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Background: The role of the tumor microenvironment (TME) in predicting

prognosis and therapeutic efficacy has been demonstrated. Nonetheless, no

systematic studies have focused on TME patterns or their function in the

effectiveness of immunotherapy in triple-negative breast cancer.

Methods: We comprehensively estimated the TME infiltration patterns of

491 TNBC patients from four independent cohorts, and three cohorts that

received immunotherapy were used for validation. The TME subtypes were

comprehensively evaluated based on immune cell infiltration levels in TNBC,

and the TRG score was identified and systematically correlated with

representative tumor characteristics. We sequenced 80 TNBC samples as an

external validation cohort to make our conclusions more convincing.

Results: Two TME subtypes were identified and were highly correlated with

immune cell infiltration levels and immune-related pathways. More

representative TME-related gene (TRG) scores calculated by machine

learning could reflect the fundamental characteristics of TME subtypes and

predict the efficacy of immunotherapy and the prognosis of TNBC patients. A

low TRG score, characterized by activation of immunity and ferroptosis,

indicated an activated TME phenotype and better prognosis. A low TRG

score showed a better response to immunotherapy in TNBC by TIDE

(Tumor Immune Dysfunction and Exclusion) analysis and sensitivity to

multiple drugs in GDSC (Genomics of Drug Sensitivity in Cancer) analysis

and a significant therapeutic advantage in patients in the three

immunotherapy cohorts.
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Conclusion: TME subtypes played an essential role in assessing the diversity and

complexity of the TME in TNBC. The TRG score could be used to evaluate the

TME of an individual tumor to enhance our understanding of the TME and guide

more effective immunotherapy strategies.

KEYWORDS

triple-negative breast cancer, tumor microenvironment, machine learning model,
prognosis, immunotherapy efficacy

Introduction

Worldwide, breast cancer, accounting for approximately 30%

of cancers in women (Siegel et al., 2020), can be divided into three

subtypes based on estrogen receptor (ER), progesterone receptor

(PR), and HER2 status: hormone receptor-positive, HER2-

positive, and triple-negative breast cancer (TNBC) (Denkert

et al., 2017). TNBC, characterized by a lack of ER, PR, and

HER2 expression, accounts for approximately 15%–20% of all

breast cancers (Adams et al., 2019a; Marra et al., 2019; Michel

et al., 2020). Higher local recurrence and distant metastasis rates

than other breast cancer subtypes are outstanding characteristics

of TNBC, resulting in the worst overall survival (OS).

Approximately 30% of TNBC patients suffer recurrence

within 5 years of diagnosis (Lin et al., 2012); therefore,

selecting populations suitable for different treatments for

TNBC patients is crucial.

However, previous studies have emphasized the significance

of cell–cell interactions and upregulated signaling pathways in

regulating the tumor microenvironment (TME) (Quail and

Joyce, 2013; Su et al., 2018), suggesting that whole sample

intercellular relationships are more vital than transcriptional

variations of tumor cells (Kalluri, 2016; Mantovani et al., 2017).

The TME conditions at the baseline level could reflect the

immunotherapy efficacy and chemotherapy response rate

(Rosenberg et al., 2016), and various TME cells, such as

cytotoxic T cells, tumor-associated macrophages (TAMs),

dendritic cells (DCs), and cancer-associated fibroblasts

(CAFs), were correlated with therapeutic benefits in various

tumors, including breast cancer and melanoma and urothelial

cancer (Lee et al., 2014; Nishino et al., 2017; Mariathasan et al.,

2018). Understanding the TME instead of cancer cells seems to

be a promising method for determining the heterogeneity in

breast cancer, and various cells in the TME should be

completely described and analyzed (Cagan and Meyer, 2017;

Mejia-Pedroza et al., 2018). Previous studies reported that

TNBC was characterized by more abundant immune cell

infiltration and higher levels of immune checkpoint inhibitor

expression than other breast cancer subtypes (Mittendorf et al.,

2014; Denkert et al., 2018; Loi et al., 2019). Some studies have

shown that high levels of lymphocytic infiltration, such as CD8+

T and CD4+ T cells, are consistently correlated with a more

favorable prognosis in TNBC (Savas et al., 2016; Jang et al.,

2018; Gao et al., 2020).

Although it is challenging to treat TNBC patients and they

are usually treated with standard chemotherapy and PARP

inhibitors (Robson et al., 2017; Telli et al., 2018), several

clinical trials have reported that immunotherapy might

improve the survival of TNBC patients. For instance, the

IMpassion130 trial implied that atezolizumab was beneficial in

previously untreated metastatic TNBC (Schmid et al., 2018). The

Keynote355 trial reported that pembrolizumab benefited the

PDL-1-positive TNBC population in terms of PFS (Cortes

et al., 2020). Although these findings reinforce the perspective

that immunotherapy seems more appropriate for TNBC,

considerable research is urgently needed to identify benefit

groups from this therapeutic strategy.

A previous study depicted a vast TME landscape of gastric

cancer and helped to provide new strategies for interpreting

responses to immunotherapies (Zeng et al., 2019). Considering

the lack of rigorous studies on the TME subtype in TNBC, with

the emergence of more analytical techniques, two TME-related

subtypes were identified by clustering of immune cell infiltration

levels. Based on TME-related genes and the machine learning

method PCA algorithm, a TME-related gene (TRG) scoring

system for TNBC patients was constructed and validated in

several public datasets and validation cohorts sequenced by

ourselves. There were several studies based on this

dimensionality reduction method, such as an m6A-related

score from our previous study (Liu et al., 2021), a “writer”

score model for colorectal cancer (Chen et al., 2021), and a

mast cell-based signature in lung cancer (Bao et al., 2020). All of

these studies constructed a scoring system based on differentially

expressed genes among several identified subtypes. Meanwhile,

our TRG score in TNBC was also highly associated with the

activation of related pathways, the cancer stemness index, and

drug sensitivity.

Most importantly, the TRG score was further employed to

predict the immunotherapy responses in TIDE analysis,

revealing that we could determine the benefit populations of

TNBC patients who received immunotherapy. Interestingly, a

20-member prognostic signature simplified by the iterative

LASSO algorithm could predict the survival probability of

TNBC patients and could shrink the TRG score calculation

members, which had the same ability as the TRG score.

Eventually, all of these analysis results were validated in a

TNBC cohort with sequencing data and clinical information

by ourselves.
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Materials and methods

Data sources and filtering

The raw data were downloaded from the Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and Cancer

GenomeAtlas (TCGA) databases. Three TNBC datasets [GSE96058

(Brueffer et al., 2018), GSE86166 (Prabhakaran et al., 2017), and

GSE103091 (Jezequel et al., 2015)] and two datasets related to

immunotherapy [GSE35640 (Ulloa-Montoya et al., 2013) and

GSE78220 (Hugo et al., 2016)] in the GEO database were used

for analysis. The pan-cancer data involving 17 cancer types in TCGA

were downloaded from the UCSC XENA database (https://

xenabrowser.net/datapages/) (Goldman et al., 2020). We

extracted TNBC data from all TCGA datasets for the principal

analysis, and other tumors were used for validation. Moreover, the

profiles of the IMvigor210 cohort were obtained according to official

guidelines (http://research-pub.Gene.com/imvigor210corebiologies)

(Mariathasan et al., 2018). All of the information of the public

datasets is summarized in Supplementary Table S1.

Tissue sample collection and high-
throughput sequencing

In addition, we used a cohort constructed by the West

China Hospital breast cancer specialist research team as an

external validation cohort, including 80TNBC biopsies, and

this experiment was approved by the Ethics Committee of

West China Hospital. Total RNA was extracted and purified

following the manufacturer’s protocol. After synthesizing

first- and second-strand cDNA using random hexamer

primers, DNA polymerase I and RNase H, the library

fragments were purified with an AMPure XP system

(Beckman Coulter, Beverly, MA, United States) as

described in the NEBNext UltraTM Directional RNA

Library following the manufacturer’s recommendations.

The libraries were then sequenced on the Illumina HiSeq X

ten platform (Novogene Bioinformatic Technology Co., Ltd.,

China) following a 150 bp paired-end read protocol.

Eventually, the raw sequencing data from this study have

been deposited in the Genome Sequence Archive (GSA) in

BIG Data Center (https://bigd.big.ac.cn/) (Zhang et al.,

2021a), Beijing Institute of Genomics (BIG), Chinese

Academy of Sciences, under the accession number

HRA002256.

Assessment of immune cell infiltration
levels

Single-sample gene set enrichment analysis (ssGSEA) is a

well-known method to derive the absolute enrichment scores of

previously experimentally validated gene signatures conducted

by the R package “GSVA,” a nonparametric and unsupervised

method commonly employed to estimate the variations in the

pathway and biological process activity of a single sample (Li

et al., 2017). Here, we preferred to use ssGSEA to assess the

relative abundance of immune cell infiltration levels in a single

sample. Two validated immune cell signatures published, labeled

immune cell signatures 1 and 2 in this study, were used in this

research, containing 24 (Bindea et al., 2013) and 23

(Charoentong et al., 2017) types of immune cells, respectively.

The markers of these two signatures are listed in Supplementary

Tables S2, S3. To further validate the results from ssGSEA, the

CIBERSORT algorithm (Newman et al., 2015), which is a

deconvolution algorithm, was employed to infer cell-type

proportions with bulk tumor sequence data. Moreover, the

third method, called Estimation of Stromal and Immune cells

in malignant tumors using Expression data (ESTIMATE)

(Yoshihara et al., 2013), was also used to infer the fraction of

stromal and immune cells in tumor samples.

Functional enrichment analysis

Using ssGSEA described previously, GSVA (Hanzelmann

et al., 2013) was used to assess pathway activation levels in a

single sample with the gene set “c5.all.v6.2. symbols” downloaded

from the MSigDB database in GSEA website (Mootha et al.,

2003) and another published pathway gene set summarized in

Supplementary Table S4 (Mariathasan et al., 2018). GO and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses

were conducted using the R package and the online website

Database for Annotation, Visualization, and Integrated

Discovery (DAVID) (david.ncifcrf.gov) (Dennis et al., 2003).

Unsupervised clustering and differentially
expressed gene analysis

Unsupervised clustering analysis was used to classify patients

based on the immune cell infiltration levels with the

ConsensuClusterPlus package (Wilkerson and Hayes, 2010).

Differentially expressed gene (DEGs) analysis was conducted

by the “limma” R package, with the criterion of adjusted p value <
0.05. The differentially expressed mRNAs were visualized by the

“pheatmap” package.

Calculation of the ferroptosis index and
mRNA-based stemness index

A total of 113 ferroptosis regulators were extracted from the

online website FerrDb (http://www.zhounan.org/ferrdb/), and

the specific information of these genes is shown in
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Supplementary Table S5. To describe the ferroptosis level, the

ferroptosis index (FPI) was established based on the expression

data of genes in ferroptosis, including positive and negative

components. The enrichment score (ES) was calculated using

ssGSEA, and the FPI to roughly assess ferroptosis trends was

calculated as follows:

FPI = ES (positive) − ES (negative) (Liu et al., 2020)

To assess the stemness of cancer cells, a one-class logistic regression

algorithmknownasmRNA-based stemness index (mRNAsi)was used

to calculate the stemness index for each sample under the direction of

the workflow available on a previously established database (https://

bioinformaticsfmrp.github.io/) (Malta et al., 2018).

Therapeutic response prediction

The chemotherapeutic response for TNBC was predicted

according to the data involved in the Genomics of Drug

Sensitivity in Cancer (GDSC) with the “pRRophetic” package

(Geeleher et al., 2014). The Tumor Immune Dysfunction and

Exclusion (TIDE) database (http://tide.dfci.harvard.edu/) was

employed to predict the immunotherapy response of TNBC

(Jiang et al., 2018), and the default cutoff value was 0.

Calculation of tumor microenvironment-
related gene score

The overlapping DEGs among the four TNBC datasets were

regarded as TME gene signatures. Principal component analysis

(PCA) was used to calculate the TRG score to quantize the TME

patterns in TNBC. We summed PC1 and PC2 of genes i by PCA

as described before by us (Liu et al., 2021). The TRG score was

calculated as follows:

TRG score = Σ (PC1i + PC2i)

Prognostic signature construction and
survival analysis

Logistic least absolute shrinkage and selection operator

(LASSO) regression analysis can construct a prognostic

signature to minimize the risk of overfitting (Simon et al.,

2011). However, LASSO relies heavily on seeds when it allows.

Iteration LASSO was independent of the seed once the roots, the

optimal lambda, and the resulting feature were changed (Sveen

et al., 2012). The features retained at high frequency can be

considered the most influential factors. Genes included under

consensus were generated by iteration of LASSO, and AUC

further selected the minimum combination of genes associated

with survival. The formula of patients’ risk scores was established:

Risk score = Σ (each gene’s expression × corresponding

coefficient).

Receiver operating characteristic (ROC) curves and survival

curves with the Kaplan–Meier method were used to judge the

prediction efficiency of the signature. The best cutoff value of

genes in survival analysis was searched by the “survminer” R

package. The signature genes obtained from iterated LASSO

analysis were used for nomogram construction using logistic

and Cox regression analyses. Calibration curves were used to

assess the predictive accuracy of the nomogram.

Statistical analysis

Correlation coefficients and p values were calculated by

Spearman correlation analysis among several defined groups.

Wilcoxon tests were used to compare differences between the two

groups. The asterisks represent the statistical p values (*p < 0.05,

**p < 0.01, and ***p < 0.001) in the panels.

Results

Identification of tumor microenvironment
subtypes

The flowchart of this study is depicted in Figure 1. To explore

the tumor microenvironment patterns in four independent TNBC

cohorts, consensus cluster analysis was used to classify patients

with TME conditions (Supplementary Figures S1A–D). By

integrating the clustering results of each dataset, two distinct

TME subtypes were eventually identified using unsupervised

clustering in each cohort, labeled as subtypes 1 and 2

(Figure 2A). Here, we used immune cell signature 1 to perform

cluster analysis. At the same time, we found that the infiltration of

the levels of immune cells was significantly different using immune

cell signature 2 in all four cohorts (Figure 2B). Among them,

subtype 1 was enriched with immune cells compared with subtype

2, meaning that subtype 1 was an immune-activating subtype with

higher immune cell infiltration levels, the same as the conception

of a “hot” tumor. By the CIBERSORT algorithm, we found that

some antitumor immune cells, such as CD8+ T cells, activated

CD4+ T cells, and M1-like macrophages, were elevated in subtype

1. In contrast, tumor-associated immune cells, such as M2-like

macrophages, were more elevated in subtype 2 (Figures 2C,D).

Given these differences in the TME for these two subtypes, survival

analysis showed that the overall survival of subtype 1 in the four

cohorts was better than that of subtype 2 (Figure 2E).

Biological function analysis between
tumor microenvironment subtypes

To further investigate the differences between the two TME

subtypes, we considered analyzing the biological function
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FIGURE 1
Flowchart of our research. TNBC patients from four independent TNBC cohorts (TCGA, GSE96058, GSE86166, and GSE103091) were used to
conduct an unsupervised clustering analysis based on relative immune cell infiltration levels. Two TME subtypes were identified and systematically
correlatedwith representative tumor characteristics. TRG score based on TME-relatedDEGs calculated bymachine learningwas employed to reflect
TME subtypes’ attributes. TRG score could predict response to immunotherapy and sensitivity to multiple drugs in TNBC by TIDE and GDSC

(Continued )
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variation in the conception of signaling pathways. GSVA showed

that all immune-related pathways, such as the IL-2/STAT5, IL-6/

STAT3, and interferon response pathways, were enriched in

subtype 1, while the TGF-β-, NOTCH-, PI3K/AKT-, and

EMT-related pathways were enriched in subtype 2 (Figures

3A,B). ssGSEA with curated signaling pathway signatures

showed that the CD8 T effector- and immune checkpoint-

related pathways were activated in subtype 1. In contrast,

tumor progression-related pathways such as WNT and EMT

were activated in subtype 2 (Figures 3C,D). Based on ATAC-seq

data from TCGA, differentially expressed peaks were identified

between subtypes 1 and 2 (Figure 3E). GO analysis was processed

on these differentially expressed peaks annotated by ChIPseeker,

and the results showed that genes correlated with T cell activation

had higher chromatin activities in subtype 1. In comparison,

genes correlated with the regulation of GTPase and cell

morphogenesis possessed higher chromatin activities in

subtype 2 (Figure 3F).

Moreover, traditional GSEA was also conducted between

subtypes in the four cohorts, which was consistent with the

abovementioned results (Figure 4A). Using the ESTIMATE

method, scores of stromal and immune cells were also higher

in subtype 1 (Figure 4B). The expression levels of MHC

molecules and immune checkpoint inhibitors (ICIs) are

correlated with the activation of the antitumor immune

response and the efficacy of immunotherapy. Most MHC

molecules and ICIs were significantly different between the

two subtypes and were especially higher in subtype 1

(Figure 4C). The abovementioned analysis showed that TME

subtype 1 was highly correlated with immune-related

phenotypes, while TME subtype 2 was positively associated

with tumor progression and metastasis phenotypes. Thus,

more comprehensive analyses containing FPI and mRNAsi

were employed to analyze the ferroptosis level and the

stemness index of single tumor tissue. As we have noticed

that the initiation or metastasis of a malignant tumor might

be highly correlated with cancer stem cells, we aimed to use

mRNAsi to evaluate the differences between two TME subtypes.

Moreover, ferroptosis was also a novel and vital phenotype that

aroused our interest in further investigating the relationship with

immune subtypes; FPI was employed here to satisfy our

intention. Eventually, we found that the ferroptosis index

(FPI) was higher in subtype 1 than in subtype 2, while the

mRNA-based stemness index (mRNAsi) was higher in

subtype 2 than in subtype 1 (Figures 4D,E). However, no

significant difference was found in tumor mutation burden

(TMB) (Figure 4F).

Generation of tumor microenvironment-
related gene score and functional
verification

To further investigate the underlying mechanisms between

the two TME subtypes, differentially expressed gene (DEG)

analysis was conducted in four TNBC cohorts. Taking the

intersection of DEGs in four cohorts (Figures 5A,B),

236 TME-related genes (TRG) were identified between TME

subtypes, and all of them were upregulated in subtype 1

(Supplementary Table S6; Figure 5C). GO analysis showed

that DEGs were highly enriched in T-cell activation and cell

adhesion pathways (Figure 5D). For further analysis, a

continuous variable called the TRG score by PCA was

generated to quantify the different levels of TME in individual

patients. The TRG score could well reflect the differences in TME

subtypes in TNBC cohorts, and the TRG score was lower in

subtype 1 (Figure 5E). Patients with low TRG score demonstrated

a greater survival benefit than patients with high TRG score

(Figures 5F,G). ssGSEA calculated with immune cell signature

1 showed that the infiltration levels of most immune cells were

highly negatively associated with the TRG score (Figure 5H), and

ssGSEA calculated with immune cell signature 2 also verified that

most of the immune cells were higher in the low TRG score

groups (Figure 5I). CIBERSORT analysis showed that as the TRG

score was reduced, the percentage of cytotoxic T cells increased

(Figure 5J). GSVA showed that immune-related pathways, such

as the IL-2/STAT5, IL-6/STAT3, and interferon response

pathways, were negatively correlated with the TRG score.

In contrast, glycolysis, the NOTCH signaling pathway, and

protein secretion were positively correlated with the TRG score

(Figure 6A). ssGSEA with curated pathway signatures verified

that the TRG score was negatively linked with antigen processing

machinery, CD8 T effector, and immune checkpoint and

positively associated with WNT target pathways (Figure 6B).

We show the genes involved in the above-curated pathway

signatures with statistical significance in Figure 6C. Most of

the genes involved in immune-related pathways were highly

negatively correlated with the TRG score. The stromal and

immune scores calculated by ESTIMATE were undoubtedly

negatively correlated with TRG score in all TNBC cohorts

FIGURE 1 (Continued)
analysis. TNBC_WC samples as an external validation cohort to verify the effectiveness of TRG score, and based on iteration LASSO analysis,
simplified TRG scores involving 20-member prognostic signature were established for clinical use to predict the survival probability of TNBC. TME-
DEGs, tumor microenvironment-related differentially expressed genes; FPI, ferroptosis index; mRNAsi, mRNA-based stemness index; GDSC,
Genomics of Drug Sensitivity in Cancer; TIDE, Tumor Immune Dysfunction and Exclusion; TRG, TME-related genes; and TNBC_WC, triple-
negative breast cancer cohort in West China hospital.
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FIGURE 2
Identification of TME Subtypes. (A) Clustering heatmap of immune cell infiltration levels calculated with immune cell signature 1 in four TNBC
cohorts. (B) Immune cell infiltration levels were calculated with immune cell signature 2 in the TNBC cohort between the two TME subtypes. (C)
CIBERSORT algorithm assessed the relative percentage of different immune cell types in a single sample in thewhole TNBC cohort. (D)Differences in
immune cell type relative percentages assessed by the CIBERSORT algorithm in a single sample in the whole TNBC cohort. (E) Survival analysis
for TME subtypes in the whole TNBC cohort. The asterisks represent the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 3
Biological function analysis between TME subtypes. (A) Heatmap of the GSVA enrichment score in curated pathways in four TNBC cohorts. (B)
Differences in GSVA enrichment scores in curated pathways in the whole TNBC cohort. (C) Heatmap of curated pathways calculated with another
pathway signature in four TNBC cohorts. (D) Differences in curated pathways were calculated with another pathway signature in the whole TNBC
cohort. (E) Differentially expressed peaks were identified between the two TME subtypes in TCGA. (F) GO analysis of differentially expressed
peaks between two TME subtypes in TCGA. The asterisks represent the statistical p value (*p < 0.05; **p < 0.01; and ***p < 0.001).
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FIGURE 4
Biological function analysis between TME subtypes. (A) GSEA between two TME subtypes in four TNBC cohorts. (B) Differences in ESTIMATE
analysis results between TME subtypes in the whole TNBC cohort. (C) Differential expression analysis of MHC molecules and immune checkpoint
inhibitors between TME subtypes in four TNBC cohorts. (D,E)Differences in the results for FPI andmRNAsi between TME subtypes in thewhole TNBC
cohort. (F) Differences in TMB between TME subtypes in the TCGA cohort. The asterisks represent the statistical p value (*p < 0.05; **p < 0.01;
***p < 0.001).
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FIGURE 5
Generation of TRG score and functional verification. (A) Intersection of upregulated DEGs between two TME subtypes in four TNBC cohorts. (B)
Intersection of downregulated DEGs between two TME subtypes in four TNBC cohorts. (C) Heatmap of DEGs between two TME subtypes in four
TNBC cohorts. (D) GO analysis of DEGs intersected between the two TME subtypes. (E) Differences in TRG score between TME subtypes in four
TNBC cohorts. (F) Survival analysis for the TRG score in four TNBC cohorts. (G) Survival analysis for the TRG score in the whole TNBC cohort. (H)
Correlation analysis between the TRG score and immune cell infiltration levels calculated by immune cell signature 1. (I) Immune cell infiltration levels
calculated with immune cell signature 2 in the whole TNBC cohort between the two TME subtypes. (J) Variation tendency of the relative immune cell
percentage in a single sample in the whole TNBC cohort. The asterisks represent the statistical p value (*p < 0.05; ***p < 0.001).
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FIGURE 6
Generation of TRG score and functional verification. (A) Correlation analysis between the GSVA score and TRG score in four TNBC cohorts. (B)
Correlation analysis between the curative pathway enrichment score and TRG score in four TNBC cohorts. (C)Correlation analysis between the TRG
score and the expression of genes involved in four significant pathways in Supplementary Figure S4C. (D)Correlation analysis between the TRG score
and the results of ESTIMATE analysis in four TNBC cohorts. (E,F)Differences in the results for FPI andmRNAsi between TRG score groups in the
whole TNBC cohort. (G)Differences in TMB between TRG score groups in the TCGA cohort. (H)Correlation analysis between the TRG score and the
expression of 113 ferroptosis-related genes in four TNBC cohorts. (I) Differences in TRG score between different clinical trait groups in the TCGA
cohort.
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FIGURE 7
Role of the TRG score in therapeutic efficacy. (A)Correlation analysis between TRG score and prediction IC50 values in the whole TNBC cohort.
The green line represents that the predicted IC50 of drugs was positively correlated with the TRG score, and the red line represents a negative
correlation. (B) Difference in TRG score between immunotherapy respondents and nonresponders in TIDE analysis in the whole TNBC cohort. (C)
Correlation analysis between the TRG score and the results of TIDE analysis in four TNBC cohorts. (D) Correlation analysis between the TRG

(Continued )
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(Figure 6D). The low TRG score group still had a higher FPI than

the high TRG score group, but the mRNAsi and TMB showed no

significant differences (Figures 6E–G). Due to differences in FPI

between TME subtypes and TRG score groups, correlation

analysis was conducted between TRG score and the

expression of ferroptosis-related genes. We found that the

expression of TNFAIP3, SOCS1, IFNG, ATM, ALOX5, PML,

ISCU, and GCH1 was significantly negatively correlated with

TRG score in four TNBC cohorts (Figure 6H). The TRG score

showed no significant differences between the AJCC_T,

AJCC_N, and stage groups, meaning that the TRG score was

a novel factor regardless of clinical traits (Figure 6I).

Role of the tumor microenvironment-
related gene score in therapy efficacy

To explore the association between the TRG score and drug

response, we evaluated the estimated IC50 value of 138 drugs

included in the GDSC database in four TNBC cohorts.

Correlation analyses were conducted between the TRG score

and predicted IC50 values (Supplementary Figure S2A). Drugs

with significant differences in more than three cohorts were

regarded as potential therapeutic drugs; we found that eight

drugs were sensitive to the high TRG score group, and 49 drugs

were sensitive to the low TRG score group (Figure 7A). The TRG

score might logically be related to the efficacy of immunotherapy

due to its apparent association with immune cell infiltration and

activation. TIDE was utilized to predict the immunotherapy

response of TNBC patients, and the TRG score was lower in

the immunotherapy response group (Figure 7B). Moreover,

TIDE analysis showed that the TRG score was apparently

negatively correlated with markers of immunotherapy

response and positively correlated with CAFs, myeloid-derived

suppressor cells (MDSCs), and TAM M2 (Figure 7C). Lacking

TNBC datasets that received immunotherapy, we selected three

cohorts that received anti-PDL1, anti-PD1, and anti-MAGE-

A3 therapy in bladder cancer (BLCA) and skin melanoma

(SKCM) to verify the immunotherapy response prediction

value of the TRG score. First, TRG scores were calculated

across cancers in TCGA. TRG scores were prognostic risk

factors (Supplementary Figure S2B) and were negatively

correlated with immune cell infiltration levels in most cancer

types, especially in BLCA and SKCM (Figure 7D). Then, we

calculated the TRG score in the three immunotherapy cohorts.

Interestingly, we found that the TRG score was also a risk factor

in IMvigor210 (Supplementary Figure S2C), and patients with a

high TRG score and low TMB presented the worst survival

advantage (Figure 7E). Correlation analysis further validated

that the TRG score was negatively correlated with the

expression of MHC, costimulatory, adhesion molecules

(Supplementary Figure S2D), and immune cell infiltration

levels (Figure 7F). Moreover, a higher TRG score was

associated with disease progression (PD), indicating that a

higher TRG score might indicate poor response after

immunotherapy (Figures 7G,H). As most solid tumors

exhibited one of three distinct immunological phenotypes,

immune inflamed, immune excluded, or immune desert,

studies in the IMvigor210 cohort classified each sample into

one of these immune phenotypes (Mariathasan et al., 2018). The

immune inflamed phenotype was thought to be rich in immune

cell infiltration and sensitive to immunotherapy, while the

immune desert was on the contrary. Immune excluded

phenotype was surrounded by many immune cells, but the

immune cells were confined to the periphery of the tumor cell

matrix. We found that a higher TRG score was associated with

desert-resistant phenotypes, while inflamed phenotypes

possessed a lower TRG score than desert and excluded

phenotypes (Figure 7I). In the anti-MAGE-A3 cohort, the

TRG score was also negatively correlated with immune cell

infiltration levels (Figure 7J) and was lower in the response

group (Figure 7K). Similar results could be seen in the anti-

PD1 cohort (Figure 7L), although the differences among

response groups showed no significance (Supplementary

Figure S2E).

Verification of the tumor
microenvironment-related gene score in
the external validation TNBC cohort

The TRG score was calculated as described earlier in

80 triple-negative breast cancer samples from the West China

Hospital (TNBC_WC) cohort. It was found that a higher TRG

score was related to the disease progression rate (Figure 8A) and

poor survival probability (Supplementary Figure S2F) of TNBC

FIGURE 7 (Continued)
score and the immune cell infiltration levels was calculated with immune cell signature 1 in TCGA pancancer. (E) Survival analyses for patients
treated with anti-PD-L1 immunotherapy stratified by both TRG score and TMB. (F) Correlation analysis between the TRG score and immune cell
infiltration levels calculated by immune cell signatures 1 and 2 in the IMvigor210 trial. (G)Differences in TRG score between the CR/PR/SD group and
the PD group in the IMvigor210 trial. (H) Rating clinical response to anti-PD-L1 immunotherapy in high or low TRG score groups in the
IMvigor210 cohort using the chi-square test. (I)Differences in TRG score among immune phenotypes in the IMvigor210 trial. (J) Correlation analysis
between the TRG score and the immune cell infiltration levels calculated with immune cell signature 1 in GSE35640. (K) The difference in TRG score
between immunotherapy respondents and nonresponders in GSE35640. (L) Correlation analysis between the TRG score and the immune cell
infiltration levels calculated with immune cell signature 1 in GSE78220. The asterisks represent the statistical p value (*p < 0.05 and ***p < 0.001).
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FIGURE 8
Verification of TRG score in TNBC_WC cohort. (A) Survival analysis for the TRG score. (B) Heatmap of immune cell infiltration levels calculated
with immune cell signatures 1 and 2. (C) Correlation analysis between the TRG score and ESTIMATE score, including the stromal score and immune
score. (D) Correlation analysis between the TRG score and the expression of MHC molecules. (E) Correlation analysis between the TRG score and
curated pathway enrichment score. (F) Correlation analysis between TRG score and FPI and mRNAsi. (G) Differences in TRG score between
immunotherapy respondents and nonresponders in TIDE analysis. (H)Correlation analysis between the TRG score and predicted IC50 values. (I) The
intersection of GDSC drugs with significance between the results of four TNBC cohorts and the TNBC_WC cohort. The asterisks represent the
statistical p value (*p < 0.05).
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FIGURE 9
Prognostic signature construction and simplification of the TRG score. (A) Iteration LASSO constructed a prognostic signature with 20 genes.
The AUC for 5 years was 0.942, and the survival curve for the risk group is shown in the right panel. (B) Calibration curve for the comprehensive
survival nomogrammodel in the TCGA TNBC cohort. The dashed diagonal line represents the ideal nomogram, and the blue and red lines represent
the 5- and 8-year observed nomograms, respectively. (C) Correlation between the sTRG score and TRG score in the TNBC_WC cohort. (D)
Survival analysis for the sTRG score in the TNBC_WCcohort. (E)Correlation analysis between the TRG score and simplified TRG (sTRG) score and risk
score in four TNBC cohorts. (F)Correlation network among 20 genes involved in the prognostic signature. (G) Alluvial diagram shows the changes in
relationships among multiple groups in our research.

Frontiers in Pharmacology frontiersin.org15

Gou et al. 10.3389/fphar.2022.995555

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.995555


patients. ssGSEA also showed a strong correlation between the

TRG score and immune cell infiltration levels in TNBC_WC

(Figure 8B), as well as the results of the ESTIMATE score

(Figure 8C). Some MHC molecules and ICI targets were also

negatively correlated with the TRG score, especially PDL1 and

PDCD1LG2 (Figure 8D). For pathway analysis, pathways that

were associated with the TRG score in TNBC_WC were almost

the same as the results in the four training cohorts (Figure 8E).

Correlation analysis showed that the TRG score was positively

correlated with the FPI and mRNAsi (Figure 8F). The response

group predicted by TIDE analysis showed a lower TRG score

than the no response group (Figure 8G). Additionally, we

predicted the drug IC50 by GDSC analysis and performed

correlation analysis with the TRG score (Figure 8H) and

intersection drugs with the results in the training cohorts, as

shown in Figure 8I. These results illustrated that the TRG score

was a novel and robust method to measure immune cell

infiltration levels and therapy efficacy.

Prognostic signature construction and
simplification of the tumor
microenvironment-related gene score

Considering the accessibility of the TRG score, we aimed to

shrink the members of the TRG score and simplify the formula

modes to predict the prognosis of TNBC patients. First, survival

analysis was processed for 236 TME-related DEGs in TCGA

cohorts; 84 genes with a p value < 0.05 were selected for further

research (Supplementary Figure S3A). Here, iteration LASSO

was then used to simplify the members of the TRG score; after

multiple attempts to reach the highest 5-year AUC, we finally

constructed a prognostic signature with 20 members from TRG

score members (Supplementary Table S7; Figure 9A). We could

see that there were 20 genes with the most frequencies of

occurrence in 1,000 operation iterations in LASSO algorithms,

and prognostic signatures with these 20 genes could reach a high

area under the curve (AUC) of ROC for 5 years of survival in the

TCGA cohort. To provide a convenient approach for predicting

the survival probability of a patient with TNBC, we constructed

predictive nomograms with the 20 genes generated previously.

We developed a nomogram based on the Cox regression model

to predict the 5- and 8-year survival probability for TNBC

patients (Supplementary Figure S3B). The calibration plots for

the 5- and 8-year survival showed an optimal agreement between

the nomogram-predicted and observed OS, which was used to

evaluate the accuracy of the prediction signature (Figure 9B). For

validation of the prognostic value of the 20-gene signature, the

patients in the high-risk group showed a worse prognosis than

those in the low-risk group, and the same condition could be seen

in other TNBC cohorts (Supplementary Figure S3C). Before the

prognostic signature was constructed, we conducted a correlation

analysis between the TRG score and the expression of 236 TME-

related DEGs in four TNBC cohorts. In view of most genes highly

correlated with the TRG score, we are supposed to simplify the

TRG score by these 20 genes. Surprisingly, the simplified TRG

score (sTRG score) calculated based on the expression of these

20 genes was highly positively correlated with the TRG score in

the TNBC_WC cohort (Figure 9C), and patients in the high

sTRG score group also showed worse DFS than those in the low

sTRG score group (Figure 9D). Not unexpectedly, the correlation

coefficients between the TRG score and sTRG score were almost

close to 1 in other cohorts, which means that they were virtually

interchangeable (Figure 9E). However, the risk score showed no

significance with the TRG score, indicating that the risk score was

a novel factor generated by the iterative LASSO regression model.

Eventually, we set up a coexpression network for 20 genes, and

we found strong correlations among them (Figure 9F). The

visualization of attribute changes in individual patients using

an alluvial diagram indicated that the TRG score might be a

powerful method to direct therapeutic efficacy or prognostic risk

for TNBC patients (Figure 9G).

Discussion

The evolving immunotherapy of malignant tumors inspired

our interest in the role of tumor microenvironment patterns in

TNBC. The TME, a critical regulator of disease progression and

therapeutic outcome, correlates with patient response to

immunotherapy in multiple cancers, with patients possessing

immune-favorable TME subtypes benefiting the most from

immunotherapy (Bader et al., 2020; Bagaev et al., 2021; Cao

et al., 2021). However, previous studies have reported that breast

cancer is generally considered a low immune-reactive cancer,

TNBC, the most aggressive subtype of breast cancer, but

responds to anti-PD-1/PD-L1 immunotherapy (Adams et al.,

2019b; Adams et al., 2019c). The urgent question is which types

of TNBC patients are suitable for immunotherapy and what their

characteristics are. This study was the first to identify TME

subtypes of TNBC and TME-related genes represented for

each subtype based on consensus clustering analysis. For a

more rigorous conclusion, at least two cross-validation

methods were chosen for each step, ssGSEA, CIBERSORT,

and ESTIMATE, for assessing immune cell infiltration levels

and GSEA GSVA and GO analysis for evaluating pathway

activation conditions.

Moreover, multiple cohorts were selected for training or

validation, and one private external validation cohort was

specialized to collect for confirmation of results. All of these

innovations will directly differentiate our study of TME patterns

in TNBC from all previous studies; there were no systematic

studies on the selection of immunotherapy beneficiaries in TNBC

based on TME subtypes. The essential light spot of our studies

illustrated that two perfect scoring systems based on one gene

signature were constructed to predict the efficacy of
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immunotherapy, response to chemotherapy, and prognosis of

TNBC patients.

Previous studies related to the TRG score in TNBC (Qin

et al., 2021; Yi et al., 2021; Yang et al., 2022) generally used one

method to assess immune cell infiltration levels and did not

consider immune-related pathway activation conditions; our

study used not only numerous methods to evaluate immune cell

infiltration levels but also employed different types of pathway

signatures to evaluate pathway enrichment levels. These results

provide mechanistic insights into the efficacy of

immunotherapy, suggesting that benefits from

immunotherapy are not only related to enhanced IL-2/

STAT5, IL-6/STAT3, and interferon response pathways but

are also associated with inhibition of TGF-β-, NOTCH-, PI3K/

AKT-, and EMT-related pathways. Subtype 1 was characterized

by multiple infiltrating immune cells, especially cytotoxic cells

and antigen-presenting cells, which were reported to

correspond to the resistant activated phenotype (Gajewski

et al., 2013; Turley et al., 2015; Chen and Mellman, 2017).

In contrast, subtype 2 was characterized by a lack of immune

cell infiltration, corresponding to the immune-suppressed

phenotype, which is often referred to as a “cold” tumor

(Kim and Chen, 2016). Most importantly, based on a

machine learning method, the PCA score, we successfully

converted categorical variables of TME subtypes to numeric

variables of the TRG score, which could inherit all

characteristics of TME subtypes. The lower the TRG score

was, the more likely the patient was to be grouped into

subtype 1, indicating better immune cell infiltration levels.

The lack of TNBC cohorts that received immunotherapy,

TIDE analysis, and immunotherapy cohorts in other tumors

was utilized to assess the true power of the TRG score in the

prediction of immunotherapy efficacy. We already know that

many TNBC patients could benefit from immunotherapy from

the Impassion130 study (Schmid et al., 2020; Emens et al.,

2021), which was highly consistent with our research. The

former critical analysis failed to answer the question of

benefit group selection; however, our studies showed that

some TNBC patients might have a higher possibility of

benefitting from immunotherapy, and the specific cutoff

value still needs to be further explored. Although this

conclusion failed to be validated in the Impassion130 study

due to data permission, we successfully validated the efficacy of

the TRG score in other immunotherapy cohorts in metastatic

urothelium carcinoma and melanoma treated with anti-PDL1,

anti-PD1, and anti-MAGE-A3.

Correlation analysis between TIDE results members and

TRG score showed that TRG score was highly positively

correlated with CAFs, TAM M2, and MDSC, and all of these

cells were reported to be immune suppressive cells and closely

associated with cancer stemness (Kwak et al., 2020; Boutilier

and Elsawa, 2021; Mao et al., 2021). Subsequent mRNAsi

analysis verified these findings that the TRG score was

positively correlated with cancer stemness, which might be

why subtype 2 was related to progression and metastasis-

related pathways and poor immune cell infiltration levels.

Cancer stemness has been reported to be associated with

immunotherapy efficacy in many studies (Ruiu et al., 2019;

Clara et al., 2020; Yang et al., 2020), as well as with drug

resistance in TNBC (Cazet et al., 2018; O’Conor et al., 2018).

Combined with drug information and sequence data in GDSC,

several molecular compounds that might be sensitive in TNBC

patients have been identified, broadening the drug research

direction of basic experiments in TNBC. Ferroptosis, an iron-

dependent form of nonapoptotic cell death that is lethal, has

received widespread attention as a potential therapeutic

pathway for cancer treatment (Yamaguchi et al., 2013; Ooko

et al., 2015). In our research, the ferroptosis level viewed by FPI

was higher in subtype 1, meaning that the ferroptosis level

might be correlated with an immune-activated TME, and some

drugs that infect the ferroptosis process might be sensitive in

these patients.

TNBC is a malignant tumor with a poor prognosis, and

local recurrence, distant metastasis, and drug-resistant

resistance have been the leading cause of death (Bauer et al.,

2007; Dent et al., 2007). The constructed TME subtypes and

TRG score in this study could reasonably predict the risk of

overall survival and had no correlation with previously defined

clinical grade and stages, meaning that this score might be a

novel factor unaffected by clinical traits. To better predict the

survival possibility of TNBC patients, an iterative LASSO

algorithm was conducted in TCGA cohorts and validated in

three GEO cohorts. Nomograms to indicate survival possibility

and death odds were both established by Cox and logistic

regression models, which might be helpful in clinical

practice. Interestingly, 20 predictive models were accidentally

found to construct a simplified TRG score, which might be the

same as the TRG score built by 236 DEGs. If the TRG score

could be used in clinical practice to predict immunotherapy and

chemotherapy efficacy or prognosis of TNBC patients, we

suggest that a simplified TRG score might be a more

convenient test model.

For 20 genes involved in the predictive signature, we found

that these 20 genes were highly associated with immune cell

infiltrations in the TME, such as DCs, B cells, and T cells, which

were comprehensively reported to be associated with

immunotherapy efficacy (Wculek et al., 2020; Sabado et al.,

2017; Wang et al., 2019; Guzman-Genuino et al., 2021;

Raskov et al., 2021; O’Donnell et al., 2019). LAMP3, IDO1,

HSD11B1, and CD1B are markers of DCs; HLA-DOB and

CR2 are markers of B cells; and SIT1, IFNG, ICOS, and

CXCL13 are markers of T cells. Although some genes were

not markers of immune cells, they were reported to be

associated with TME and immunotherapy efficacy. The

expression of SLAMF8 (Zhang et al., 2021b) and PSMB8

(Kalaora et al., 2020) could predict the efficacy of immune
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checkpoint inhibitor immunotherapy in gastrointestinal cancer

and melanoma. IKZF3 deficiency could potentiate chimeric

antigen receptor T cells to target solid tumors (Zou et al.,

2022) and activation of the GPR171 pathway could suppress

T cell activation and limit antitumor immunity (Fujiwara et al.,

2021). Several immune-related molecules, including LGALS2,

GFI1, and GBP1/5, have not yet been reported to be related to

immunotherapy. Eventually, these results further demonstrated

that simplifying the TRG score by 20 immune-related genes was a

perfect signature highly correlated with immune cell infiltration

levels to predict immunotherapy efficacy.

Although the TRG score could reasonably predict the

efficacy of immunotherapy and the prognosis of TNBC

patients, to validate all of the abovementioned analyses in

public datasets, we finally collected 80 TNBC patients in

West China Hospital and performed high-throughput

sequencing. The TRG score showed powerful abilities in

prognostic prediction and assessing immune cell infiltration

levels. Importantly, this cohort was also one of the few

sequenced data with clinical information on TNBC; however,

patients in this cohort had not yet received immunotherapy.

From the TIDE and GDSC analysis results in this cohort,

immunotherapy and several drugs identified in the

abovementioned research were also validated.

Conclusion

In conclusion, the TRG score was a convenient method to

comprehensively classify the TME subtypes and their

corresponding characteristics and pathway activation levels in

TNBC. It could also be used to assess some cancer-related

features, including the ferroptosis index, genetic variation,

drug sensitivity, and mRNAsi of individual patients, and

further predict the response to immunotherapy of TNBC

patients. Importantly, this study provides a perspective for the

comprehensive evaluation of the cellular, molecular, and genetic

factors associated with TME infiltration patterns to further

reverse TME cell infiltration characterization into “hot

tumors”, thus improving the response to an immune

checkpoint inhibitor.
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Glossary

TNBC Triple-negative Breast Cancer

ER Estrogen Receptor

PR Progesterone Receptor

DFS Disease-Free Survival

OS Overall Survival

CAFs Cancer-associated Fibroblasts

DCs Dendritic Cells

TAMs Tumor-associated Macrophages

TME Tumor Microenvironment

GEO Gene Expression Omnibus

TCGA The Cancer Genome Atlas

ssGSEA Single-sample Gene Set Enrichment Analysis

GSEA Gene Set Enrichment Analysis

GSVA Gene Set Variation Analysis

ESTIMATE Estimation of Stromal and Immune Cells in

Malignant Tumors using Expression Data

GO Gene Ontology

DAVID Database for Annotation, Visualization and Integrated

Discovery

KEGG Kyoto Encyclopedia of Genes and Genomes

mRNAsi mRNA-based Stemness Index

FPI Ferroptosis Index

DEGs Differentially Expressed Genes

PCA Principal Component Analysis

HR Hazard Ratios

LASSO Logistic Least Absolute Shrinkage and Selection

Operator

ROC Receiver Operating Characteristic

AUC Area Under the Curve

ICI Immune Checkpoint Inhibitors

TMB Tumor Mutation Burden

TIDE Tumor Immune Dysfunction and Exclusion

TRG TME-related genes

sTRG Simplified TRG
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