
choice of analysis tools, provided that there is good concord-
ance with comparison methods. In this way, methods already 
established in a laboratory can be applied and uptake chal-
lenges of a method prescribed by another party are avoided.

Our translation code represents an average over the popu-
lation structure of L. monocytogenes in the food chain in 
Germany. Despite the predominantly encouraging results 
from our practical test, we have seen that the WGS analysis 
methods may show better or worse agreement for individual 
clusters and different combinations of methods. This is 
also reflected in the range of adjusted Wallace coefficients 

achievable (Fig. 5). These coefficients must always be kept 
in mind when using the translation code, since they provide 
information about the probability of exact cluster matches 
between two methods of analysis. If these values are too 
low, the use of an alternative method on either side should 
be considered in order to improve adjusted Wallace coef-
ficients before exchanging cluster information. However, 
good translatability (high clustering concordances at adjusted 
threshold values) between the majority of tested methods 
offers the valuable opportunity to minimise the amount of 
sequence data that needs to be exchanged and individually 
re-analysed. In this way, processes can be accelerated, which 
is an enormous advantage, especially in time-critical analyses 
of supraregional outbreaks.
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