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A Bayesian predictive approach for 
dealing with pseudoreplication
Stanley e. Lazic1*, Jack R. Mellor2, Michael c. Ashby2 & Marcus R. Munafo  3

pseudoreplication occurs when the number of measured values or data points exceeds the number 
of genuine replicates, and when the statistical analysis treats all data points as independent and thus 
fully contributing to the result. By artificially inflating the sample size, pseudoreplication contributes 
to irreproducibility, and it is a pervasive problem in biological research. In some fields, more than half 
of published experiments have pseudoreplication – making it one of the biggest threats to inferential 
validity. Researchers may be reluctant to use appropriate statistical methods if their hypothesis is 
about the pseudoreplicates and not the genuine replicates; for example, when an intervention is 
applied to pregnant female rodents (genuine replicates) but the hypothesis is about the effect on 
the multiple offspring (pseudoreplicates). We propose using a Bayesian predictive approach, which 
enables researchers to make valid inferences about biological entities of interest, even if they are 
pseudoreplicates, and show the benefits of this approach using two in vivo data sets.

For nearly a century, statisticians and quantitative biologists have worried about pseudoreplication – also known 
as the unit-of-anlysis problem1. Hurlbert’s seminal 1984 paper drew attention to the problem of pseudoreplication 
in the biological sciences, but the concept remains controversial2–5. The requirements for genuine replication are 
well-defined6,7, but how they apply to one’s experiment, or the degree to which the requirements are met can be 
debatable, as some rely on untestable assumptions. Reasonable disagreement can therefore exist.

The controversy may persist because formulating a scientific question as statistical model can be difficult if 
one has received little formal training in experimental design or statistics – like many laboratory-based biologists. 
In addition, for some experiments, the intuitively obvious model may in fact be incorrect. The two main ways of 
dealing with pseudoreplication are: (1) average the pseudoreplicates to obtain one value per genuine replicate, 
or (2) use a more sophisticated approach that captures the structure of the data where the pseudoreplicates are 
nested under the genuine replicates, such as a multilevel/hierarchical model8–11.

These recommended methods have lead to a key point of contention. Although statistically appropriate, 
averaging and multilevel models test a hypothesis at a biological or technical level that differs from researchers’ 
desired target. For example, a researcher may be interested in how a prenatal intervention affects offspring’s behav-
iour, not how control litters differ from treated litters; or how a drug applied to wells in a microtitre plate effects 
cellular morphology, not how control wells differ from drug-treated wells; or how a treatment applied to animals 
affects the number of synapses in a brain region, not how the two groups of animals differ. Thus, there is a discon-
nect between what researchers want and what the usual statistical methods provide.

The proposed solution is to cast the problem within a predictive framework. The “predictivist” approach to sci-
entific inference has a long history in statistics. In 1920 Karl Pearson claimed the “fundamental problem of prac-
tical statistics” was predicting future observables from past data12, and in 1942, Deming wrote, “Every empirical 
statement of science is a prediction… There is no scientific interest in any measurement or empirical relationship 
that does not help to explain what will happen or has happened at another time or another place.”13 For Deming, 
it follows that “It is the statistician’s job to make rational predictions concerning measurements yet to be made.”13 
But in the early 20th century, statisticians began focusing on parameters in statistical models – estimating their 
values and making them targets of hypothesis tests14,15. The predictive perspective has since been a minority view 
in statistics but has developed in parallel to the mainstream’s emphasis on parameters14,15. Fortunately, there is a 
renewed interest in prediction16–20, perhaps due to the attention that machine learning is receiving.

Emphasising prediction for scientific discovery has many advantages (see Billheimer and Briggs for recent dis-
cussions17,20), and here we focus on one that addresses the problem of pseudoreplication: we can make statistical 
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inferences about biological entities of interest from multilevel models, that is, about the pseudoreplicates. A sec-
ond advantage not specific to pseudoreplication is that conclusions are probabilistic statements about observable 
events, not unobservable parameters, and as Billheimer and Briggs have argued, this can help with the reproduci-
bility crisis17,20. Briggs writes, “Do not speak of parameters; talk of reality, of observables. This alone will go miles 
toward eliminating the so-called replication crisis.”[17; p. xii]

Focusing on parameters makes more sense when a true but unknown value exists, such as the speed of light, 
the electrical conductivity of copper, or the boiling point of ethanol, perhaps under defined standard conditions 
such the boiling point at one atmosphere of pressure. The idea of a true but unknown fixed parameter is less plau-
sible for biological experiments; for example, what does it mean to say θ is the effect of a drug on proliferating 
cells? It depends on the cell line used, whether it is an in vitro or in vivo experiment, the protocol (concentration, 
duration of exposure, route of administration, and so on). The effect may vary between production batches of the 
compound, or between experimenters, or even between the same experimenter on different occasions. It often 
doesn’t make sense to assume that a single value of θ exists21. And yet, the core of the “reproducibility crisis” lies 
in researchers inability to obtain similar values for unobservable and nonexistent parameters that, a priori, are 
expected to vary. We should only be concerned, but perhaps not surprised, when results of direct replications 
differ, because biologists are often unable to control all relevant factors, including the heterogeneity of the sample 
material. From the predictive perspective, parameters are a means to an end – making predictions – and are not 
ends in themselves. Even if we know the value of a parameter precisely, we still may be unable to predict well. 
Suppose we toss a coin 10 million times and obtain 5010000 heads and 4990000 tails. The bias of the coin (its 
propensity to land heads) is 0.50100 (95% CI: 0.50069 to 0.50131), and the p-value testing whether the bias is 
significantly different from 0.5 (a fair coin) is . × −2 54 10 10. Despite this exceedingly small p-value, we are unable 
to predict if the next toss will be heads any better than chance.

Much of the earlier work on statistical prediction used a Bayesian framework because predictions and 
their uncertainties could be easily calculated. Stigler even argues that Bayesian inference was originally 
observation-focused, as Thomas Bayes represented a complete lack of knowledge by reference to a data distri-
bution, and not the distribution of a parameter22. We propose using multilevel models, consistent with previous 
recommendations for dealing with pseudoreplication, but make them Bayesian, and instead of focusing on unob-
servable parameters, use predictions from the model to draw conclusions about biological entities of interest. 
Details of Bayesian inference are not discussed here, but Kruschke and McElreath provide excellent introduc-
tions23,24, and Gelman and colleagues cover more advanced topics25. The key idea however is that our uncer-
tainty in all unknowns before seeing the data, such as a parameter in a statistical model, is represented with a 
distribution, known as the prior distribution (Fig. 1). The prior is then updated with the data to form the posterior 
distribution, representing what the data told us about the parameter, combined with what we knew before seeing 

Figure 1. Bayesian updating and predictions. The prior distribution represents what we know about a 
parameter before seeing the data. The data updates the prior to form the posterior distribution, which is then 
used to make a prediction about future data through the posterior predictive distribution.

https://doi.org/10.1038/s41598-020-59384-7


3Scientific RepoRtS |         (2020) 10:2366  | https://doi.org/10.1038/s41598-020-59384-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

the data. Predictions are then made from the posterior distribution, giving us the posterior predictive distribution, 
which quantifies our uncertainty in the prediction. A final technical term is the experimental unit, which is the 
biological entity that is randomly and independently assigned to an experimental condition, and it may differ 
from the biological entity that a scientist wants to make an inference about. The number of experimental units 
equals the number of genuine replicates, and thus the sample size6,7.

We first analyse a dataset where mice (genuine replicates) were randomly assigned to different conditions and 
the soma size of multiple neurons (pseudoreplicates) per animal were measured. We compare results from an 
incorrect analysis, averaging the pseudoreplicates, a classic multilevel model, and a Bayesian multilevel model. 
Next, we analyse an experiment where pregnant female rodents were randomised to conditions but the interest 
is in the offspring. Again, we compare the results of several analyses. We also show the effect of doubling the 
number of replicates versus doubling the number of pseudoreplicates, and how this affects parameter estimates 
and predictions.

Methods
fatty acid dataset. Moen, Fricano, and colleagues were interested in factors affecting the soma size of neu-
rons in vivo10,26. They examined the effect of (1) knocking down the phosphatase and tensin homolog (Pten) 
gene, (2) infusion of fatty acids (FA) via osmotic minipumps, and (3) the interaction of Pten knockdown and 
FA infusion on the soma size. Only a subset of the data are used here to highlight the key points with a simpler 
analysis. In the subset of data, nine mice (genuine replicates) were randomly assigned to a vehicle control or fatty 
acid condition, and the soma size of 354 neurons (pseudoreplicates) were measured across all animals. Only the 
control (Pten expressing) neurons are used.

The data were analysed using four methods. The first analysis is the “wrong N” model where all the val-
ues are pooled, ignoring the animal-to-animal variability and ignoring pseudoreplication. A two-tailed 
independent-samples t-test assuming equal variances was used and with an incorrect sample size of 354 neurons. 
Second, multiple values per animal are averaged and the nine means are analysed with the same t-test, which is 
an appropriate analysis. However, a drawback of averaging is that information on the number of observations is 
lost so that in a subsequent analysis an average value based on one hundred observations has the same weight as 
an average value based on ten observations. Third, a multilevel model appropriately treats neurons as pseudorep-
licates by keeping track of which neurons come from which animal. We can write the model as

µ σ

µ α β γ

γ σ

∼

= + × +

∼ γ

soma size Normal( , )

Group

Normal(0, ),
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where the soma size for neuron i in animal j is modelled as coming from a normal distribution that has a mean of 
µ and standard deviation of σ (σ represents the within-animal variation of soma sizes). µ is a deterministic func-
tion of the parameters α, β, and γ. α is the intercept and represents the mean of the neurons in the control group. 
β is the difference between the vehicle control and FA group and is the key parameter for testing the effect of the 
treatment. γ  captures the variation between animals (but within a treatment group) and it is indexed with the 
subscript j because there is one value for each of the nine animals. These nine values are also modelled as coming 
from a normal distribution with a mean of zero and a standard deviation of σγ. α, β, σ, and σγ are the unknown 
parameters that we estimate from the data.

The final analysis uses a Bayesian multilevel model that is identical to the model above, but since a Bayesian 
analysis requires our prior uncertainty about all unknowns to be specified, we use the sensible default priors cal-
culated by the brm() function from the brms R package, which are shown below. The brm() function does not 
calculate a prior for the difference in group means (β); we therefore use a Normal(0, 20) prior, which is wide rel-
ative to the size of the expected effect and therefore has little influence on the results.

α
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σ
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∼
∼
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Student_t(3, 93, 15)
Normal(0, 20)
Student_t(3, 0, 15)
Student_t(3, 0, 15)

Once the model is fit, we can calculate the posterior predictive distributions by sampling values (neuron sizes) 
from the model and performing the calculations of interest. You can think of it as sampling an animal from a 
population of animals, and then sampling a neuron from the population of neurons in that animal. We can then 
calculate the probability that a randomly sampled neuron from one condition is higher than a randomly sampled 
neuron from another condition.

Valproic acid dataset. The data are originally from Mehta and colleagues and a subset of the data from the 
labstats R package is used here6,27,28. In this smaller dataset, six pregnant dams were randomised to receive either 
saline (SAL) or valproic acid (VPA) injections. After the offspring were born, four were selected from each litter 
and randomised to a saline (SAL) or a 2-methyl-6-phenylethyl-pyrididine (MPEP) drug condition. VPA induces 
autism-like behaviour in rodents and the aim of the study was to see if the mGluR5-receptor antagonist MPEP 
improves behaviour. Here, we only examine locomotor activity, although the experiment measured several out-
comes. The experiment is a split-plot or split-unit design because there are two types of experimental units and 
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therefore two sample sizes. The first is the six pregnant dams when testing the VPA effect, and the second is the 24 
offspring when testing the MPEP effect.

The data were analysed using three methods. The first analysis is the “wrong N” model that ignores the 
split-unit design of the study and uses a 2-way ANOVA with Group (VPA vs. SAL) and Drug (MPEP vs. SAL) as 
factors. The test for the drug effect is appropriate, but not for the VPA effect. Second, using a multilevel model we 
can specify that pregnant dams are the experimental units for the VPA effect and that the offspring are the exper-
imental units for the MPEP effect, thus correctly distinguishing between genuine replication and pseudoreplica-
tion. The final model is the Bayesian multilevel model from which we can calculate the predictive distributions. 
Once again we use the default priors calculated by the brm() function and specify Normal(0, 20) priors for the 
Drug, Group, and Drug by Group interaction effects.

To better understand how the sample size affects parameter estimates and predictions, we created two new 
datasets by taking the 24 locomotor activity values and adding random noise from a Normal(0, 0.2) distribution. 
We then combine these values with the original 24 values to double the number of data points. For one dataset we 
kept the same number of litters but doubled the number of animals per litter, and in the second we doubled the 
number of litters. We then compare the results from the original analysis to cases where we have more litters, or 
the same number of litters but more animals per litter.

All analyses were done with R (version 3.6.1). The Bayesian models were implemented in Stan (ver-
sion 2.19.2)29 via the brms package (version 2.10.0)30. The R code to reproduce the figures and results are in 
Supplementary File 1.

Results
fatty acid dataset. Figure 2A plots all the data, making the sources of between-animal and within-animal 
variation clear. Figure 2B plots the results as they are commonly seen in journals: groups means and misleading 
standard errors. This graph is inappropriate because it fails to distinguish between the within-animal and 
between-animal variability, and because the error bars are based on the incorrect sample size, and are therefore 
too small. Analysing this data with an inappropriate t-test gives a significant p-value: t(352) = −2.27, p = 0.024, 
N = 354. Figure 2C plots the animal averaged values, but the error bars are now based on the correct sample size 
of nine. The mean of the control group differs in Fig. 2B and Fig. 2C because the number of observations differs 
between animals. Animal 3 has only two soma size measurements and therefore contributes 2/164 = 1.2% of the 
values when calculating the mean of the control group, but 1/5 = 20% of the values when first calculating mouse 
means and then using these mean values to calculate the mean of the control group. The error bars for the FA 
group are similar in Fig. 2B and Fig. 2C , despite a difference in sample size. This occurs because there are more 
values in Fig. 2B but they are variable, whereas in Fig. 2C there are fewer animal-averaged values but they vary 
less. The variability and sample sizes happen to balance out such that the error bars are similar, but often the error 
bars will be considerably larger for the animal-averaged values. The visual impression of an effect differs between 
Fig. 2B,C, and the analysis of the averaged data confirms that there is much less evidence for a group difference: 
t(7) = −1.77, p = 0.12, N = 9. Analysing the data with a multilevel model gives similar results as the averaging and 
t-test method: t(7) = −1.49, p = 0.18, N = 9. If all animals had the same number of neurons, then averaging and a 
multilevel model would give identical results (as would a fixed effects nested model that wasn’t discussed; see the 
Supplementary Material in Lazic et al. for an example7).

Figure 3A shows the posterior distribution for the difference between the two groups from the Bayesian analy-
sis. This distribution represents the uncertainty in the difference, given the data, model, and prior information. It 
focuses on the unobservable group level mean-difference parameter, and is a Bayesian version of the classic mul-
tilevel analysis. We can calculate the proportion of the posterior distribution that is below zero, which equals 0.9. 
The interpretation is that there is a 90% chance that the control group has a lower mean than the fatty acid group. 
Alternatively, we can calculate the probability in the other tail of the distribution (above zero), and by multiplying 
this value by two we obtain a value that is often a similar magnitude to a classic p-value31. This value is 0.20, and 
the p-value from the classical multilevel model is 0.18.

Figure 2. Data from the fatty acid experiment. Plotting the raw values shows the within- and between-animal 
variation (A). Means and the incorrectly calculated standard errors (B) and correctly calculated standard errors 
(C).
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If we’re interested in making an inference about neurons, we can turn to the predictive perspective and ask: 
“what is the probability that a randomly chosen neuron from a future animal in the treated group will have a 
higher value that a randomly chosen neuron from a future animal in the control group?” If the scientific interest is 
in the individual neurons, then making a probabilistic prediction about as yet unseen neurons directly addresses 
this question. To obtain these distributions, we first sample an animal from a population of animals, and then 
sample a neuron within this animal, and then repeat this process thousands times for animals in both experimen-
tal conditions. Figure 3B plots these distributions, and they have substantial overlap. The probability that a neuron 
from the treated group has a larger soma size is only 0.60. Compare this with the p-value of 0.024 incorrectly 
calculated from the first t-test analysis, which implies evidence for an effect (to the extent that we can use a small 
p-value to indicate that an effect exists).

A benefit of the predictive approach is that we are making a claim about a future observable event and there-
fore can test our prediction. 95.3% of the values in the current dataset fall within the 95% prediction interval 
calculated from the posterior predictive distribution, indicating that we created a suitable model. But the real test 
of the model is seeing how well we can predict values from treated and control animals when the experiment is 
run again. Another benefit is that the predictions do not necessarily improve as the number of neurons per animal 
increase; researchers cannot ramp up the (incorrect) sample size to make small but negligible differences between 
groups statistically significant, like they can with the wrong N model.

Valproic acid experiment. The data from the VPA experiment are plotted in Fig. 4 and broken down by 
Drug, Group, and Litter. Litters C, E, and D are in the saline group and the other litters received VPA prenatally. 
Black lines connect the group means, and in all litters the MPEP animals have more locomotor activity than the 
saline animals, on average. The VPA animals also appear to have less activity than animals in the saline group.

When these data are analysed with an (inappropriate) 2-way ANOVA the results are: effect of MPEP: 
F(1,20) = 8.95, p = 0.007, N = 24; effect of VPA: F(1,20) = 5.32, p = 0.032, N = 24; and the interaction effect: F(1,20) = 0.64, 
p = 0.43, N = 24. Thus we would conclude that MPEP increases locomotor activity and VPA decreases it.

Next, we analyse the data with a multilevel model and the results are: MPEP effect: t(16) = 3.62, p = 0.002, N = 24; 
VPA effect: t(4) = 1.53, p = 0.20, N = 6; interaction effect: t(16) = −0.97, p = 0.35, N = 24. The VPA effect is no longer 
significant because the multilevel model correctly treats N as the 6 litters and not the 24 offspring. But both analyses 
give similar results for the MPEP and interaction effects because the sample size is the number of offspring.

Once again, a researcher could argue that they are interested in the effect of VPA on the offspring, not on some 
abstract “litter-averaged” value. We therefore fit a Bayesian version of the multilevel model and obtain similar 
Bayesian p-values for the effect of MPEP: p = 0.004, VPA: p = 0.24, and the interaction: p = 0.38. The posterior 
predictive distributions are shown in Fig. 5. In Fig. 5A we ask: “what is the probability that an animal in a future 
VPA litter will be less active than an animal in a future control litter, given that both these animals receive saline 
postnatally?” This question directly focuses on the effect of VPA in the offspring, and the probability is 0.76. This 
value is less impressive than the incorrect p-value from the 2-way ANOVA of 0.032. Nevertheless, it does suggest 
that knowing whether an animal received VPA or saline injections prenatally provides some predictive ability, 
but whether this is large enough is a scientific and not a statistical consideration. The other plots in Fig. 5 show 
predictions for other key comparisons.

Figure 3. Bayesian results for the fatty acid data. Density plot for the difference between groups. (A) The 
probability that the effect is negative is 0.90 and equals the proportion of the distribution below zero. Two times 
the proportion of the distribution above zero gives a value similar to a classic two-tailed p-value and equals 0.20 
(compare with p = 0.18 from the classic multilevel model). Density plot predicting the value of one neuron from 
a future animal from each experimental condition. (B) The probability that randomly selected neuron in the FA 
condition is higher than a randomly selected neuron in the vehicle control condition is only 0.60.
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Allowing the drug effect to vary by litter. The drug by group interaction tests if the effect of MPEP dif-
fers between the VPA and saline groups. Graphically, it tests whether the average slope in the VPA litters differs 
from the average slope in the saline litters (Fig. 4). Regardless of the result, the effect of MPEP might also differ 
across litters within a treatment group. For example, the difference between MPEP and saline groups is large for 
litter I, small for litter J, and intermediate for litter H (Fig. 4). The question is: are these differences consistent with 

Figure 4. Locomotor activity data for the split-unit valproic acid experiment. Each panel is a litter, which were 
randomised to receive saline (SAL) or valproic acid (VPA) prenatally. Each point is an offspring, and after birth, 
animals within a litter were randomised to either a saline control group (SAL) or the drug MPEP.

Figure 5. Posterior predictive distributions for the VPA experiment. For animals injected with saline 
postnatally, the probability is 0.76 that an animal receiving VPA prenatally is less active than an animal receiving 
saline prenatally (A), and for animals receiving MPEP postnatally, the probability is 0.64. (B) For animals in the 
prenatal saline litters, the probability is 0.70 that an animal receiving MPEP postnatally is more active than an 
animal receiving saline (C), and for animals in the prenatal VPA litters, the probability is 0.81 (D).
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sampling variation, or are the effects so different across litters that we suspect that a technical or biological factor 
is influencing the results?

To address this question, we fit a second Bayesian model (Model 2) to the data where the size of the MPEP 
drug effect is allowed to vary by litter, and there was little evidence that the size of the MPEP effect differed 
across litters. The simpler model without the interaction is 18 times more likely compared with Model 2 when 
comparing the models with a Bayes factor32. This new source of variation increases the uncertainty in the pre-
dictions because observed values can now span a wider range. The probabilities calculated in Fig. 5 are shown 
again in Fig. 6 for both models. The probabilities are closer to random guessing (0.5) for Model 2 because another 
source of uncertainty has been included in the predictions, and when we calculate the probability that a randomly 
selected animal in the VPA condition is less active than a randomly selected animal in the saline condition, we 
now include the additional variability across the litters. Since there was little evidence for a drug by litter interac-
tion, the predictions from Model 2 differ only slightly from those of Model 1, but it nevertheless illustrates how 
different sources of uncertainty can be incorporated into the predictions, and how it affects the predicted values.

Effect of doubling the number of litters versus doubling the number of animals per litter. To 
better understand how the sample size affects parameter estimates versus predictions, we created two new data-
sets. For the first dataset we kept the same number of litters but doubled the number of animals per litter; in the 
second, we doubled the number of litters. Thus we can compare the results from the original analysis to cases 
where we have more litters, or the same number of litters but more animals per litter. The same Bayesian model 
was fit to these new datasets and the results are shown in Fig. 7. Doubling the number of litters or the number 
of animals per litter increases the precision of the MPEP effect (the posterior distribution is narrower, and this 
would make a classic p-value smaller; Fig. 7A). The posterior distribution for the original VPA effect (Fig. 7B, blue 
distribution, although it is obscured by the red distribution) is wider than the original MPEP effect in Fig. 7A, 
indicating that the result is less certain, which we expect because N = 6 for testing the VPA effect and N = 24 for 
testing the MPEP effect. Doubling the number of litters increases the precision of the VPA effect (Fig. 7B; green 
distribution), but not doubling the number of animals per litter (red distribution). This result is expected and is 
why the number of genuine replicates (litters) must be increased to improve power to detect a VPA effect.

The blue distributions in Fig. 7C–F plot the same results as Fig. 5A–D, but instead of plotting two distribu-
tions, the distribution of their difference is plotted, which is a more compact representation. The other two dis-
tributions plot the same information from the datasets that doubled the number of litters (green) or the number 
animals per litter (red), which have only slight increases in the precision of the posterior predictive distributions, 
again, reflecting that further knowledge of a parameter does not necessarily lead to better predictions.

Discussion
An old statistical framework is being revived to improve reproducibility in science by focusing on predict-
ing observable outcomes and downgrading the importance of testing hypothetical parameters. The predictive 
approach also solves a problem related to pseudoreplication: inferences can be made about entities of direct inter-
est to biologists. We made probabilistic conclusions about neurons in the first example and about offspring in the 
second example, both of which are pseudoreplicates.

Figure 6. Prediction probabilities for two models. Model 1 assumes that MPEP’s effect is constant across litters 
while Model 2 allows for the effect to be larger in some litters and smaller in others. Since Model 2 includes 
another source of uncertainty, the predictions are more uncertain and therefore the calculated probabilities are 
closer to random guessing (0.5).
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Graphs like Fig. 2B can mislead scientists into thinking that the effect is biologically relevant, given the dis-
tance between means, relative to the length of the error bars. The incorrectly calculated p-value of 0.024 further 
reinforces this conclusion. We note the incoherence of arguing that the scientific interest is in the individual 
neurons, but then presenting only means and error bars where information about the neurons is hidden, and the 
neuron-to-neuron variation is mixed up with the animal-to-animal variation. Graphs such as Fig. 2A should be 

Figure 7. Effect of doubling the number of litters versus doubling the number of animals per litter. Panels 
(A,B) show the effect on the parameter estimates. For MPEP, the sample size is the number of offspring, and so 
precision is increased (narrower distributions) in both cases. For VPA, the sample size is the number of litters, 
and only increasing the number of litters increases the precision of this estimate. Panels (C–F) compare the 
posterior predictive distributions, which get only slightly narrower.
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presented, if not in the main manuscript, then at least in the Supplementary Material. Figure 2A shows the varia-
bility of values within animals, making it obvious that the observed mean difference between groups of 2.8 µm2 is 
small compared with the range of values within an animal, 95% of which will be between 84.4 and 115.8 µm2. The 
predictive approach provides an alternative way to interpret results, although it still may be difficult to understand 
the biological significance of these results. However, an analogy can be made with a clinical trial. If you are con-
sidering a medical treatment, you want to know the probability that you will be better off under treatment A 
versus treatment B, which can be calculated from the posterior predictive distribution17. A p-value and a 
population-averaged effect size do not provide this information, and with a large sample size, the clinical trial 
could return a highly significant p-value, but the probability of a better outcome under treatment A could be close 
to a coin flip. Demidenko makes a similar point from a frequentist perspective33. Similarly, if large soma sizes are 
“good”, we can calculate the probability that our experimental intervention will give us this desired outcome for a 
single cell, or for any numbers cells (which we did not calculate, but it is straightforward). Calculating such sum-
maries from the posterior predictive distributions can therefore complement the usual parametric results.

The approach described here can be applied to all data types and models, and is easily extendable. For exam-
ple, we could have fit a model that had different variances for the control and fatty acid groups in the first example, 
or we could allow each animal to have a different variance for the distribution of soma sizes. The calculations for 
the predictions are identical to the current examples. Sometimes two or more models are equally good and at 
describing the data and it is unclear which should be used for predictions. Fortunately, we do not need to choose 
only one model but can make predictions from several, and then combine the results, weighting them according 
to how well each model fits the data34. Here, model uncertainty would also be included when making predictions.

It took less than a minute to compile and run the model for the Moen dataset, which had 350 values. As the 
size of the data grows, the Bayesian model will either take too long to run or the available memory will run out. 
This scenario is unlikely for most biological experiments, but when datasets become extremely large, parameter 
uncertainty approaches zero. Hence, classical non-Bayesian multilevel models (also known as empirical Bayes 
models) will give similar predictions to fully Bayesian models, and can therefore be substituted as a computation-
ally more efficient method. Since the proposed method is the Bayesian version of the recommended multilevel 
modelling approach, we obtain all of the benefits of multilevel models but can also make predictions incorporat-
ing all sources of uncertainty.

The predictive approach could also be beneficial when experiments are conducted in batches or if data accu-
mulate over time. Here we can test our ability to predict ahead to data that we will obtain, and thus be able to test 
our predictions on future observations.

Poor predictive ability has direct consequences for interpreting preclinical animal research. If we cannot pre-
dict well in the animal models that we use as proxies for human diseases, what hope is there for using animals to 
predict what will happen in humans?

Data availability
The data are publicly available but have been included in Supplementary File S1 for convenience.
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