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Abstract

With the advent of personalized medicine, clinical trials studying treatment effects in subpopulations are receiving

increasing attention. The objectives of such studies are, besides demonstrating a treatment effect in the overall

population, to identify subpopulations, based on biomarkers, where the treatment has a beneficial effect. Continuous

biomarkers are often dichotomized using a threshold to define two subpopulations with low and high biomarker levels.

If there is insufficient information on the dependence structure of the outcome on the biomarker, several thresholds may

be investigated. The nested structure of such subpopulations is similar to the structure in group sequential trials.

Therefore, it has been proposed to use the corresponding critical boundaries to test such nested subpopulations.

We show that for biomarkers with a prognostic effect that is not adjusted for in the statistical model, the variability

of the outcome may vary across subpopulations which may lead to an inflation of the family-wise type 1 error rate. Using

simulations we quantify the potential inflation of testing procedures based on group sequential designs. Furthermore,

alternative hypotheses tests that control the family-wise type 1 error rate under minimal assumptions are proposed.

The methodological approaches are illustrated by a trial in depression.
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1 Introduction

With the advent of personalized medicines, clinical trials studying treatment effects in subpopulations have gained
more and more attention. The objective of such studies is to identify subpopulations based on biomarkers, where
the treatment has a positive effect. Here the term biomarker is used in a very general sense as a synonym for a
baseline patient characteristic, like demographic, clinical or genetic variables or a combination of these. They are
measured prior to treatment and therefore cannot be affected by the outcome. For example, there is an extensive
discussion in the literature whether biomarkers can be used to predict the treatment effect of medicines in patients
with depression.1,2 Although a number of treatment options for such patients are available, no single treatment is
universally effective. Biomarkers can be prognostic or predictive, where prognostic biomarkers predict the
outcome in a natural cohort, and predictive biomarkers, in contrast, predict the treatment effect of an
experimental treatment in comparison to a control group.3 Note that biomarkers may be both prognostic and
predictive.

A wide range of methods for the identification and confirmation of targeted subpopulations in clinical trials has
been proposed.4 Several authors focused on settings, where subpopulations are defined by a continuous biomarker
which is dichotomized to define biomarker-low and biomarker-high subpopulations. The subpopulation with an
expected beneficial treatment effect is called the biomarker positive subpopulation and the complementary
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subpopulation is called the biomarker negative subpopulation. Then, hypotheses tests to test for treatment effects
in the subpopulation of biomarker positive patients and the full population are performed. Because several
hypotheses are investigated, an appropriate multiple testing procedure has to be applied to control the family-
wise type 1 error rate (FWER).5–7

An important problem is the choice of the threshold. To obtain a conservative hypothesis testing procedure to
test for treatment effects in subpopulations, the considered threshold needs to be defined a priori, either based on
an independent data set or theoretical considerations. If there is uncertainty regarding the choice of the threshold,
more than one threshold may be investigated. The nested structure of subpopulations defined by different
thresholds for a continuous biomarker is similar to the structure of analysis populations in group sequential
trials. Hence, it has been proposed to use critical boundaries of group sequential designs8 to test nested
subpopulations.6,9 However, the validity of these designs depends on the assumption that the variance of the
outcomes does not vary across subgroups.

In this paper, we show that great care has to be taken when applying group sequential boundaries to test
hypotheses for multiple nested subpopulations as proposed in the literature.9 We show that for biomarkers with a
prognostic effect that is not adjusted for in the statistical model, the variability of the outcome may vary across
subpopulations. As this may have an impact on the correlation of the test statistics, the use of group sequential
boundaries may not guarantee control of the FWER. Using simulations, we quantify the potential inflation of the
FWER of testing procedures based on such group sequential designs. To obtain test procedures that control the
FWER, we show how inverse normal combination tests10 and sequential regression tests8 can be applied to this
testing problem. Furthermore, we consider a test accounting for the different variances across subgroups6 and
propose a modification of this test that accounts for the respective degrees of freedoms of the test statistics using
the quantile substitution method. We show that the latter procedure controls the FWER under minimal
assumptions and compare its power under a range of scenarios to alternative approaches. In addition, we
generalize the multiple t-test to general subgroup tests for non-nested subgroups. To illustrate the procedures,
we give a clinical trial example in depression.

2 Statistical model and testing problem

Consider a randomized parallel group clinical trial designed to evaluate a novel treatment compared to a control
with a per group sample size of n. For simplicity, equally sized groups are assumed. For each subject i ¼ 1, . . . , 2n,
a continuous biomarker Xi is observed and, due to the sampling of patients, we assume that the Xi are independent
draws from some distribution. The biomarker Xi may be prognostic for the outcome Yi and/or predictive for the
treatment effect such that

Yi ¼ �0 þ �1Ui þ �2f1ðXiÞ þ �3Uif2ðXiÞ þ �i, i ¼ 1, . . . , 2n ð1Þ

where Ui¼ 1 (0) if a subject is allocated to the treatment (control) group and the treatment assignments Ui are
assumed to be statistically independent of Xi and �i. f1ðXÞ and f2ðXÞ are functions characterizing the prognostic and
predictive effect of the biomarker. Without loss of generality, it is assumed that the biomarker variable Xi takes
values between 0 and 1. The error terms �i are assumed to be normally distributed with mean 0 and variance �2.
Let yi, ui,xi denote the observed values of the outcome, treatment assignment, and biomarker of subject
i ¼ 1, . . . , 2n.

Consider an analysis strategy with the goal to identify a (sub)population, defined by a dichotomization of
the biomarker Xi, where the treatment has a positive effect. To this end, we consider nested subpopulations SþðqkÞ
(which we call biomarker positive populations), based on increasing pre-specified thresholds qk, k ¼ 1, . . . ,K
given by

SþðqkÞ ¼ fi : xi � qkg

Thus, here the biomarker positive subpopulations (for which a positive treatment effect is expected) consist of
all patients with biomarker values below the threshold qk (later we will also discuss the case of more general types
of biomarker positive subgroups).

Separate hypotheses tests in the biomarker positive subpopulations could be considered, e.g., if there exists
prior information that the treatment effect in a biomarker positive population may be larger than in the
corresponding biomarker negative population; however, insufficient information on the dependence structure of
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the outcome on the biomarker is available and therefore several thresholds are investigated. To confirm a positive
treatment effect in the considered subpopulations, we compare the mean responses of the treatment and control
group of each subpopulation SþðqkÞ. Let �tðqkÞ ¼ E YjU ¼ 1,X � qkð Þ,�cðqkÞ ¼ E YjU ¼ 0,X � qkð Þ denote the
means and �2t ðqkÞ, �

2
c ðqkÞ the respective variances of the outcome Y for the subpopulation SþðqkÞ. We then test the

K null hypotheses

H0k : �ðqkÞ � 0 against H1k : �ðqkÞ4 0 ð2Þ

where �ðqkÞ ¼ �tðqkÞ � �cðqkÞ for k ¼ 1, . . . ,K. Note that, setting qK¼ 1, SþðqKÞ is the full population such that the
framework also includes the possibility to perform a test in the overall population.

2.1 A step function model

A statistical model corresponding to the above analysis strategy can be written as a special case of equation (1).
For a given threshold � 2 ½0, 1� we define

gðXÞ ¼
0 if X4 �

1 if X � �

�
ð3Þ

and set f1ðXÞ ¼ f2ðXÞ ¼ gðXÞ in equation (1). Then the subpopulation Sþð�Þ is prognostic if j�2j4 0 and predictive
if j�3j4 0. Figure 1(a) shows an example where the subpopulation is predictive and prognostic, i.e. the
experimental treatment has a larger effect in the subpopulation of subjects with a biomarker value smaller or
equal than the cut-off � as compared to the control treatment only.

2.2 A linear trend model

An alternative model is a linear trend model, where f1ðXÞ ¼ f2ðXÞ ¼ ð1� XÞ and the prognostic and predictive
effects of the biomarker on the outcome Y are linear in the biomarker. For j�2j4 0 the biomarker has a prognostic
effect and for j�3j4 0 the biomarker is predictive. See Figure 1(b) for a scenario where �0 ¼ �1 ¼ 0 and the
treatment effect decreases with increasing values of the biomarker X.

Note that under the global null hypothesis stating that all H0k are true, the biomarker may still have a
prognostic effect. As a consequence, the marginal distribution of the outcome may no longer be normal and
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Figure 1. Dependence of the outcome on the biomarker value. (a)A step function dependence and (b) a linear dependence

investigated in the simulation studies. Here, �tþ,�t� denote the mean outcomes in the biomarker positive and negative

subpopulations, respectively. The corresponding mean outcomes in the control group are denoted by �cþ and �c�. �i, i ¼ 0, . . . , 3

are the regression coefficients of model (1).
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the variance �2l ðqkÞ for l ¼ ft, cg may not be constant over the different subpopulations SþðqkÞ. In the step function
model, for example, the data in the full population follows a mixture distribution of two normal distributions
where the two components correspond to the biomarker positive and negative subjects. In contrast, the subgroup
Sþð�Þ, and all subpopulations defined by thresholds smaller than �, contains only biomarker positive subjects.
Consequently, the variability in Sþð�Þ will be lower than in the full population.

3 Multiple hypotheses tests

Because multiple hypotheses are tested, the testing procedure needs to adjust for multiplicity to ensure strong
control of the family-wise type 1 error rate (FWER) at pre-specified level �. A procedure controls the FWER in the
strong sense if the probability that at least one true null hypothesis is rejected, is bounded by �, regardless of how
many or which null hypotheses are holding. For the procedures given below, we investigate the FWER control
under the global null hypothesis of no treatment effect in any of the subpopulations which implies weak FWER
control only. However, strong FWER control follows by the closed testing principle since for all considered
procedures it is easy to see that the rejection region for the test of hypotheses H0ðqkÞ, k 2 J is contained also in
the rejection region of the test of H0ðqkÞ, k 2 J0 for all J0 � J � f1, . . . ,Kg.

3.1 Procedures based on multiple z- or t-tests

Assume that each hypothesis H0k is tested with a separate, parallel group Student’s t-tests based on subjects in
SþðqkÞ. Let TðqkÞ denote the corresponding t-statistics and assume that the null hypothesis H0k is rejected if
TðqkÞ4 c�ðqkÞ, where c�ðqkÞ, k ¼ 1, . . . ,K denote critical boundaries for the tests of the subpopulations.
We assume that the variance estimates used in the calculation of the t-statistics TðqkÞ are calculated based on
observations from the subpopulation SþðqkÞ only. Because the biomarker values of subjects Xi are random (due to
the sampling of subjects), in general the per-group sample sizes ntðqkÞ and ncðqkÞ in the subgroups SþðqkÞ will not
be balanced, even if they are balanced in the full population. However, with increasing sample size, the allocation
ratio in the subgroups converges to the allocation ratio in the full population.

3.1.1 The Šidák test

The Šidák test applies significance levels �c ¼ 1� ð1� �Þ1=K and is exact if the test statistics are independent and
strictly conservative if there is a positive dependence between test statistics.11,12 Because of the nested nature of the
subgroups, the test statistics TðqkÞ are positively dependent and thus the Šidák test controls the FWER in the
strong sense. To apply the Šidák test, we apply the critical values ��1df ð1� �cÞ, where ��1df is the quantile function
of the central t-distribution with df ¼ ntðqkÞ þ ncðqkÞ � 2 degrees of freedom.

3.1.2 Group sequential critical boundaries

In group sequential designs, a null hypothesis is tested repeatedly on accumulating data. Adjusted critical
boundaries are applied to account for the multiple testing of the hypotheses.8,13 These boundaries are
calculated while accounting for the correlation of the test statistics. Because the nested structure of the analysis
populations at different interim analyses correspond to that of the subgroups SþðqkÞ defined by increasing
thresholds qk, k ¼ 1, . . . ,K, applied to a continuous biomarker, it has been proposed to use group sequential
methods to derive critical boundaries for the test of nested subpopulations.9

Group sequential type boundaries can be derived for z-tests, assuming that the variance is known. For each
threshold qk, we define the z-statistic

ZðqkÞ ¼
�ytðqkÞ � �ycðqkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2t ðqkÞ

ntðqkÞ
þ
�2c ðqkÞ

ncðqkÞ

s , k ¼ 1, . . .K ð4Þ

where �ytðqkÞ and �ycðqkÞ denote the estimated treatment and control group means of the outcomes in subpopulation
SþðqkÞ and �2t ðqkÞ and �

2
c ðqkÞ the variances of the outcomes which are assumed to be known. Under the

assumption of equal variances across subpopulations such that �2t ðqkÞ ¼: �2t , �
2
c ðqkÞ ¼: �2c , k ¼ 1, . . . ,K, the

correlation structure of the test statistics is the same as in group sequential designs. Then, under the null
hypothesis �ðqkÞ ¼ 0, k ¼ 1, . . . ,K, the cumulative test statistics ZðqkÞ follow a multivariate normal distribution
with mean vector 0, variances equal to one, and covariances CovðZðqj Þ,ZðqkÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðqj Þ=IðqkÞ

p
for qj< qk, where the
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information IðqkÞ is defined as the reciprocal of the variance of the estimated mean difference in subgroup SþðqkÞ
such that IðqkÞ ¼ �2t =ntðqkÞ þ �

2
c=ncðqkÞ

� ��1
. Assuming equal variances in the treatment and control groups,

we obtain

CovðZðqj Þ,ZðqkÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ntðqkÞ þ 1=ncðqkÞ

1=ntðqj Þ þ 1=ncðqj Þ

s
ð5Þ

for qj< qk, such that the covariance does not depend on the individual variances. Now, to control the level �, the
critical boundaries c�ðqkÞ for K subpopulation tests have to satisfy

1��0,� c�ðq1Þ, . . . , c�ðqKÞð Þ � � ð6Þ

where �0,� denotes the cumulative distribution function of the multivariate normal distribution with mean vector
0 and covariance matrix � calculated using equation (5). The level � condition (6) does not uniquely specify the
critical value and so several families of critical boundaries have been proposed for the group sequential setting.
Here we focus on Pocock type boundaries8 and assume that the same critical value c� ¼ c�ðqkÞ, k ¼ 1, . . . ,K is used
for all subpopulation tests. Note that alternatively O’Brien Fleming type boundaries8 could be used, which apply
larger critical levels to smaller subgroups such that these tests only reject if very large treatment effects are
observed in such groups. Alongside Pocock and O’Brien Fleming boundaries, any other families of group
sequential boundaries can be chosen to define the critical values.14

If Student’s t-tests to account for unknown variance instead of z-tests are applied at each stage, Jennison and
Turnbull8 propose to calculate the critical values as above (based on the multivariate normal distribution) and
then to transform them to the corresponding boundary of the univariate t-distribution with ntðqkÞ þ ncðqkÞ � 2
degrees of freedom. The transformed boundaries based on univariate t-distributions are then given by

t�ðqkÞ ¼ ��1ntðqkÞþncðqkÞ�2
ð�0,1 c�ðqkÞÞð Þ ð7Þ

3.1.3 Multiple t-tests accounting for different variances across subgroups

Due to prognostic effects of the biomarker, the variances may vary across subgroups. Then the distributional
assumptions on which the group sequential approach to calculate the critical boundaries is based on, are no longer
met. However, the test statistics will still asymptotically follow a multivariate normal distribution, and under the
global null hypothesis �tðqkÞ ¼ �cðqkÞ, k ¼ 1, . . . ,K, and for thresholds qj � qk, the covariances are given by

CovðZðqj Þ,ZðqkÞÞ ¼
�2t ðqj Þ=ntðqkÞ þ �

2
c ðqj Þ=ncðqkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2t ðqj Þ=ntðqj Þ þ �
2
c ðqj Þ=ncðqj Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2t ðqkÞ=ntðqkÞ þ �

2
c ðqkÞ=ncðqkÞ

p ð8Þ

Assuming equal variances across treatment arms within a given subgroup this simplifies to

CovðZðqj Þ,ZðqkÞÞ ¼
�ðqj Þ

�ðqkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ntðqkÞ þ 1=ncðqkÞ

1=ntðqj Þ þ 1=ncðqj Þ

s
ð9Þ

where �2ðqkÞ ¼ �
2
t ðqkÞ ¼ �

2
c ðqkÞ, k ¼ 1, . . . ,K.6 The covariance can be estimated by plugging the point estimates of

the subgroup variances into equation (9). Then, a normal approximation of the level � condition is given by
1��0,� c�, . . . , c�ð Þ � �, where the covariance matrix � is given by equation (9). The resulting critical values are
then adjusted for the finite sample case based on equation (7). Note that the proposed boundaries differ from the
approach described in Placzek and Friede,6 where the critical boundaries are derived from a multivariate
t-distribution approximation with a single degrees of freedom parameter. The latter is either chosen based on
the smallest subgroup, leading to conservative procedures or on the total population, leading to a liberal test.
In contrast, our approach is based on a multivariate normal approximation which is then adjusted for the
unknown variance by quantile substitution based on univariate t-distributions. The degrees of freedom for each
t-distribution are given by the size of the subgroups. While this approach is also approximate, it allows to adjust
for the substantially different sample sizes across subgroups and makes the calculation of the critical boundaries
computationally easier.
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3.2 Regression models to adjust for prognostic biomarkers

An alternative approach to account for prognostic effects is a regression model for the treatment comparison.
For example, adjusting for the biomarker as a covariate, we fit in each subpopulation SþðqkÞ, a linear
regression model

Y ¼ �00 þ �
0
1Uþ �

0
2Xþ �

0

Then, for each subpopulation SþðqkÞ, we test the null hypotheses H0k : �01ðqkÞ � 0 with the test statistic

TðqkÞ ¼ �̂
0
1ðqkÞ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�̂01ðqkÞÞ

q
, where �̂01ðqkÞ and Varð�̂01ðqkÞÞ are the standard linear model least squares

estimates for the parameter and its variance.

The correlation structure of the test statistics can be approximated based on the group sequential approach by
estimating the information for subgroup SþðqkÞ by IðqkÞ ¼ ðVarð�̂

0ðqkÞÞÞ
�1. Then critical boundaries c�ðqkÞ can be

calculated using the multivariate normal distribution with covariance CovðZðqj Þ,ZðqkÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðqj Þ=IðqkÞ

p
for j< k.8

To adjust for the unknown variance, we recalculate the boundaries as in equation (7) but based on a univariate t-
distribution with ntðqkÞ þ ncðqkÞ � 3 degrees of freedom.

Similar as for the group sequential t-test, the calculation of the critical boundaries relies on the assumption that
the variance of the residuals is the same in all subpopulations. Thereby this approach extends the group sequential
approach to the setting of prognostic biomarkers. While the assumption of a common variance across
subpopulations hold if the fitted regression model is correct, the residual variances may vary across
subpopulations if the model is misspecified.

3.3 Inverse normal combination tests

A multiple testing procedure for nested subpopulations can also be constructed using combination tests.10,13,15,16

To this end we split the population into disjoint subsets

Sþðqk�1, qkÞ ¼ fi : qk�1 5 xi � qkg, k ¼ 1, . . . ,K

where q0 ¼ 0. Then, in each subset Sþðqk�1, qkÞ a Student’s t-test and corresponding p-value
pðqk�1, qkÞ ¼ 1��dfðTðqk�1, qkÞÞ is calculated, Tðqk�1, qkÞ denoting the test statistics calculated using patients in
Sþðqk�1, qkÞ only. These p-values are combined with a combination function, as, for example, the weighted inverse
normal combination function10 to obtain the test statistics

CðqkÞ ¼
Xk
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmPk
j¼1 wj

s
��1 1� pðqm�1, qmÞð Þ ð10Þ

where wk ¼ ½1=ncðqk�1, qkÞ þ 1=ntðqk�1, qkÞ�
�1 and nl ðqk�1, qkÞ, l 2 ft, cg denote the number of subjects in the

treatment and control group in subset Sþðqk�1, qkÞ. The individual p-values are independent under the global
null hypothesis. Furthermore, assuming the data in each subset are normally distributed, the p-values are
uniformly distributed on ½0, 1�. It follows that the test statistics CðqkÞ are multivariate normally distributed with

a correlation structure of a group sequential test with information levels IkðqkÞ ¼
Pk

i¼1
wiPk

j¼1
wj

, k ¼ 1, . . . ,K.10

Therefore, the corresponding group sequential critical boundaries c�ðqkÞ as derived in equation (6) can be
applied to obtain a test with FWER �. Note that the weights wk weigh the contribution of the subsets
Sþðqk�1, qkÞ accounting for the different subpopulation sample sizes in the treatment and control group.

4 Properties of the multiple testing procedures

To investigate the operating characteristics of the procedures introduced in the previous section, a simulation
study was performed. For simplicity, we assume the biomarker to be uniformly distributed on ½0, 1� and investigate
hypotheses tests for K¼ 2, 4 and 8 thresholds. The thresholds are equally spaced such that qk ¼ k=K, k ¼ 1, . . .K.
Especially, qK¼ 1 and also the full population is tested. For the boundaries based on the group sequential
approaches, equal critical values c�ðqkÞ ¼ c�, k ¼ 1, . . . ,K were computed. The nominal FWER was set to
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� ¼ 0:025. For each scenario, 5 � 105 simulation runs were performed. Group sequential critical boundaries were
calculated using the R-package gsDesign.17

We considered six testing procedures: Šidák adjusted t-tests, t-tests based on critical values c� as in equation (6),
further on denoted by ‘‘z-test’’, the corresponding t-tests based on the adjusted critical values t�ðqkÞ as in equation
(7) denoted by ‘‘t-test’’, the t-test accounting for different variances using equation (9) denoted by ‘‘adjusted
t-test’’, the test based on the regression model and the test based on the inverse normal method.

The data were generated based on the model given in equation (1) with per group sample sizes of n¼ 80.
Simulation results for the FWER for n¼ 160 and 320 can be found in the Supplementary material.

We considered two scenarios. First, the step function model defined in equation (3) (see Figure 1(a)) with
parameters � ¼ 0:2, 0:5, 0:8 was considered. The FWER was evaluated in settings where there is no treatment
effect in any subgroup but possibly a prognostic effect, i.e. for subjects with biomarker smaller than �, the expected
outcome is �tþ ¼ �cþ ¼ � while for the remaining subjects the expected outcome is �t� ¼ �c� ¼ 0 and � varies
between 0 and 3. To evaluate the power of the procedures, we set �cþ ¼ �c� ¼ �t� ¼ 0 (no prognostic effect) and
assumed that the treatment had only an effect in subjects with biomarker X � �. There the effect sizes varied
between 0 and 1 standard deviations. We report simulation results under the alternative hypothesis for a sample
size of n¼ 80 per group.

The second scenario considered is the linear trend model (see Figure 1(b)), where the prognostic and predictive
effects of the biomarker on the outcome Y are linear. We considered settings where �0 ¼ �1 ¼ 0 and, for the
simulations under the null hypothesis of no treatment effect, in addition that �3 ¼ 0. However, we allowed for a
prognostic effect (i.e. �2 � 0). For the simulations under the alternative hypothesis, we set �0 ¼ �1 ¼ �2 ¼ 0 and
varied �3 between 0 and 1, such that the treatment effect decreases with the value of the biomarker X.

In both scenarios, the variance of the noise term � in equation (1) was set to 1.

4.1 Family-wise Type 1 error rate

The FWER for the considered procedures is shown in Figures 2 and 3 for the step function model and the linear
trend model. If there is no prognostic effect, all considered methods control the FWER, with the exception of the
z-test (which is only based on the normal approximation) which has an inflated error rate for the scenarios with
small to moderate sample sizes.

If the biomarker has, however, a prognostic effect, also the group sequential boundaries adjusted with
t-quantiles (t-test) can become liberal. The amount of inflation depends on the size of the prognostic effect, the
number of thresholds considered (the more thresholds, the larger the inflation) and the value of the true cut-off
point �. The observed inflation results from the effect of the prognostic effect on the variance of the outcome in the
different subgroups. For larger prognostic effects, the variance of the outcomes in the different subgroups vary and
this has an impact on the correlation structure between test statistics such that the assumptions underlying the
computation of the critical boundaries based on a group sequential test are no longer satisfied. This leads in several
settings to an inflation of the FWER when using group sequential boundaries. Note that (with the exception of the
z-test with low or moderate sample sizes) substantial inflations of the FWER are only observed for prognostic
effects larger than a standard deviation.

The regression procedure has a somewhat lower FWER for the step function model but remains anti-
conservative because of the model misspecification. In the linear trend model, it controls the level well.

Across all scenarios, the t-test accounting for different subpopulation variances (adjusted t-test), the inverse
normal combination test and the Sidák test control the FWER. However, the latter is strictly conservative,
especially for a larger number of thresholds.

4.2 Power

We report the power of the procedures, defined as the probability to reject at least one of the K hypotheses. We did
not consider the z-test in these simulations, as it did not sufficiently control the FWER for the considered sample
size of n¼ 80. Instead, we also report the power of a single t-test in the full population, for comparison. The power
for the step function and the linear trend model is shown in Figures 3 and 4. Under both scenarios, the approaches
based on group sequential t-tests (t-test, adjusted t-test), the regression approach and the inverse normal
combination test show similar power and the lines in the plot are partly indistinguishable. For K¼ 8
thresholds, the inverse normal combination test has a somewhat lower power compared to the group sequential
t-test and the regression method because of a loss of degrees of freedom due to the split in disjoint subsets. Over all
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scenarios, the Šidák test shows the lowest power as it does not make full use of the correlation structure between
the test statistics. If the size of the subpopulation is small (� ¼ 0:2) or moderate (� ¼ 0:5), the power for the single
t-test in the full population is much lower than the power for the multiple testing procedures that test for a
treatment effect in several subgroups. If the subpopulation is large (� ¼ 0:8), the single full population test has
a similar power as compared to the multiple testing methods and may exceed their power if the number of
considered subgroups K becomes too large and the loss in power due to the multiplicity correction outweighs a
potential increase in efficiency by testing in a subpopulation with a larger treatment effect.

4.3 Model misspecifications

In the above simulations, the structure of the tested subgroups (where all patients with a biomarker value below a
certain threshold are included) is in agreement with the considered scenarios, where the prognostic and predictive
effects decrease monotonically with the biomarker (see Figure 1). To assess the robustness of the procedure, we
investigated FWER and power if this assumption does not hold. As above, we assumed a step function model and
a linear trend model but with monotonically increasing prognostic and predictive effects such that
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Figure 2. FWER as a function of the prognostic effect assuming a step function dependence for a sample size of n¼ 80. The number

of thresholds was set to K¼ 2, 4, 8 with true cut-off � ¼ 0:2, 0:5, 0:8. The black lines show the results for the Šidák (solid), the z-test

(dot-dashed), the t-test (dotted) and the adjusted t-test (dashed) while the grey lines represent the regression procedure (dashed) and

the inverse normal test (solid).
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f1ðXÞ ¼ f2ðXÞ ¼ 1� gðXÞ or f1ðXÞ ¼ f2ðXÞ ¼ X, respectively. In addition, we performed simulations where the
largest prognostic and predictive effects are observed for intermediate values of the biomarker. These
misspecifications have no impact on the FWER and the simulated FWERs are similar to those of the correctly
specified model. The adjusted t-test, the Šidák test and the inverse normal combination test control the FWER in
all scenarios, the Šidák test being conservative. The sequential regression test controls the FWER under a linear
trend dependence. The z-test and the t-test show an inflated FWER for increasing prognostic effects. However,
misspecification of the subgroups can have a substantial negative impact on the power. The largest power has the
test for the full population only. Among the considered multiple testing procedures, the mutliple t-test, the
regression and the inverse normal combination test procedure have similar power values, and the Šidák test
showed somewhat smaller power values. For detailed simulation results, see the supplemental material.

5 Example: clinical trials in depression with a predictive biomarker

Depression is a common and disabling disease for which a number of pharmacological and psychosocial treatment
options are available. However, no single treatment is universally effective and the response to treatment is slow
and hard to predict. Therefore, many patients with depression undergo multiple treatments before achieving
remission.1,2 One problem is the heterogeneity of the disease which has motivated the investigation of
biomarkers to predict the treatment outcome. As outcome measures, in such studies often the decrease in a
score describing the severity of the disease is used. Examples of commonly used instruments include the
Montgomery-Asberg Depression Rating Scale (MADRS), the Hamilton Rating Scale for Depression (HRSD)
or the Beck-Depressions-Inventar II Score (BDI-II).

Luty et al.18 compared in a randomized controlled trial interpersonal psychotherapy (IPT) and cognitive-
behavioural therapy (CT) for major depression. A total of 177 patients were randomly allocated to the two
treatment groups. As primary outcome variable, the percentage improvement in MADRS score from baseline
to the end of a 16-week treatment phase was investigated. No statistically significant difference between IPT and
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Figure 3. FWER and Power as a function of the prognostic (FWER-Plot) or predictive (Power-Plot) effect assuming a linear

dependence for a sample size of n¼ 80. The number of thresholds was set to K¼ 2, 4, 8. The black lines show the results for the Šidák
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CT was found for the full population. In a secondary analysis, however, investigators found that severely
depressed patients responded significantly better to CT than to IPT, suggesting baseline severity as a predictor
for response. To categorize severe depression, they used a fixed threshold for the baseline MADRS score. No
correction for multiplicity was performed for the subgroup test.

Similarly, Lemmens et al.19 compared IPT and CT in a randomized controlled trial also concluding that there is
no statistically significant difference between the two treatments. The main outcome measure was the decrease in
BDI-II score from baseline to seven months. Also 182 patients were randomized in three groups, 75 to IPT, 76 to
CT and 31 patients were randomized to a waiting list control condition. Although no statistically significant
difference between the two active treatment arms was observed, both treatments were superior to the waiting
list group. In a re-analysis of the data based on the IPT and CT groups only, Huibers et al.20 investigated several
baseline scores (describing the severity of the disease), as, e.g., the Inventory of Interpersonal Problems Score (IIP),
the Beck Hopeless Scale (BHS), the Brief Symptom Inventory (BSI) or quality of life scores as potential predictors
for treatment outcome. Using a variable selection approach based on linear regression models with interaction
terms, they found that, for example, the BSI Cognitive Problems score or the IIP self-sacrificing score may be
moderators of treatment outcome.
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To illustrate the statistical methods discussed in this manuscript, we used the trial data which is available at
DRYAD 21 comparing the IPT group (n¼ 75) to the CT group (n¼ 76). As outcome measure, we used the
difference between BDI-II score from baseline to seven months. The reduction in BDI-II Score in the full
population was 14.59 ð�15:14Þ for the IPT group as compared to 14.39 ð�15:97Þ in the CP group. For
illustration, we assume that it was planned to investigate whether the baseline total IIP score is a predictive
biomarker of the BDI-II reduction. In the planning phase of the trial, the thresholds for the subpopulation
analyses were pre-specified at the theoretical 25%, 50%, 75% and 100% percentiles (the actual sample sizes
will differ due to sampling variation). The observed baseline IIP Score ranged from 16 to 164, the thresholds
are set to q1 ¼ 64, q2 ¼ 89, q3 ¼ 107 and q4 ¼ 164 which correspond to the 25%, 50%, 75% and 100%
percentiles, respectively. Table 1 shows the mean values and standard deviation as well as test statistics and the
corresponding critical boundaries for the discussed methods. A larger test statistics indicates a larger reduction in
the BDI-II score from baseline to seven months of the IPT as compared to the CT. Although the cumulative test
statistics show a trend, that patients with smaller IIP Score values benefit more from IPT as compared to CT, no
statistically significant differences were observed in the subgroups.

6 Multiple t-test for general subgroups

Consider a general set of subsets B1, . . . ,BK � R and let �tðqkÞ ¼ E YjU ¼ 1,X 2 Bkð Þ,�cðqkÞ ¼ E YjU ¼ 0,ð

X 2 BkÞ denote the means and �2t ðBkÞ, �
2
c ðBkÞ the respective variances of the outcome Y in the subpopulations

defined by Bk. As above, we test the K null hypotheses

H0k : �ðqkÞ � 0 against H1k : �ðqkÞ4 0

where �ðqkÞ ¼ �tðqkÞ � �cðqkÞ for k ¼ 1, . . . ,K. Let ZðBkÞ denote the corresponding z-test statistics for the
observations in the subgroups SþðBkÞ ¼ fi : Xi 2 Bkg in analogy to equation (4). Then the covariance between
the test statistics of subgroups SþðBkÞ,SþðBk0 Þ is given by

CovðZðBkÞ,ZðBk0 ÞÞ ¼

�2t ðBk \ Bk0 ÞntðBk \ Bk0 Þ

ntðBkÞntðBk0 Þ
þ
�2c ðBk \ Bk0 ÞncðBk \ Bk0 Þ

ncðBkÞncðBk0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2t ðBkÞ

ntðBkÞ
þ
�2c ðBkÞ

ncðBkÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2t ðBk0 Þ

ntðBk0 Þ
þ
�2c ðBk0 Þ

ncðBk0 Þ

s ð11Þ

The normal approximation of the level � condition is given by 1��0,� c�, . . . , c�ð Þ � �, where the covariance
matrix � is given by equation (11) where the variances and covariances are replaced by sample estimates. As
above, the quantile substitution method can be used to adjust the critical values for the appropriate degrees of
freedom. Furthermore, instead of choosing equal critical values c for all subgroups, a vector of individual critical
values ck satisfying the level-� condition can be chosen.

Table 1. Mean (SD) of the outcome, test statistics and critical boundaries of the Šidák, z-test, t-test and the

corrected t-test as well as for the regression method and the inverse normal test separately for the four nested

subgroups calculated from the example data set.

25% 50% 75% 100%

IPT: reduction BDI-II 14.94 (11.68) 15.81 (9.42) 15.16 (7.08) 14.59 (15.14)

CT: reduction BDI-II 9.86 (7.72) 12.56 (10.17) 13.91 (10.66) 14.39 (15.97)

Cumulative t-test statistics for

Šidák, z-test, t-test, adjusted t-test 1.63 1.39 0.63 0.10

Boundary t-test 2.46 2.41 2.39 2.38

Boundary adjusted t-test 2.49 2.43 2.41 2.40

Boundary Šidák 2.62 2.56 2.54 2.53

Cumulative regression test statistics 1.65 1.56 0.75 0.02

Boundary regression test 2.47 2.41 2.40 2.39

Inverse normal test statistics 1.59 1.89 1.31 1.03

Boundary z-test and inverse normal 2.35 2.35 2.35 2.35
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An application of this more general procedure are subgroups defined by the tail-oriented construction of the
STEPP method,5 which has been proposed in settings where there is uncertainty if very low or very large values of
the biomarker are predictive for a large treatment effect. Here, first a left-to-right cumulation of patient values is
performed where subgroups are defined by all subjects with biomarker values below a set of thresholds (as defined
in the above sections) and then a right-to-left cumulation is performed where subgroups are defined by all subjects
with biomarker values above the set of thresholds. Given K thresholds, this procedure defines 2K� 1 subsets
(assuming the largest threshold is 1 such that the test of the full population is included).

7 Discussion

We investigated methods for nested subpopulation tests, where the subpopulations are defined by thresholds of a
continuous biomarker.

Our results show that special care has to be taken when using critical boundaries from group sequential designs,
as has been proposed previously. If there are prognostic effects that are not adequately adjusted for, the standard
critical boundaries from group sequential designs will not control the FWER in general. However, a substantial
inflation of the FWER occurs for large prognostic effects only. Correcting for the least favorable correlation
structure using the Šidák test controls the FWER. However, it can become very conservative if a larger number of
subgroups are tested when it also leads to a loss in power. The inverse normal combination test controls the
FWER but has slightly smaller power for a larger number of thresholds due to a loss in degrees of freedom.

Furthermore, the power calculations show that if the subpopulation, where the treatment effect is positive, is
large, testing the null hypothesis for the full population only has similar power as compared to the multiple testing
methods testing for a treatment effect in multiple subgroups. However, in settings where the subgroup where the
treatment effect is positive, is smaller, the multiple tests have a larger power to reject at least one null hypothesis
than the test for the full population only. The findings on the power imply that in these settings, the sample size
required to achieve a certain power is lower for the multiple testing procedure than for the single test in the full
population (accounting for the diluted treatment effect in the latter). The sample size yielding a certain power for
the multiple testing procedures cannot be given explicitly, but can be obtained through numerical approximation
or simulation techniques (see e.g. Placzek and Friede6). For example, assuming a true cut-off in the step function
model of � ¼ 0:5, a sample size of 54 per group is needed to detect a treatment effect of one standard deviation in
the biomarker positive subgroup assuming no effect in the biomarker negative subgroup with power 0.9 using the
adjusted t-test with K¼ 4 equally spaced thresholds and � ¼ 0:025. If, however, � ¼ 0:2, a sample size of 180 per
group is needed under the above assumptions. Note that a true cut-off of � ¼ 0:5 (or 0.2 respectively) corresponds
under the given assumptions to an effect size of 0.5 (0.2) standard deviations in the full population. With a single
t-test in the full population, therefore 86 (527) patients per group are needed to achieve a power of 0.9. Similar
examples can be found in Placzek and Friede.6

Note that for the sample size calculation the thresholds must be chosen in the planning phase of a trial because
the critical boundaries for the multiple t-test depend on the number of thresholds K as well as the size of the
subgroups. If the subgroups are defined by absolute thresholds (rather than quantiles), the sample size calculation
will be based on expected subgroup sizes since the actual subgroup sizes are random. In this case, at the final
analysis the critical values need to be updated based on the actual subgroup sizes. Alternatively one may choose
the thresholds based on quantiles of the continuous biomarker such that the subgroup sizes are fixed. This,
however, results in data-dependent absolute thresholds.

In this manuscript, we focused on single-step multiple testing procedures. Using the closed testing principle,
these can be improved by a sequentially rejective test. While this has no impact on the probability to reject at least
one null hypothesis, it will increase the power to demonstrate a statistically significant treatment effect in several
subgroups. Furthermore, for all the considered testing, multiplicity adjusted p-values can be defined by
determining for each hypothesis the smallest significance level �, for which the test rejects the respective
hypothesis.

The observed FWER inflation for group sequential tests of hypotheses for nested subpopulations has also
implications for classical group sequential designs. A corresponding type 1 error rate inflation can occur also in
group sequential tests of a single hypothesis if there is a time trend in the outcome variable. The calendar time then
has a similar impact as the prognostic biomarker in the subpopulation tests and the classical group sequential test
may have an inflated type 1 error rate.

An alternative approach to test for a treatment effect in nested subpopulations that has not been explored in this
manuscript is to fit a single linear model including the factors treatment, as well as indicator functions of the
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disjoint sets Sþðqk�1, qkÞ and their interaction with the factor treatment. The treatment effect in each subgroup
SþðqkÞ can then be estimated as a suitable contrast and simultaneous hypothesis tests can be derived by multiple
contrast tests which have been implemented in the multcomp package in R.22

Acknowledgement

We thank the two reviewers for their useful comments.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article:

The work has received funding from the European Unions 7th Framework Programme for research, technological

development and demonstration under Grant Agreement no 602144 (InSPiRe).

ORCID iD

Alexandra Christine Graf http://orcid.org/0000-0003-0035-2658

Supplemental material

Supplemental material for this article is available online.

References

1. Thase ME. Using biomarkers to predict treatment response in major depressive disorder: evidence from past and present
studies? Clin Res 2014; 14: 539–544.

2. Uher R, Tansey KE, Malki K, et al. Biomarkers predicting treatment outcome in depression: what is clinically significant?

Pharmacogenomics 2012; 13: 233–240.
3. Jenkins M, Flynn A, Smart T, et al. and on behalf of the PSI Biomarker Special Interest Group. A statistician’s perspective

on biomarker in drug development. Pharmaceut Stat 2011; 10: 494–507.
4. Ondra T, Dmitrienko A, Friede T, et al. Methods for identification and confirmation of targeted subpopulations in clinical

trials: a systematic review. J Biopharmaceut Stat 2016; 26: 99–119.
5. Bonetti M and Gelber RD. Patterns of treatment effects in subsets of patients in clinical trials. Biostatistics 2004; 5:

465–481.

6. Placzek M and Friede T. Clinical trials with nested subgroups: analysis, sample size determination and internal pilot
studies. Stat Meth Med Res 2018; 27: 3286–3303.

7. Jiang W, Freidlin B and Simon R. Biomakrer-adaptive threshold design: a procedure for evaluating treatment with

possible biomarker-defined subset effect. J Natl Cancer Inst 2007; 99: 1036–1043.
8. Jennison C and Turnbull BW. Group sequential methods with applications to clinical trials. New York, NY: Chapman and

Hall/CRC Press, 1999.

9. Spiessens B and Debois B. Adjusted significance levels for subpopulation analyses in clinical trials. Contemporary Clin
Trials 2010; 31: 626–633.

10. Lehmacher W and Wassmer G. Adaptive sample size calculations in group sequential trials. Biometrics 1999; 55:

1286–1290.
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