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Abstract: Mastitis is a disease that causes significant economic losses, since resistance to mastitis
is a difficult trait to be improved due to its multifactorial occurrence. Therefore, our objective was
to characterize a Mexican Braunvieh cattle population for genetic resistance and susceptibility to
mastitis. We used 66 SNP markers for 45 candidate genes in 150 animals. The average heterozygosity
was 0.445 ± 0.076, a value higher than those reported for some European breeds. The inbreeding coef-
ficient was slightly negative for resistance to subclinical (−0.058 ± 0.055) and clinical (−0.034 ± 0.076)
mastitis, possibly due to low selection for the immunological candidate genes that influence these
traits. The genotypic profiles for the candidate loci per K-means group were obtained, as well as the
group distribution through the graphics of the principal component analysis. The genotypic profiles
showed high genetic diversity among groups. Resistance to clinical mastitis had the lowest presence
of the heterozygous genotypes. Although the percentage of highly inbred animals (>50%) is up to
13.3%, there are highly heterozygous groups in terms of the studied traits, a favorable indicator of
the presence of genetic diversity. The results of this study constitute evidence of the genetic potential
of the Mexican Braunvieh population to improve mastitis-related traits.

Keywords: inbreeding; heterozygosity; candidate genes; principal components analysis

1. Introduction

One of the major problems in dairy units is mastitis [1]. Tropical dual-purpose
production systems have the same problem. A prevalence of 60% was reported for mastitis
in tropical production units [2]. The current trend seems to focus on milk quality rather
than on quantity, and mastitis has been one of the main hurdles [1,3].

Some of the obstacles that traditional genetic selection has faced in bovines are as
follows [4]: (1) complexity of quantitative or low-heritability traits, (2) traits measured late
in the life of the animals, and (3) traits that are difficult to be measured such as resistance
and susceptibility to mastitis. In particular, to reduce the limitation of the complexity
of quantitative traits, an attempt has been made to improve the animals by detecting
quantitative trait locus (QTL) in the genomes. A QTL is a section of DNA that is correlated
with a quantitative trait or phenotype of a population. Traits of economic importance
in animals are polygenic, that is, there are several QTLs that explain the phenotypic
variation [4]. These QTLs indicate the genetic architecture of the traits, helping to find
candidate genes.

Resistance to mastitis is a complex trait that is multifactorial in nature and, thus,
difficult to be improved. The genomic prediction ability for clinical mastitis is low, 0.19 [5],
compared with that reported for residual feed intake (0.85 ± 0.08), dry matter intake
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(0.52 ± 0.04), and feed conversion ratio (0.46 ± 0.05) [6]. The conventional selection scheme
for resistance has not been effective against mastitis due to the large number of candidate
genes or QTLs related to non-immune factors that influence mastitis and the factors that
make resistance to mastitis measurement difficult [4,7,8].

In addition to the control of environmental factors to prevent mastitis at the farm level,
genomic methods have been used as an alternative solution to the problem of increasing
resistance to mastitis. The aim is to obtain animals that are immune to the main mastitis-
causing pathogens, and that have qualities that allow them to adapt to environmental
factors that cause mastitis [2].

Recently, the genotyping of animals has become easy and relatively cheap. A sample of
hair or blood will provide thousands of markers [4]. The markers mostly used for genomic
selection are single nucleotide polymorphism (SNP), which are a type of polymorphism
that produces a variation in a single base pair. Their generalized use has reduced the
cost of genotyping to a cost-effective level. Genotyping is widespread and is used in both
commercial and research systems [9].

Manipulation of genetic variation is key to the development and use of any genetic
improvement program for dairy and beef cattle breeds [10]. Genetic diversity has been
studied in original Braunvieh and derivative breeds, with the aim of disentangling the
genetic basis of their adaptation to diverse environments and increasing the productive
performance. The results have been positive. It was found that populations of this breed
adapted to environments different from that of its origin are genetically more diverse than
the average of other Bos taurus and some Bos indicus breeds [11]. Animals living in harsh
environmental conditions, such as extreme temperatures, possess greater genetic diversity,
as facing environmental changes require versatility [12].

Genetic diversity is determined by population parameters and visual dimension
reduction tools. The Hardy–Weinberg equilibrium, the coefficient of consanguinity and
heterozygosity are the parameters most used in genetic diversity studies. The Hardy–
Weinberg equilibrium states that the allele and genotype frequencies in a population will
remain constant from generation to generation in the absence of assortative mating, natural
selection, gene flow, mutation, and inbreeding. On the other hand, principal component
analysis (PCA) has been proven to be useful to visualize the genotypic distribution of
animals [11,13].

The objective of this study was to determine the genetic diversity and population
structure of a Mexican Braunvieh population in terms of mastitis resistance and suscepti-
bility, using (1) basic population statistics: inbreeding coefficient, expected and observed
heterozygosity, and (2) multivariate statistics, namely K-means and principal components
analysis.

2. Materials and Methods
2.1. Source of Information

Genomic information was obtained using hair samples from 150 animals born be-
tween 2001 and 2016 on five farms belonging to the Mexican Association of Braunvieh
Purebred Breeders in Eastern, Central, and Western Mexico. The samples were genotyped
at GeneSeek (Lincoln, NE, USA, http://neogene.com, accessed on 28 May 2021). The chip
used was the Genomic Profile Bovine Low-Density with 50,000 SNP markers.

2.2. Genotype Quality Control

For data edition, quality control was performed prior to the genotypic analyses. The
missing genotypes were imputed using the observed allele frequencies. The imputation
method consisted of assigning an allele, according to the probability of a possible type of
polymorphism for a certain marker in the entire population. Additionally, a 0.05 threshold
for the minor allele frequency was considered to discard the non-informative markers or
those with errors in the genotyping.

http://neogene.com
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2.3. Statistical Analyses
2.3.1. Identification of Associated and Informative Loci

The candidate genes associated with mastitis in Bos taurus were identified, according
to reports by [14–17] for resistance to mastitis (RM), by [18,19] for susceptibility to mastitis
(SM), by [20–22] for resistance to bacterial mastitis (RBM), by [8] for resistance to subclinical
mastitis (RSM), and by [23] for resistance to clinical mastitis (RCM).

Candidate genes reported for RM are involved with risk factors such as pathogens,
udder structure, age, transition period, host nutritional stress, and the immune system [24].
RM comprises three other traits of this study: RBM, RSM and RCM. We tried to determine
the differences in genetic diversity and population structure when studying resistance to
different types of mastitis. The candidate genes for RBM, RSM, and RCM are different from
those reported for RM. For example, in RBM, the pathogenic factor has a greater impact, so
the candidate genes for the characteristic are particularly associated with immunological
processes and the production of antibodies [14,24]. Finally, for the study, SM was consid-
ered, where the loci under study are not the same as for RM, even though they are opposite,
as candidate genes for SM are more associated with the immune system response than
with the other risk factors mentioned for RM [24,25].

The positions, ranked by base pairs, were obtained from the Gene Library [26]. With
this information, the intragenic loci of the candidate genes were searched; the criterion for
the loci-gene association was that they should be located within the position rank ± 25 kb
of the gene for the same chromosome. Only the loci available in the genotypic database
were included. The analyses considered 455 SNP markers of 204 candidate genes reported
in the literature associated with resistance and susceptibility to mastitis.

All of the analyses were carried out using R software, version 4.0.4 [27]. According
to the literature consulted, the 10% most informative markers associated with each of
the studied traits were determined using the Shannon index. This index allows for the
identification of the most informative markers [28]. The index is defined as:

H = −
2

∑
i=0

pi log pi, (1)

where i = 0, 1, 2 refers to the genotype (AA = 0, AB = 1, BB = 2) and pi is the corresponding
allelic frequency. This index was calculated for each of the loci. Empirical distribution
was obtained, and the 10% most informative markers were selected. The highest values
for H were associated with the highest diversity for the marker. At the end of filtering, 66
SNP markers of 45 candidate genes were left for further analyses. For better handling of
the markers in the graphs, the names of the loci were replaced by consecutive numbers,
assigned by alphabetical order to the corresponding candidate gene.

2.3.2. Population Genetic Structure

The expected (He) and observed (Ho) heterozygosity were estimated for all the loci by
trait in the study using the adegenet package [29] available in R [27]. The stats package of
R [27] was used to perform the t-test to determine the differences between He and Ho. The
null hypothesis was that there were non-significant differences between them. A p-value
of 0.01 was used to declare significance and was corrected with the Bonferroni method
considering the total number of loci by trait.

The pegas package [30] through adegenet [29] was used to determine whether the loci
under study were in the Hardy–Weinberg equilibrium. A hundred thousand replicates
were assigned to execute the test procedure through the Monte Carlo method. The null
hypothesis established the existence of the Hardy–Weinberg equilibrium when p-values
were higher than 0.01/n with the Bonferroni correction; n is the number of loci per trait.

The inbreeding coefficients by individual with respect to the population (FIT) were
calculated and plotted with adegenet [29]. Additionally, the general mean for FIT per trait
was obtained, along with its respective standard deviation. Finally, a histogram including
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a nonparametric estimate of the density function by trait was obtained. This was done
to visualize the animals with an inbreeding coefficient above 0.5 (the number of animals
could be observed in the histogram).

2.3.3. Cluster Analyses

The differences in the genotypic profile of individuals were identified with two clus-
tering algorithms: hierarchical clustering using the Ward distance implemented in the
stats package and the K-means algorithm also included in the stats package in R and
factoextra [31]. For both methods, the 10% of the markers, identified in a previous step,
was used.

The optimum number of groups (k) to be formed through the hierarchical clustering
and K-means was obtained with Silhouette and Elbow of factoextra [31]. A search for k
that allowed for an equilibrium between a value of the silhouette close to one [32] and the
least error sum of squares was carried out.

The Ward algorithm of minimum variance, according to [33], is a divisive hierarchical
method that creates mutually exclusive sub-sets. Sub-set members are ultimately similar to
each other and different between groups. This promises to be a good method for finding
different groups with genotypic profiles. The results of the procedure are illustrated in a
circular dendrogram that displays the hierarchy of the groups and their similarity to the
groups formed with the K-means algorithm.

K-means is a non-hierarchical algorithm that uses a reassignment method based on
centroids to form groups. This is the most frequently used method to form groups [34]. It
is used in robotics, genomics, and genetic diversity. In our study, the groups of K-means
were used to identify divergent genotypes among groups of animals and to characterize
genetic diversity based on the PCA.

2.3.4. Principal Components Analysis

The PCA was performed using adegenet package [29] through the sample covariance
matrix obtained using the candidate SNP. The objective was to observe the distribution of
the groups formed by K-means through a PCA graphic of individuals (first and second
dimensions) and to reduce the number of markers according to their eigenvalues. With a
factoextra biplot [31], we estimated the correlation and contribution of markers to the first
and second dimensions formed by the PCA and determined the 10% of animals with the
highest contribution to the analysis.

3. Results and Discussion
3.1. Sample Size and Power Analysis

In México, studies using genomic information from large animal populations are
scarce. Usually, the main restriction is the availability of economic resources for animal
genotyping. Genetic improvement infrastructure of developing countries usually is less
robust than that of developed countries, whose genomic databases involve millions of
animals [35].

In previous studies carried out with the same population used in our study, the
genomic information of 300 animals was considered to find candidate markers for dis-
eases [36] and meat quality [37]. For this study, we used intragenic markers (±25 kb), and
only 150 animals with candidate genes associated with resistance and susceptibility to
mastitis were found.

The sample size used in our study, evaluated with the pwr.chisq.test function of the
pwr package [38], was enough to detect significant differences with a p-value of 0.05 and
an effective size of 0.4. The power of 0.87 for the Xi2 test obtained in the present study is
adequate to obtain conclusive, reliable results [39]. In other studies of genetic diversity and
structure, smaller sample sizes have been used, and conclusive results have been reached:
6 to 23 [40], 7 to 58 [41], 13 to 38 [42], and 71 to 167 [43].
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3.2. Identification of Associated and Informative Loci

Tables 1–5 show the markers obtained after filtering with the Shannon Index. Their
candidate genes, chromosome, and the number assigned to visualize the results in the
graphs are shown. For RM, 19 genes with 22 loci were obtained; for SM, 7 genes and 11 loci;
for RBM, 7 genes and 8 markers; for RSM, 8 genes and 20 markers; and for RCM, 4 genes
and 6 markers. This adds up to 66 markers and 45 candidate genes. All loci were in the
Hardy–Weinberg equilibrium.

Table 1. Top 10% single nucleotide polymorphisms (SNP) associated with resistance to mastitis (RM)
in Braunvieh cattle.

Gene Chr Position, pb (±25 k) SNP Marker Name LN

ARHGAP10 [16] 17 9,994,895–10,429,767 ARS-BFGL-NGS-113821 1
BovineHD1700002890 2

BDH2 [15] 6 21,737,056–21,815,795 BovineHD0600006001 3

CAPG [14] 11 49,562,863–49,630,835 Hapmap54495-rs29018810 4

CHD5 [14] 16 47,131,943–47,253,618 BovineHD1600013051 5

CST6 [15] 29 44,076,083–44,127,573 BovineHD2900013196 6

ELMO1 [14] 4 59,842,686–60,475,511 BovineHD0400016236 7

FBL [16] 18 49,363,469–49,425,788 ARS-BFGL-NGS-113564 8

FOCAD [14] 8 23,394,437–23,750,228 BovineHD0800007122 9

IMMP2L [14] 4 56,736,178–57,747,698 BovineHD0400015680 10

LOC510112 [16] 10 27,914,007–27,964,951 BovineHD1000009188 11
BovineHD1000009179 12

MBL2 [17] 26 6,306,933–6,362,539 BovineHD2600001441 13
BovineHD2600001446 14

MYO1E [14] 10 50,932,729–51,205,381 BovineHD1000015285 15

PON1 [14] 4 12,517,349–12,601,241 ARS-BFGL-NGS-48351 16

PPP3CA [14] 6 23,419,690–23,795,287 BovineHD0600006555 17

ST7 [14] 4 51,162,819–51,481,394 BovineHD0400014185 18

SULF2 [15] 13 76,130,676–76,307,180 BovineHD1300022072 19

TBC1D8 [14] 11 5,953,170–6,144,340 BovineHD1100002208 20

TBCK [14] 6 18,840,254–19,099,244 BovineHD0600005226 21

ZNFX1 [15] 13 77,323,734–77,400,021 BovineHD1300022388 22

Chr = chromosome. Position, pb (±25 k) = candidate gene position in base pairs reported in [26], for Bos taurus ±
25,000 base pairs. LN = locus number assigned in graphs.

Table 2. Top 10% single nucleotide polymorphisms (SNP) associated with susceptibility to mastitis
(SM) in Braunvieh cattle.

Gene Chr Position, pb (±25 k) SNP Marker Name LN

ANKRD33B [18] 20 62,576,901–62,728,565 ARS-BFGL-NGS-112060 1

CTNND2 [18] 20 61,189,491–62,339,843 BovineHD2000017160 2
BovineHD2000017153 3

BTB-00791947 4

GRIA3 [19] 10 7,542,786–7,901,396 ARS-BFGL-NGS-87466 5

ILDR2 [19] 3 1,878,471–1,997,329 Hapmap42630-BTA-67480 6

ITPK1 [19] 21 57,564,349–57,778,522 BovineHD2100016547 7
BovineHD2100016592 8
BovineHD2100016552 9

SIDT1 [19] 1 58,193,233–58,355,060 BovineHD0100016494 10

TBXAS1 [19] 4 103,270,503–103,494,001 BovineHD0400029111 11

Chr = chromosome. Position, pb (±25 k) = candidate gene position in base pairs reported in [26] for Bos taurus ±
25,000 base pairs. LN = locus number assigned in graphs.
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Table 3. Top 10% single nucleotide polymorphisms (SNP) associated with resistance to bacterial
mastitis (RBM) in Braunvieh cattle.

Gene Chr Position, pb (±25 k) SNP Marker Name LN

ECHDC1 1 [22] 9 23,922,553–24,025,911 BovineHD0900006460 1

GNAI1 2 [20] 4 40,930,829–41,086,584 ARS-BFGL-NGS-110306 2

IL1A 3 [21] 11 46,457,553–46,518,533 BovineHD1100013546 3

IL1RN 2,3 [20] 11 46,790,914–46,862,407 ARS-BFGL-NGS-113289 4
ARS-BFGL-NGS-113289 4

ITGA4 2 [20] 2 15,058,580–15,200,364 BovineHD0200004269 5

ITGB3 2 [20] 19 46,305,531–46,418,474 UA-IFASA-8333 6

NRG1 1 [22] 27 28,396,076–28,680,095 BovineHD2700007962 7

Superscripts indicate resistance to 1 S. aureus, 2 S. agalactiae, and 3 E. coli. Chr = chromosome. Position, pb (±25 k)
= candidate gene position in base pairs reported in [26] for Bos taurus ± 25,000 base pairs. LN = locus number
assigned in graphs.

Table 4. Top 10% single nucleotide polymorphisms (SNP) associated with resistance to subclinic
mastitis (RSM) in Braunvieh cattle.

Gene Chr Position, pb (±25 k) SNP Marker Name LN

BMPR1B 6 29,346,363–29,845,366 BovineHD0600008191 1
BovineHD0600008283 2
BovineHD0600008292 3

EDN2 3 104,654,329–104,730,954 BovineHD0300029984 4
BovineHD0300029996 5

GUCA2A 3 103,990,493–104,056,213 BTA-98478-no-rs 6

HEYL 3 106,417,713–106,483,224 BTB-00148619 7

HIVEP3 3 104,084,087–104,699,365 ARS-BFGL-NGS-35125 8
BovineHD0300029904 9
BovineHD0300029925 10
BovineHD0300029955 11

BTB-01612988 12
Hapmap48983-BTA-100103 13

MACF1 3 106,564,750–106,955,676 ARS-BFGL-NGS-38199 14
BovineHD0300030641 15
BovineHD0300030658 16
BovineHD0300030677 17
BovineHD0300030702 18

MFSD2A 3 106,097,951–10,616,0784 BovineHD0300030435 19

SH3PXD2A 26 24,136,301–24,435,553 BovineHD2600006239 20

Chr = Chromosome. Position, pb (±25 k) = Candidate gene position in base pairs reported in [26] for Bos taurus ±
25,000 base pairs. LN = Locus Number assigned in graphs. Candidate genes reported by [8].

Table 5. Top 10% single nucleotide polymorphisms (SNP) associated with Resistance to Clinical
Mastitis (RCM) in Braunvieh Cattle.

Gene Chr Position, pb (±25 k) SNP Marker Name LN

CXCL1 6 89,047,989–89,100,128 BovineHD0600024410 1

CXCL8 6 88,785,817–88,839,572 ARS-BFGL-NGS-17376 2
BovineHD0600024315 3
BovineHD0600024328 4

SEL1L 10 92,733,415–92,848,117 BovineHD1000026808 5

STAT4 2 79,543,834–79,730,325 BovineHD0200022927 6

Chr = chromosome. Position, pb (±25 k) = candidate gene position in base pairs reported in [26] for Bos taurus ±
25,000 base pairs. LN = locus number assigned in graphs. Candidate genes reported by [23].
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3.3. Population Genetic Structure

Table 6 shows the results for He and Ho, as well as those of a t-test to determine
whether the differences were statistically significant. The rule of decision to not reject the
null hypothesis of non-significant differences between He and Ho was that the p-value for
the t-test > p-value for Bonferroni Correction. In the last column, the |He-Ho| differences
can be observed; all were non-significant, with exception of the difference for SM.

The estimates for Ho obtained in our study for mastitis (average 0.45 ± 0.076) are
above those obtained with breeds derived from the original Braunvieh, but below those
reported for Bos taurus breeds, with some adaptation to the tropics. In Colombia, Creole
cattle [44] reported Ho of 0.66, and the Costeño con Cuernos breed had the lowest, 0.635,
and Casareño the highest, 0.733. These Ho estimates are quite different from those reported
by [45], who found an average of 0.35 ± 0.167 for Ho in populations related to Braunvieh.

This suggests that the Mexican Braunvieh population has increased its genetic versa-
tility for the candidate genes studied, with a higher number of heterozygous individuals.
Exposure to climates different from their native climate for over a century in the tropical
systems of Mexico could have caused a change in Ho, with respect to original Braunvieh
populations [13,45]. On the other hand, the non-significant differences between He and
Ho for most of the traits (Table 6) is similar to the results obtained in other studies, where
neither the breed nor the environment modified the non-rejection of the null hypothesis,
He = Ho for Xi2 [13,44,46].

As a graphic resource, Figure 1 shows that the absolute differences at the locus level
are small, as in the overall result. The exception to this was SM, whose joint trend of the loci
was to be over 0.03. Thus, it is the only trait with significant differences. In the bar-plots for
the rest of the traits, there were loci that were both close to zero and above 0.05, but the
overall estimate is not enough to declare evidence for a significant difference.

Table 6. Heterozygosity and t-test results by trait associated with mastitis, for a Mexican Braunvieh Cattle population.

Trait He ± SD Ho ± SD NL p-Value BC p-Value t-Test He-Ho

Resistance to Mastitis 0.495 ± 0.006 0.468 ± 0.034 22 4.5 × 10−4 5.5 × 10−4 0.027
Susceptibility to Mastitis 0.495 ± 0.004 0.458 ± 0.019 11 9.1 × 10−4 1.0 × 10−5 0.037 *

Resistance to Bacterial Mastitis 0.488 ± 0.010 0.470 ± 0.031 7 1.4 × 10−3 4.4 × 10−2 0.018
Resistance to Subclinical Mastitis 0.379 ± 0.153 0.403 ± 0.164 20 5.0 × 10−4 9.9 × 10−1 −0.024

Resistance to Clinical Mastitis 0.406 ± 0.105 0.426 ± 0.130 6 1.7 × 10−3 8.9 × 10−1 −0.020

He ± SD = Heterozygosity expected ± standard deviation. Ho ± SD = Heterozygosity observed ± standard deviation. NL = number of
loci. p-value BC = p-value with Bonferroni correction (0.01/NL). p-value t-test = p-value obtained by the t-test, where the null hypothesis
established that the differences between, He and Ho from zero were non-significant, at 0.01/NL significance level. He-Ho = Differences
between heterozygosity values (expected-observed), values * indicate statistically significant difference.

The estimate for the FIT obtained coincides with those observed in semi-specialized
systems of production. The overall average for FIT was 0.017 ± 0.043 for all the traits
associated with mastitis. This value is similar to those found for Sahiwal (0.013 ± 0.109),
Gyr (0.013 ± 0.106), and Guernsey (0.02 ± 0.217) [47]. In contrast, the FIT for the tropical
breeds Landim, Angole, and Tete [48] was 70% higher than that found in our study.
Furthermore, for Creole Colombian breeds, the average was 0.09 [44]. The first group
of breeds was maintained in semi-specialized systems [47], while Landim, Angole, Tete,
and the Colombian Creole are non-specialized breeds. This difference could explain why
smaller breeds without adequate genetic control present higher inbreeding coefficients.
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Figure 1. Absolute differences by locus of expected heterozygosity (He) minus observed (Ho) for resistance (a) and
susceptibility (b) to mastitis, resistance to bacterial mastitis (c), subclinical mastitis (d), and clinical mastitis (e) in a Mexican
Braunvieh cattle population. |He-Ho| = absolute difference between He and Ho. Note: see the names of each locus by trait
in Tables 1–5.

Figure 2 shows that, for traits RM, SM, and RBM, most of the loci had positive FIT. In
contrast, the loci for RSM and RCM were mostly negative; that is, there were no traces of
inbreeding. This could be due to the specificity of the last two traits, where the candidate
genes involve DNA segments that have undergone null direct selection.

The genes whose symbol starts with CXCL, chemokine (C-X-C motif) ligand, are
responsible for the immune response [49]. An in vivo study demonstrated that the CXCL
genes are key in the inflammatory process of the mammary gland, after the entry of bacteria
through the cow’s nipple, particularly the CXCL8 and CXCL10 genes [50,51]. In our study,
for RCM, 67% of the SNP markers belong to genes CXCL1 and CXCL8. This explains
the low FIT values for the trait, which is because current improvement programs for the
Braunvieh population under study have no selection criteria based on resistance to mastitis.
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For RSM, 40% of the markers belong to EDN2 and HIVEP3, candidate genes associated
with immune processes, such as intracellular and sequential signaling of immunoglobulin
receptors. Because of their immunologic nature, these genes have not been directly selected
for; however, at the farm level there is a rising concern for improving their animals for
genes associated with diseases that could be prevented, such as paratuberculosis and clinic
mastitis [8,52].

The distribution of animals by their FIT value can be observed in Figure 3. In general,
animals fall in the range of 0 to 0.3 FIT. FIT = 50% is equivalent to the value of an inbred
animal produced by two progenitors with 100% genetic relationship. Our animals varied
from 1.3% to 13.3%. The trait with the highest number of highly inbred animals was SM,
while RSM had the lowest.

Although up to 13.3% of animals have non-desirable FIT values, the estimate obtained
in our study (0.017 ± 0.043) is similar to that reported for other cattle breeds in specialized
and semi-specialized systems of production. In those systems, although some animals had
high inbreeding coefficients, the average FIT is lower than those reported by [53] for Bos
taurus breeds (0.071), Brown Swiss (0.071), Braunvieh (0.059), Original Braunvieh (0.023),
Holstein (0.057), and Simmental (0.028).
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3.4. Clustering Using Hierarchical Methods and K-Means Algorithms

The optimum number of k to equilibrate the silhouette width and the means of squared
errors for both algorithms converged at the same number of clusters for each trait. However,
better values for silhouette were found by grouping with the K-means algorithm: RM,
0.08; SM, 0.17; RBM, 0.17; RSM, 0.12; and RCM, 0.39. For the first four traits, the silhouette
values were low, but in all cases, they were negative, a good indicator of the suitability of
the method. The RCM silhouette was the widest.

The average proportion of variability among groups relative to the total variability
was obtained. The estimates found were RM, 34.9%; SM, 65.5%; RBM, 66.9%; RSM, 54.7%;
and RCM, 77.3%. It should be noted that the RCM values for variability and silhouette
were the best of all the traits. This could be due to the small number of markers of the trait
(6), which were highly informative as well.

The circular dendrograms of Figure 4 were generated to visualize the groups formed
by the Ward hierarchical method. The groups created with this algorithm were very similar
to those created with K-means. The k number, the number of individuals per group, and
the representative animals together with their genotypic profile can be seen in Figure 5. The
representative animal is the animal closest to the centroid of its cluster, and its genotypic
profile was obtained to visualize the main differences among group patterns.
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Ho and FIT are not related because, unlike inbreeding, heterozygosity is not correlated
with the markers [54], even though Ho values close to 0.50 were found for all the traits.
In the genotypic profiles, it can be observed that there are groups of animals with a low
frequency of genotype AB (Figure 5). The traits with the lowest values for FIT present high
numbers of homozygous animals. This could be explained by the low genetic relationship
among the animals for these loci, that is, genotypes AA or BB for the same locus, as seen
in Table 6. One of these traits (SM) presents a significant He-Ho difference. This means
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a decrease in the expected value for heterozygosity, which will be reflected in a greater
number of homozygous individuals.

The trait with the greatest number of heterozygous animals was RM. Groups III,
VII, VIII, and XI possess most of their loci with genotype AB. RM is multifactorial, and
therefore, it includes candidate genes associated with productive, reproductive, adaptative,
and immunological traits. This will cause high genetic diversity, in contrast with the traits
RSM and RCM, which, in our study, are only influenced by immunological candidate genes
of a specific order whose diversity is limited. According to [55], these gene types tend to be
found in homozygous genotypes in wildlife, given that AB genotypes are associated with
proteinic abnormalities that increase their susceptibility to pathogenic diseases.

For SM, there are well defined groups of animals whose loci are mostly heterozygous.
Groups II, IV, V, XV, and XVII have at least 55% of their loci with genotype AB. The groups
with fewest heterozygous individuals were III, XVIII, XIX, and XX, with up to 18% AB
genotypes. There is high genetic diversity in the population for the trait as was observed
for RM; the reason could be the presence of genes influencing traits that are indirectly
related with mastitis, and not just loci affecting the immune system [49,55].

The loci of the groups formed by the algorithm K-means for RBM are from 29%
(groups II, VI, IX, and XX) to 57% (groups I, III, VIII, and XII) heterozygous. Diversity was
high because only 33% of the genes were directly related with immune functions in the
animal, genes IL1A and IL1RN, while the rest were related to metabolic processes [20–22].

3.5. Principal Components Analysis (PCA)

The PCA was useful to observe the genetic diversity in the groups of animals generated
with K-means. The first two dimensions of the PCA explained 22.21% (RM), 42.1% (SM),
40.55% (RBM), 29.68% (RSM), and 58.9% (RCM) of the variation found in the markers
(Figure 6). These results were higher than those reported in similar studies [40,41]. These
authors found that 10.9% and 8.79%, respectively, of the variation was explained by the
first two dimensions.

For traits RM and RSM, which possess a larger number of the loci under study, the
number of eigenvalues considered to reach a minimum of 80% of variability is higher than
that for the rest of the traits. However, the first two dimensions possess a high percentage
of variation, evident in the graphic representation of the PCA, where the K-means groups
are clearly differentiated, particularly for the RCM graph.

For RM, the genes ARHGAP10 and BDH2 (SNPs 2 and 3, respectively) contributed
the most to the analysis; however, the relationship between them is negative (Figure 7).
This means the genotypes for the genes in an animal are present as AA and in another as
BB, or vice versa. Between these genes there was no known linkage or genetic correlation,
given that they were in different chromosomes and affect unrelated traits. ARHGAP10 is
associated with intramuscular fat formation [56] and BDH2 with feed intake [57].

Oddly enough, for RM, the highly inbred animal 16 is among the top 10% of the most
contributory animals (Figure 7). This can probably be explained by its position in the
biplot, which means it is most associated with gene TBC1D8, which contributed little in the
analysis. The same situation is true for SM, animal 143, and the marker for the gene ITPK1.

For SM, the markers for genes ANKRD33B, CTNND2, GRIA3, and SIDT1 contributed
the most to the PCA, Figure 6. The pairs of genes CTNND2 with SIDT1, and ANKRD33B
with GRIA3 had a positive relationship (Figure 7) even though they are in distant chro-
mosomes. This may be a particular feature of the genotypic profile for mastitis in this
Braunvieh population.

The markers of genes IL1A and ITGB3 for RBM were in a relationship similar to that
of the genes ARHGAP10 and BDH2 for RM (Figure 6). They had a negative relationship
according to the biplot (Figure 7). Similarly, they are in different chromosomes, even
though both directly influence the function of the immune system [20,21].

The marker BovineHD0300029925 (10) of HIVEP3 (Figures 6 and 7) contributed the
most to the PCA for RSM. This SNP is positively related to another two intragenic HIVEP3
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markers: BovineHD0300029904 (9) and BovineHD0300029955 (11). For RCM, most of the
markers were highly contributive, i.e., the SNPs for the genes CXCL8, SEL1L, and STAT4,
associated directly with the immune system [49].
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4. Conclusions

The population studied presented a high genetic diversity for resistance and sus-
ceptibility to mastitis, even higher than that of the original Braunvieh and Brown Swiss.
Although 13.3% were highly inbred animals (>50%), there were highly heterozygous groups
in terms of the traits studied, a favorable indicator of the presence of diversity; even though
the homozygous genotypes for immunologic genes (group CXCL) might be favorable for
traits such as resistance to subclinical mastitis and resistance to clinical mastitis.

The K-means algorithm and the principal components analysis are good statistical
tools to visualize groups of animals with different genotypic profiles. The principal compo-
nents analysis was useful to detect relationships and contributions of markers for each trait.
The results of our research give evidence of the genetic potential of the Mexican Braunvieh
population for the improvement of mastitis-related traits in the tropic.
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