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mRNA is like Hermes, delivering the genetic code to cellular
construction sites, so it has long been of interest, but only
to a small group of scientists, and only demonstrating its
remarkable efficacy in coronavirus disease 2019 (COVID-
19) vaccines allowed it to go out into the open. Therefore,
now is the right timing to delve into the stepping stones
that underpin this success and pay tribute to the underlying
scientists. From this perspective, advances in mRNA engi-
neering have proven crucial to the rapidly growing role of
this molecule in healthcare. Development of consecutive
generations of cap analogs, including anti-reverse cap ana-
logs (ARCAs), has significantly boosted translation efficacy
and maintained an enthusiasm for mRNA research. Nucleo-
tide modification to protect mRNA molecules from the
host’s immune system, followed by finding appropriate puri-
fication and packaging methods, were other links in the
chain enabling medical breakthroughs. Currently, vaccines
are the central area of mRNA research, but it will reach
far beyond COVID-19. Supplementation of missing or
abnormal proteins is another large field of mRNA research.
Ex vivo cell engineering and genome editing have been
expanding recently. Thus, it is time to recognize mRNA
pioneers while building upon their legacy.
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INTRODUCTION TO NUCLEIC ACID RESEARCH
DNA discovery

The previous two centuries were marked by elucidation of the struc-
ture and function of nucleic acids (Figure 1).1 Friedrich Miescher, a
Swiss physician and biologist, isolated nuclein in 1869. The name nu-
cleic acid was coined, and at the end of the 19th century, Albrecht
Kossel, a German physician and biochemist, divided this into five ba-
ses: adenine, cytosine, guanine, thymine, and uracil. Another half cen-
tury passed before Oswald Avery, an American bacteriologist, discov-
ered that deoxyribonucleic acid (DNA) is responsible for heredity,
thus laying the foundation for molecular biology genetics.2 Erwin
Chargaff’s biochemistry discovery of the fixed ratio of certain bases,
along with the crystallography studies of Rosalind Franklin, led to dis-
covery of the structure and function of DNA in 1953 by Watson and
Crick.3 However, the role of RNA and its link to DNA and proteins
remained unclear.
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mRNA discovery

Nuclear transfer in amebas by Goldstein and Plaut4 proved the loca-
tion of RNA synthesis in the mid-1950s, followed by identification of
ribosomal5 and transfer6 RNA. However, it was not until the early
1960s that an avalanche of work demonstrated a third type of RNA:
soluble and short-lived messenger RNA (mRNA). Two publications
distinguished mRNA from other kinds of cellular RNA.7,8 Others
demonstrated similar-sized RNA molecules attached to ribosomes
at that time.9 Steps toward solving the puzzle of code transfer from
DNA to proteins was further facilitated by an article demonstrating
the complementarity of DNA and transitory RNA.10 In 1964, the
collinearity of gene structure and protein structure was reported
by Charles Yanofsky, who later received the Lasker Award for
his work.11 Ultimately, Nirenberg cracked the genetic code in
1966,12–14 and he was awarded the Nobel Prize 2 years later. In this
way, the era of mRNA discovery unfolded.

Oligonucleotide synthesis

The discovery that nucleic acids are the source of genetic information
rapidly fueled scientific investigation to produce synthetic code, start-
ing with Michelson and Todd15 in 1955 with chemical synthesis of
dinucleotide (Figure 2). Synthesis of longer chains of oligonucleotides
was made feasible by a new phosphodiester method introduced by
Rammler and Khorana et al.16 in the early 1960s, including protection
of 20- and 50-hydroxyl groups in ribonucleosides and subsequent
condensation. The focus was on oligodeoxyribonucleotides because
of their stability and known role in storage of genetic information.
Synthetic oligonucleotides were critical for cracking the genetic
code and resulted in the Nobel Prize for Khorana and Nirenberg
(see above). This method also proved robust enough to produce syn-
thetic oligodeoxyribonucleotides, which could then be joined to dou-
ble-stranded DNA to serve as a template for the first biologically
meaningful molecule of RNA, alanine transfer ribonucleic acid, in
1970.17 However, the lack of phosphate protection contributed to
the branching of oligonucleotide chains, which required a laborious
The Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Key events in the history of the discovery of nucleic acids
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Figure 2. Stages of scientific and technological development leading to the synthesis of functional mRNA
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Figure 3. Differences in cell response to transfection

with crude and modified mRNA
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purification task at each step, proving impractical for longer oligonu-
cleotides. The drawbacks of Khorana’s approach have been addressed
by the phosphotriester, solid-state approach of Letsinger introduced
in the 1960s and 1970s.18–20 This method was sufficiently simple to
quickly reproduce and served as a basis for the first oligonucleotide
synthesizers. However, stepwise efficiency and a long coupling time
made extending a chain of nucleotides beyond 20 bases complex.
Fine tuning via replacement of the trouble-making polymer with
inorganic support and a chloride group by amine was necessary to
Molecular Thera
facilitate large-scale nucleic acid because phos-
phoramidites could be prepared in advance and
then stored and easily activated before use.20,21

Toward mRNA production

Enzymatic synthesis of oligoribonucleotides us-
ing polynucleotide phosphorylase and RNAse A
was achieved as early as the 1950s22 and further
developed in the 1960s.23 Chemical synthesis of
oligoribonucleotide from nucleoside 20-O-benzyl
ethers offered another option.24 Application of
ribonuclease T1 in 1969 allowed enzymatic syn-
thesis of oligoribonucleotides of a defined base
sequence.25 In the same year, a method of
DNA-dependent RNA polymerase isolation was
described.26 In vitro production of short ribonu-
cleotides based on a DNA template was demon-
strated in 1973.27 Stepwise enzymatic oligoribo-
nucleotide synthesis, including modified
nucleotides, was described 2 years later.28 How-
ever, in this era before critical in vitro protein
synthesis discoveries, none of these ribonucleo-
tides were capable of protein production. In par-
allel, studies on mRNA structure were under-
taken, which, together with the synthetic
developments described above, enabled mRNA
production. Single-stranded, adenine-rich
RNAs were discovered during studies of reovi-
ruses to correspond to the poly(A) tail of
mRNA.29 Then it was determined that a 50-termi-
nal 7-methylguanosine cap is necessary for trans-
lation of eukaryotic mRNA,30 and the translation
initiation region of eukaryotic mRNA was char-
acterized.31 Finally, all of the components needed
to produce functional mRNA were available,
culminating in 1983 with the first in vitro pro-
duction of functional mRNA using SP6 bacterio-
phage promoter fused to the human gene as a
template and SP6 polymerase.32 Nearly a decade
later, direct mRNA-based in vivo gene transfer to
mouse muscle was reported.33 However, the de-
velopments have been hampered by the short duration of protein pro-
duction and elicitation of the immune response.34–37

Nucleotide and nucleoside modifications

Initial studies on nucleoside modifications were undertaken to search
for therapeutic targets of alkylating agents.38,39 Subsequent research
in 1964 revealed selective modification of the cytidine residue in
RNA by semicarbazide.40 An avalanche of similar studies fol-
lowed.41–45 However, the majority of these research efforts were
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directed toward rRNA.46 Thus, the artificial modifications ran in par-
allel with the investigation of naturally occurring RNAmodifications,
which were most frequently detected in tRNA (79), rRNA (28),
mRNA (12), small nuclear RNA (snRNA; 11), and other small
RNAs (3), until 1994.47 tRNA nucleotide modifications contribute
to the speed of codon-dependent nucleotide polymerization, which
is another source of biological variability and a mechanism for regu-
lating cell function, providing an opportunity for mRNA codon opti-
mization to accelerate protein production.48 Therefore, knowledge of
artificial and naturally occurring nucleotide and nucleoside modifica-
tions accumulated very quickly.49

Transformative biological roles of nucleotide modifications

Nucleotide and nucleoside modifications were a driving force in over-
coming challenges preventing the widespread utility of mRNA as a
therapeutic agent. They also constitute the most important events
in the history of mRNA development. The two most important as-
pects to be addressed were translational efficacy and immunogenicity.
Pioneering work in these fields contributed the most to mRNA’s
tremendous success, including highly effective coronavirus disease
2019 (COVID-19) vaccines. However, none of the discoveries in
the field of mRNA have so far been recognized with the Nobel Prize.

The efficacy of mRNA translation is essential for a number of reasons.
Higher efficacy translates to a lower load of mRNA and, thus,
decreased immunogenicity. The flanking mRNA regions are the
most critical regulators of translational efficacy. As early as 1981, Dar-
zynkiewicz, who worked with Shatkin, showed that methyl esterifica-
tion of m7G50p reversibly blocks its activity as an analog of eukaryotic
mRNA 50-caps.50 Then Darzynkiewicz contributed a series of cap an-
alogs over the next two decades.51–55 However, in 1995, it was demon-
strated that up to half of the traditional m7GpppG cap is incorporated
into mRNA in reverse orientation during in vitro transcription, which
leads to loss of functionality.56 In 2001, Darzynkiewicz, in collabora-
tion with Rhoads, published an antidote in the form of the anti-
reverse cap analog (ARCA), a new analog that overcomes this limita-
tion and is always incorporated in the proper orientation.57 ARCA
was patented and licensed; it has been available through multiple
manufacturers and used widely for the last two decades, showing
outstanding results. Initially, it was thought to just double translation
efficiency, but in a study of lipofection of dendritic cells, it was shown
that ARCA increases translation efficiency 20-fold and acts synergis-
tically with elongation of a poly(A) tail from 64–100 adenosines,
which further increases 35-fold, so altogether, the production of re-
porter genes jumped 700-fold.58 ARCA has also been astoundingly
more effective for stem cell modifications.59 ARCA served as an inspi-
ration and basis for the next series of cap analogs designed over the
next two decades.60–71 Phosphorothioate cap analogs based on the
ARCA concept were patented and exclusively acquired by
BioNTech, the designer of the anti-COVID-19 vaccine, and used in
their research.72 Recently, Cap 1 mRNA has been synthesized by
TriLink with the co-transcriptional CleanCap analog with a higher ef-
ficiency of reaction than enzymatic reaction, which is particularly
compelling when a great deal of mRNA needs to be produced in a
276 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
very short time.73 Therefore, four decades of research on cap analogs
led to mRNAmolecules’ outstanding efficiency and stability, enabling
their vast therapeutic use. It was also a source of motivation dearly
needed to advance science. Considering the essential role of the cap
in mRNA function, it seems highly justifiable to award a Nobel Prize
for cap analog discoveries, and Darzynkiewicz, through his contin-
uous contributions to cap analog design, including ARCA, over the
last 40 years, is undoubtedly worthy of such consideration.

In addition to problems with translation efficacy, mRNA immunoge-
nicity quickly dampened enthusiasm for swift translation of mRNA-
based medicines to clinical practice. However, the subsequent extraor-
dinary diligence of Karikó and Weissman provided essential insight
into the fact that the majority of natural mRNA molecules include
modified nucleotides, which may shield them from the cellular innate
immune system.74 Indeed, Karikó et al.68 demonstrated that incorpora-
tion of pseudouridine into mRNA prevented an immediate immune
response in the form of a systemic interferon-alpha (IFN-alpha) spike
after intravenous administration. Pseudouridine also enhances transla-
tion by less pronounced activation of RNA-dependent protein kinase
(PKR), which then phosphorylates translation initiation factor
2-alpha (eIF-2a) and inhibits translation of uridine-containing tran-
scripts.75 Nucleoside modifications in RNA also limit activation of
2’-5’-oligoadenylate synthetase and increase resistance to cleavage by
RNase L, another cellular sensing system.76

Further lowering of the cellular immune response has been achieved
by improving mRNA purification using high-performance liquid
chromatography (HPLC).77 Such prepared mRNA proved highly
effective with submicrogram quantities in vivo for erythropoietin sup-
plementation in mice and monkeys.78 In this way, mRNA proved to
be fulfilling the promise of gene therapy.79 Therefore, Karikó also ap-
pears to be a certain candidate for the Nobel Prize.

Efforts to improve mRNA quality and biocompatibility continue.
Modifications in the bioprocess of pseudouridine production
decreased the immune-activating profile of therapeutic mRNA
through further elimination of impurities.80 Incorporation of pseu-
douridine and ARCA significantly increases the yield per reaction,
improves modRNA (chemically modified mRNA) translation, and
reduces its immunogenicity in vitro. It seems to be an ideal solution
to address clinical challenges.81 Therefore, it appears that decorating
crude mRNA with modified nucleotides ultimately made it highly
welcome by living organisms (Figure 3). We may have reached a
plateau in nucleotide modifications to make mRNA a very attractive
medicine applicable to several fields, including vaccines, protein sup-
plementation, and stem cell engineering. All RNA modification path-
ways are stored in a MODOMICS database, which is an excellent
source for advancing research on this topic.82

Biological roles of mRNA-based medicines

Vaccines

Vaccines are an indispensable tool for public health,83 preventing loss
of many lives and occupying a prominent place in medicine.
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Figure 4. Recent advances in medicine and science because of the introduction of mRNA-based technologies

(A) vaccines, (B) protein supplementation and (C) cell engineering.
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However, their efficacy and safety requirements are rigorous because
typically they are applied to vast populations of healthy people. The
early approaches with attenuated or inactivated microbes were quite
effective, but the issue of safety was debatable, and production, puri-
fication, and quality control were cumbersome and expensive.84

Protein-based vaccines have fewer drawbacks but require immune
adjuvants, which may involve awakening dormant autoimmune pro-
cesses.85 In contrast, DNA-based vaccines are plagued by ineffective
cellular and nuclear entry and the need for additional devices to sup-
port this process.86 This challenge has been addressed recently by
packing DNA into a harmless virus, but it can still evoke bad associ-
ations.87 Regardless, nearly all of these approaches require living or
structurally intact organisms to produce, making development slower
and costlier. Against this backdrop, the concept of using mRNA
seems to be the holy grail in vaccine development (Figure 4A).
mRNA vaccines can be designed within days by simply mimicking
the nucleotide sequence of receptor binding domains (RBDs) after
sequencing microbe genetic material and then synthetically produc-
ing them in robotized factories. Therefore, the timespan from
microbe discovery to clinical-grade vaccine candidate is extremely
short. The simplicity and speed of the entire procedure also allow
fast reaction and facile tweaking of the primary vaccine to respond
to the genetic drift of microbes and formation of variants. There is
also no risk of contamination with xenogeneic material, which is re-
assuring to the public. It seems that these features favor mRNA as an
ideal vaccine solution.88

When the COVID-19 pandemic emerged, mRNA vaccines already
had been tried against previous threats. The first mRNA vaccines
took shape in the field of oncology.89–91 A few years later, they began
to be used for treatment of infectious diseases, especially influ-
enza.92,93 Then the preclinical efficacy of the mRNA vaccine was
demonstrated against rabies.94 Subsequently, it has been shown that
a single dose of a mRNA vaccine is sufficient to induce durable pro-
tection of mice and monkeys against the Zika virus.95 However, this
virus has never gone global and become a pandemic, so further effort
toward vaccine development did not materialize. It has also been
shown to be effective in the guinea pig model of another potential
global threat: the Ebola virus.96 mRNA vaccines were proposed to
combat outbreaks even before the coronavirus pandemic.97 Other
preclinical targets for mRNA vaccines include cytomegalovirus,98

tick-transmitted flavivirus,99 human immunodeficiency virus
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(HIV),100 dengue virus,101 Crimean-Congo hemorrhagic fever virus
(CCHFV),102 herpes simplex virus 2 (HSV-2),102 Nipah virus,103

and respiratory syncytial virus (RSV).104 The outstanding safety of
mRNA vaccines even prompted the scientific community to propose
its use to treat allergies.105 Therefore, it was not surprising that mRNA
vaccines were also immediately designed against the novel virus se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In
mice, a single immunization with a nucleoside-modified mRNA vac-
cine elicited strong cellular and humoral immune responses against
SARS-CoV-2.106 Because of the advantages mentioned above,
mRNA vaccines have been found to be not only effective, but they
were developed the fastest and received emergency use authorization
first. Arriving in huge quantities, they were true stars, and they had a
huge impact on taming the COVID-19 pandemic in many geograph-
ical regions.107

Protein supplementation

Because proteins are critical molecules of intracellular and extracel-
lular compartments of all organisms, their loss or abnormality usually
leads to pathological consequences. Therefore, protein supplementa-
tion is a valid therapeutic approach. Although there are various ap-
proaches to delivering proteins, such as virus-based gene replacement
or direct protein delivery, there is also a growing interest in using
mRNA to achieve this goal (Figure 4B). There is a specific advantage
to this approach. As opposed to DNA, mRNA does not integrate with
a genome, obviating many safety concerns. Physicochemically, all
mRNA molecules are relatively similar, so the same formulation
may serve many genes. However, considerable differences in protein
properties cause the formulation and delivery of every protein to be
separately developed. The therapeutic effects of mRNA-based protein
delivery in an animal model have been demonstrated as far back as
nearly three decades ago.108 In comparison with vaccines, preparation
of mRNA for protein supplementation is more demanding. Although
induction of the host immune response is welcome in vaccine appli-
cations, it is of utmost importance to prevent immunogenicity of
mRNA delivered for protein supplementation, especially because pro-
tein supplementation may be given throughout the entire lifespan,
and immunogenic material may cause chronic inflammation.

Pulmonary diseases are particularly compelling applications because
of the potential for mRNA to be administered easily and locally
through inhalation.109 Along this line, it has been demonstrated in
a mouse model of asthma that inhalation of mRNA for Foxp3 reduces
pulmonary inflammation by increasing the presence of T regulatory
(Treg) cells in the lungs.110 Local delivery of mRNA for Foxp3 may
avoid systemic activation of Treg cells, which, in turn, could facilitate
tumor formation111 and the spread of infection.112 Non-fenestrated
endothelial cells in pulmonary capillaries are an additional obstacle
when systemically delivering mRNA to the lungs.113 mRNA-medi-
ated gene supplementation of Toll-like receptors is another strategy
investigated in the mouse model of asthma.114 Inhalation of mRNA
for the CFTR gene proved effective in a small animal model of mono-
genetic lung diseases such as cystic fibrosis.115 Translate Bio (acquired
recently by Sanofi) is currently running a clinical trial to cure cystic
278 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
fibrosis with a drug composed of mRNA holding the CFTR gene. Pos-
itive effects of mRNA-based therapeutic agents in an animal model of
another monogenetic disorder, a1-antitrypsin deficiency, has also
been demonstrated recently.116 Metabolic diseases are another group
of illnesses potentially curable by mRNA encoding missing or
abnormal enzymes.117 Methylmalonic aciduria is addressed by
mRNA encoding methylmalonyl-coenzyme A (CoA) mutase.118

mRNA also has been tried as a drug in the context of regenerative
medicine to improve revascularization of the heart119 and skin120 as
well as in cancer immunotherapy.121

mRNA-based cell engineering

Stem and immune cell therapies are becoming an important field of
medical research.122–124 Cell engineering is frequently used to in-
crease therapeutic potential. Several cellular functions can be achieved
through administration of mRNA. This technology is essential for
transient cellular modifications (Figure 4C).

Cellular trafficking and migration can be particularly well addressed
by mRNA-based engineering. Indeed, it has been shown that adhe-
sion molecule integrin alpha 4 (ITGA4) can be expressed on the sur-
face of mesenchymal stem cells (MSCs) after administration of en-
coding mRNA,59 acquiring their function in vitro,125 whereas the
process of in vivo diapedesis was independent.126 MSC migration
has also been increased in vitro by administration of mRNA encoding
CXCR4.127 The same strategy is also capable of enhancing the homing
of natural killer cells.128

The expression of active immune molecules is another large field of
mRNA-based cell engineering. Administration of mRNA for
chimeric antigen receptor (CAR) or T cell receptor (TCR) to lympho-
cytes produces effective immune cells. The transient nature may be
overcome with multiple infusions, whereas short-term expression
can prevent severe complications because of immune cell auto-
aggression.129 mRNA-based programming of dendritic cells to pro-
vide relevant instructions to lymphocytes is another attractive thera-
peutic strategy to reach clinical trials.130

mRNA-based technology is also perfectly suitable for genome editing.
The mRNA encoding genome-integrating enzyme transposase can be
co-injected with the transposon to deliver a DNA payload.131 Recent
addition of site specificity to transposase through CRISPR technology
has finally allowed editing of the genome precisely and efficiently with
large DNA payloads.132 The Cas9 enzyme can also be delivered to
cells in the form of mRNA along with relevant guide RNA (gRNA)
sequences.133 mRNA is also a viable strategy for induction of plurip-
otency in somatic cells.134

mRNA packaging and delivery

mRNA is a fragile and negatively charged molecule; therefore, appro-
priate packaging and delivery systems are critical to fully exploit
its potential. There are many approaches to accomplish this task.
PEGylated lipid nanoparticles (LNPs) are currently a mainstay of
mRNA enveloping, mainly because of their success in delivering
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COVID-19 vaccines. However, besides LNPs, there are many other
ways to deliver mRNA, such as polymers, inorganic structures, pro-
teins, hydrogels, etc.

Lipid-based carriers have a very long history. Liposomes have been
used to deliver a variety of therapeutic compounds. Thus, they were
the first obvious choice for nucleic acid delivery. However, they ulti-
mately failed in in vivo small interfering RNA (siRNA) delivery and
became a motivation to further develop carriers, which resulted in
LNPs.135 Therefore, the rising star of mRNA therapeutic agents
immediately enjoyed a fertile ground of powerful carriers capable of
effective in vivo payload delivery.

Inorganic components such as apatite have been shown to increase
the efficacy of mRNA.136,137 Silica nanoparticles are another option
to facilitate nucleic acid delivery138,139 and are considered an
emerging vaccine delivery system for COVID-19.140 Silica is a rela-
tively low-cost and easy-to-scale solution for safe mRNA delivery
and enjoys an extensive functionalization portfolio with a very
encouraging storage profile.141 Recently, room-temperature synthesis
of dendritic mesoporous silica nanoparticles with small sizes and
large pores enhanced mRNA delivery performance.142

Polymers are an extensive group of natural and synthetic compounds.
They are characterized by their high versatility in terms of nucleic acid
binding and release as well as relative stability. Cationic polymers
such as polyethyleneimine-stearic acid (PSA) can self-assemble and
encapsulate nucleic acids.143 Ionizable amino-polyesters synthesized
via ring-opening polymerization of tertiary amino alcohols is another
group of exciting polymers for mRNA administration.144 They are
devoid of a strong positive charge and, thus, are more neutral for cells.
Amphiphilic polyhydrazones are another type of polymer candidate
for mRNA delivery.145 A microneedle patch (RNApatch) composed
of low-molecular-weight polyvinylpyrrolidone (PVP) can address
the essential aspect of very low mRNA stability by preserving
mRNA functionality for up to 2 weeks under ambient conditions.146

Lipid polymer hybrids are another approach, capitalizing on the best
features of lipids and polymers.147

Hydrogels are somewhat related to polymers, which are the main com-
ponents, although with hydrogels, different properties are used as
carriers. Hydrogels are typically characterized by a highly tunable struc-
ture capable of meeting various requirements. Hydrogels’ structure and
injectability allow localized deployment of mRNA to body cavities or
other relevant locations. However, hydrogel particles can also be
used as any other nucleic acid carrier. The tunable size of such particles
could perfectly suit the inhalation route. Therefore, hydrogels are a
highly versatile carrier. Typically, mRNA can be entrapped within hy-
drogels and then slowly released over a relatively long period. Different
release rates characterize various hydrogel systems, and blending mul-
tiple hydrogels presents an opportunity to discover optimal release con-
ditions. One group revealed that chitosan-alginate hybrids encourage
local and sustained expression of exogenous proteins in cells.148 Hydro-
gels from graphene oxide and polyethylenimine (PEI) can deliver
mRNA to tissues, and such mRNA remains functional for up to a
month.149 DNA hydrogels are another concept for small interfering
mRNA production, but they could potentially be adapted to mRNA
production as well.149 Because hydrogels can be labeled and imaged
relatively quickly, they offer seamless precision for procedures.150

RNA viruses capitalize on the ability of nucleoproteins to package
mRNA. It has been shown that, under some circumstances, trans-
membrane proteins can interact and package other mRNA-bearing
RNA-packaging signals in the form of virus-like particles.151 There
are also other endogenous proteins, which selectively bind to their
mRNA and protect it. One of these proteins (polietylenoglikol 10,
PEG10) has been engineered to selectively wrap and package other
mRNAs. It is accomplished by flanking genes of interest with
PEG10 untranslated regions.152 Such mRNA-PEG10 complexes can
be shuttled between cells as virus-like particles (VLPs). The high
modularity of this platform to fit a variety of mRNAs and the endog-
enous character of proteins to avoid immune activation are advan-
tages that may lead to the rapid adoption of this approach to achieve
highly effective and non-toxic mRNA delivery.

Summary and future outlook

The history of nucleic acid discoveries makes for one of the most
fabulous stories ever. The chemical findings and physical discoveries
applied to a biological context contributed to the revelation of the
greatest secret of life. It, in turn, launched an era of miraculous med-
ical discoveries. For decades, stable and easy-to-handle DNA was the
focus of research, whereas in recent years, mRNA came into the spot-
light. As always, the devil is in the details, and the tireless efforts of
scientists allowed us to uncover the intricacies of mRNA molecules.
Engineering of cap analogs and nucleotide modification was a recipe
for potent mRNA, which became the basis for a new generation of
powerful medicines. The entire mRNA orchestra became harmonious
when it was most needed to tackle the worst pandemic in 100 years.
Therefore, there is a strong need to pay tribute to the early pioneers of
mRNA and those still alive, such as Darzynkiewicz, Karikó, and
others, and recognize them with a Nobel Prize.

We expect such remarkable mRNAs to prompt further breakthroughs
in medicine in the near future. We anticipate other advancements in
mRNA technology and continuous contributions to healthcare. Purely
chemical, DNA template-free synthesis of mRNAmay be another step
toward widespread use of mRNA.153 The alternative genetic code may
inflate the potency of mRNA therapeutic agents.154 Unnatural base
pairs are another biotechnological frontier.155 Artificial intelligence
adds yet another dimension to RNA research.156 Thus, our supply of
mRNA-related ingredients is rapidly expanding to meet the needs of
successive healthcare developments. the discoveries made in genetics
could move outside the box and be applied in other fields, such as
computing, information storage, sensors, robotics, and more.
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