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Mammals constantly face stressful situations, be it extended periods of starvation, sleep
deprivation from fear of predation, changing environmental conditions, or loss of habitat.
Today, mammals are increasingly exposed to xenobiotics such as pesticides, pollutants,
and antibiotics. Crowding conditions such as those created for the purposes of meat
production from animals or those imposed upon humans living in urban environments or
during world travel create new levels of physiologic stress. As such, human progress has
led to an unprecedented exposure of both animals and humans to accidental pathogens
(i.e., those that have not co-evolved with their hosts). Strikingly missing in models of
infection pathogenesis are the various elements of these conditions, in particular host
physiologic stress. The compensatory factors released in the gut during host stress
have profound and direct effects on the metabolism and virulence of the colonizing
microbiota and the emerging pathobiota. Here, we address unanswered questions
to highlight the relevance and importance of incorporating host stress to the field of
microbial pathogenesis.
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MOST MODELS OF INFECTION PATHOGENESIS DO NOT
INCORPORATE HOST STRESS

It is well recognized, both in animal experiments and humans, that exposure to an infectious agent
alone is insufficient to cause, consistently, clinical manifestations of the disease (Babrowski et al.,
2013). Investigators often observe marked heterogeneity of disease manifestation when groups of
otherwise similarly appearing and treated hosts are exposed to a given contagion (Connolly et al.,
2015). It is for this reason that the “molecular Koch’s postulates” have been proposed to include
changes in both host and pathogen phenotypes and their dynamic interaction when studying a
single pathogen, or pathogen community, as a cause of an infectious disease (Falkow, 1988). It is
well recognized that no two pathogens are alike, even they be from the same origin (Tenaillon
et al., 2016). Microbes can also shift their phenotype in vivo in response to a variety of local
environmental cues, each of which is particular to a given host, in a given tissue area, and in a given
spatial context (Luong et al., 2014). It is for this reason that today, when experimentally modeling
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infection in small animals, we attempt to control as many
variables as possible, such as breeding history, diet, housing
conditions, etc. (Stappenbeck and Virgin, 2016). Nonetheless,
unaccounted variability still exists frequently.

Traditionally, experiments are designed to detect “between-
group” differences while manipulating genes in the infecting
agent or host. Yet rarely are “within-group” differences of
infection rates or mortality accounted for among the treatments
so long as the between group differences are robust and
statistically significant. What drives this heterogeneity of
response within a highly homogenously treated group in a
highly controlled environment? Here, we posit that the degree
of physiologic stress of an individual subject plays a key,
and regularly dismissed, role in the variability of infection-
related outcome. To fully match all animals in a study, hourly
measurements of numerous parameters (e.g., sleep, hunger,
fear, anxiety, handling, etc.) would be necessary and integrated
responses over the course of the experiment would need to be
calculated. This is obviously not routinely performed and would
be costly, if not impossible to achieve.

Yet in virtually every small animal experiment in which
infection or mortality is used as the endpoint, there exists a high
degree of variability in outcome that is rarely, if ever, reported
or studied (Stough et al., 2016). What is often overlooked may
be the emergent properties that develop in the infecting agent
and the host as they interact with each other over the entire
course of the host–pathogen relationship. Pathogen phenotypes
are highly dynamic over the course of this interaction, as is the
host physiologic response (hormones, cytokines, metabolome)
before, during, and after the infectious inoculum is introduced
(Shogan et al., 2014). A complex molecular dialog is developing as
these two living organisms interact, exchange signals, and behave
as one multi-cellular system (Rhee et al., 2009). Such dynamism
will have a profound effect in shaping the social behavior of
colonizing microbes.

In order to model more precisely the host pathogen
interaction, reductionist experiments with small animal models
(i.e., C. elegans) and laboratory pathogens are used (Yuen
and Ausubel, 2014). While much is to be gained from these
reductionist models, they do not reflect some of the most
challenging infections in humans, such as those that occur in
modern intensive care units in the developing world (Rasigade
et al., 2012). Patients, for example in an ICU are highly
traumatized by procedural medicine, cared for under the most
physiologically stressful conditions, and confined to the most
hostile microbial environment (Zakharkina et al., 2017). Such
patients are regularly exposed to healthcare associated pathogens
that harbor unique antibiotic resistance patterns and highly
virulent phenotypes (Busani et al., 2017). In addition, because
of the promiscuous use of antibiotics to care for ICU patients,
the protective action of the normal microbiota is essentially
eliminated (Arrieta and Finlay, 2012). Hosts are vulnerable
on two fronts, loss of the microbiome and the emergence of
a virulent and resistant pathobiome (Krezalek et al., 2016).
There is also evidence that physiologic or traumatic stress alone
causes depletion of the host’s intestinal microbiome by unknown
mechanism (Alverdy and Krezalek, 2017). Thus at the same time

that compensatory host-derived signaling molecules are released
during stress, which shift the phenotype of its colonizing flora,
the normal microbiota are collapsing in abundance and function
(Hayakawa et al., 2011). Such a scenario begs investigators
to understand the role of physiologic and traumatic stress on
infection-related outcome beyond their direct effects on the
immune system and to apply a more holistic and systems
biology approach to model infection, as it likely occurs in vivo
(Figure 1).

HOW DOES ACUTE HOST STRESS
AFFECT THE ABUNDANCE AND
FUNCTION OF THE MICROBIOTA?

It is now well established that following a sudden insult
to the host, such as acute trauma, myocardial infarction, or
burn injury, the intestinal microbiota decrease in abundance
and function by greater than ninety percent (Shimizu et al.,
2015). This observation may play an unappreciated role in
the general consensus that a stressed host is more vulnerable
to infection (Guyton and Alverdy, 2016). The scope and
molecular details by which physiologic stress interacts with the
intestinal microbiota and causes immunosuppression remains
incompletely elucidated. However, ongoing investigations are
beginning to shed some light on the mechanisms. In hospitalized
patients who are critically ill, we often see a near complete
ecological collapse of their endogenous microbiota, which is
likely the result of both the patient’s active disease state and
the selective pressure imposed upon them by modern intensive
care efforts (Modi et al., 2014). Not only does the abundance
of the microbiota become reduced in these patients, but low-
diversity communities, often difficult to detect, tend to proliferate
and are represented by highly resistant and virulent organisms
such as Candida albicans, Enterococcus spp., Staphylococcus
spp., and Enterobacteriaceae (Zaborin et al., 2014b). In one
recent study by our group, Zaborin et al. (2014b), found
that 30% of the critically ill patients had “ultra-low-diversity”
microbial communities consisting of four or less bacterial
taxa.

One of the most obvious and intuitive drivers of this
ecologic collapse is the profound selection pressure imposed by
the promiscuous use of antimicrobial agents. Extensive work
has been reported to understand the effects of antibiotics on
the microbiota (Modi et al., 2014). In 2010, more than 70
billion individual doses of antibiotics were consumed world-wide
(Blaser, 2016). Broad-spectrum antibiotics can impact up to 30%
of the bacteria among the human microbiota, resulting in severe
loss of taxonomic and functional diversity (Francino, 2016).
This dramatic shift in the microbiota can develop immediately
following antibiotic administration, and can sometimes last for
years after its cessation (Jakobsson et al., 2010). The perturbation
of the endogenous flora has been linked to many disease states
including obesity and autoimmunity (Francino, 2016).

While the effects of antibiotics are well studied and
appreciated, the microbial collapse associated with critical
illness is much more profound and broad when compared
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FIGURE 1 | The microbiome affects everything and everything affects the microbiome. Multiple converging lines of bidirectional signaling between the host
and microbiota and between the microbiota and pathobiota demonstrate that host circumstances directly affect both the microbiota and the immune system.

to exposure to antimicrobials alone. Many forms of host
stress, independent of antimicrobial administration, have
been shown to affect the composition and function of
the microbiota (Mackenzie et al., 2017). For example, in
patients undergoing gastrointestinal surgery, the use of opioid
analgesics, withholding of enteral nutrition, and gastric acid
suppression have all been shown to have profound effects
on the microbiome (Krezalek and Alverdy, 2016; Levesque
et al., 2016). Reuland et al. (2016) reported that the use
antacids is associated with increased risk of extended-spectrum-
β-lactamase producing Enterobacteriaceae carriage. Even
surgical procedures themselves, such as colonic resection and
reconnection, can be associated with a 500-fold increase in the
abundance of Enterococcus faecalis (Shogan et al., 2014). This
dynamic reality of microbiome stability further highlights the
importance of understanding the complex host–microbiota
interaction.

HOW DOES HOST STRESS ACTIVATE
PATHOGENS TO CAUSE INFECTION?

Attempts to elucidate the mechanistic details of this microbial
shift have aimed mainly at the hypothesis that host stress
causes immunosuppression (Vanzant et al., 2014). However, less
well explored, is the possibility that host stress diminishes the
protective intestinal microbiota, in both abundance and function,
and that host stress signals activate colonizing “pathobiota”
to express enhanced virulence (Lupp et al., 2007; Alverdy
and Krezalek, 2017). It could be postulated that the intestinal
microbiota “sense” that the host is under duress and decrease
their growth rate and metabolism both anticipating that resources

will be limited, and that the host cannot tolerate activation
of its immune system by the intestinal microbiota (Babrowski
et al., 2013). Alternatively, and in concert with this mechanism,
could be the activation of intestinal antimicrobial peptides
via IL-22, which is known to be elevated following traumatic
and physiologic stress (Bingold et al., 2010; Rendon et al.,
2013; Behnsen et al., 2014). In this way, the host keeps its
intestinal microbiome “at bay” until which time recovery is
established and homeostasis returns. The temporal dynamic of
this response, the period of diminution, the refaunation process,
and the species and community structure that are involved in
this response remain to be clarified. Although some elucidation
of this mechanism has been reported with the foodborne
pathogen Salmonella; importantly, no host stress was imposed
in the experimental model (Behnsen et al., 2014). Although
such elegant and insightful models of Salmonella inform the
mechanisms of its pathogenesis, they fall short in explaining
why most humans exposed to the pathogen never develop
an infection (Barak et al., 2009; Spencer et al., 2010). Several
key questions remain unanswered. What are the mechanisms
by which ingested isolates shift their phenotype to adapt to
their new environment so they can express virulence factors
that allow them to induce host cytokines (i.e., IL-22) that
eliminate the microbiota? Do humans (and mice) who are
stressed release host stress-derived compensatory factors that
induce Salmonella to express these virulence factors that then
determine if and how infection occurs (Krueger and Opp,
2016; Poroyko et al., 2016)? The last is a particularly important
question given that we know that host stress depletes the
microbiota, activates IL-22 (Bingold et al., 2010) (which further
can deplete the microbiota), releases cytokines that directly signal
bacteria to activate their quorum sensing circuits (Wu et al.,
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FIGURE 2 | Rate and degree of microbiota refaunation on recovery
from severe catabolic stress such as following human critical illness
(Guyton and Alverdy, 2016; Krezalek and Alverdy, 2016; Alverdy and
Krezalek, 2017). (A) Demonstrates typical response to successful modern
medical care with limited antibiotic exposure and rapid resolution of the
infection or injury (Modi et al., 2014). (B) Represents the aging patient
population with multiple exposures to western diet, smoking etc, who have
fragile microbiomes that cannot recover when invasive surgery and toxic
agents are used to treat complex disorders such as cancer (Shogan et al.,
2014; Shakhsheer et al., 2016).

2005), and diminishes local resources (Long et al., 2008) (i.e.,
phosphate) in the local milieu (Long et al., 2008; Rendon et al.,
2013).

Through a process recently termed “telesensing” (Roux et al.,
2009), certain bacteria can not only sense their population density
via quorum sensing, but also can detect and respond to host-
stress derived signals such as opioids, cytokines, end-products
of ischemia, immune cell environments, etc., that are unique to
host tissues exposed to stressful conditions (Sansonetti, 2004).
This type of interkingdom signaling has traditionally received
little attention in the microbial pathogenesis field (Kendall and
Sperandio, 2016). While certain physio-chemical cues, such as
pH, redox state, phosphate, etc., are well known to influence
bacterial virulence activation, an emerging area of interest is
how host-stress derived compensatory “cues” drive colonization,
invasion, virulence activation, and ultimately, the continuum of
infection from symptom development to lethality (Mekalanos,

1992). We and others have described many of these host-
stress compensatory elements, the receptors on bacteria to
which they bind, and the downstream pathways that become
activated leading to a shift in virulence (Seal et al., 2010). For
example, the Gram-negative pathogen Pseudomonas aeruginosa
can detect host physiologic disturbance by sensing opioids in
the host environment, and in response, activate its quorum
sensing virulence machinery (Zaborina et al., 2007). This process
involves a complex and constant dialog between the pathogen
and its host (Alverdy et al., 2000). The host secrete factors in
response of microbial presence, the microbe in turn detects
these signals and adjusts its virulence accordingly (Patel et al.,
2007; Zaborin et al., 2014a). Many commonly encountered
bacterial virulence mechanisms are subject to this additional
level of host-derived signaling: biofilm formation, swarming,
luminescence, toxin production, etc. (Palmer and Blackwell,
2008).

Host–microbe interkingdom signaling and telesensing are
not novel developments. Because the microbiota and its human
host co-evolved over tens of thousands of years, an elaborate
signaling system exists between them (Sansonetti, 2004). It is
well known that host catecholamines released during stress
can induce bacterial growth, enhance colonization to host
tissue, and virulence upregulation (Freestone and Lyte, 2008).
In addition, the human “gut-brain axis” is an active area of
investigation. We are just beginning to appreciate the level of
involvement that the microbiota plays in the development of
the human nervous system (Lyte, 2013). So far, we know that
this gut-brain axis is a bidirectional dialog involving neural
(e.g., GABA), endocrine (e.g., amines), immune, and humoral
signals (Carabotti et al., 2015). In addition to host-produced
signals, release and sequestration of inorganic compounds, such
as phosphate, cooper, iron, have all been implicated in this
host–microbe interkingdom signaling (Schaible and Kaufmann,
2004; Zaborin et al., 2014a). These complex mechanisms
of communication help to maintain the mutualistic human-
microbiome relationship, and is the product of millennia of
co-evolution.

As such, the occurrence, course, and outcome of infection
may be highly influenced by the degree of host stress, not only
because stress has a direct effect on immune function, but because
physiologic stress has a direct effect on bacterial behavior. In
the context of human infection, rarely if ever, is host stress
adequately instantiated into experimental models. Host genes are
manipulated as are microbial genes, and pathogenicity described.
However, a major flaw in this approach is the dismissal of the
“within-group” variability in infection occurrence and outcome
that may be the most informative of the host–pathogen dialog
that must first occur for the process of infection to be initiated.
As can be seen in Figure 1, converging lines of host–pathogen
interactions make it extremely challenging to organize and study
such a dynamic and fluid system in the context of a critically
ill patient. It may be for this reason that no new therapies
for sepsis in the critically ill have emerged in decades. Yet
understanding how the microbiota collapse following host stress,
how the pathobiota emerge to achieve a new state of equilibrium
with the host, and whether the resilience of the host to achieve
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recovery depends on the ability of the microbiota to refaunate,
remains a challenging but important line of inquiry (Sansonetti,
2004).

IS HOST RECOVERY FROM STRESS
DEPENDENT ON THE ABILITY OF THE
MICROBIOTA TO REFAUNATE?

While resilience to host injury and recovery from infection
is generally attributed to a robust host immune clearance
mechanism, emerging knowledge in microbiome science suggests
that the intestinal microbiome plays a key role in driving
a recovery-directed immune response (Shen et al., 2012). As
described above, when a human is injured, both from the injury
response itself and from its treatment by modern medicine, the
intestinal microbiome can collapse in abundance and function
(Shimizu et al., 2006). Yet as injuries are repaired and infections
cleared with antibiotics, the ability of the host microbiome to
refaunate is often considered to lag behind recovery, rather than
to drive it (Jakobsson et al., 2010). However, equally plausible is
the possibility that a previously healthy host (no smoking, limited
previous antibiotic use, lean diet, regular exercise) may have a
capacity to refaunate his/her microbiome to a greater degree
than a previously unhealthy patient (Carlisle and Morowitz,
2011; Cosnes, 2016; Munck et al., 2016). The dynamics of
refaunation and its correlation to recovery is poorly explored,
however, with sequencing and metabolomics becoming more
widely available and less costly, this can now be determined.
Enhancing the refaunation process with fecal transplantation
alongside therapies that are highly catabolic (bone marrow and
solid organ transplantation) are underway and may further
reinforce the plausibility of this concept (Kazerouni and Wein,
2017). The near disappearance of the intestinal microbiome
following severe catabolic stress and injury, while adaptive
prior to modern medicine, may be considered maladaptive
in the present era, where highly toxic and invasive therapies
(chemotherapy, radiation, severe burn injury) are needed to
treat life-threatening diseases (Jenq et al., 2012; Pamer, 2016;

Taur and Pamer, 2016). Figure 2 depicts our theory involving
the uncharted space in the intestinal tract that may play an
unappreciated role in recovery from severe host stress.

CONCLUSION

Pathogens bring their own unique life histories when they
colonize or infected a new host. The complex dynamics of
physiologic stress in the host drives these pathogens, and
the microbial communities in which they co-exist, into a
pathoadaptive process where genes are lost and found, and
where new phenotypes emerge. Under such circumstances,
emergent phenotypes among the colonizing pathobiota increase
in frequency and compete for colonization sites and local
resources. As stress becomes a persistent state and antibiotics
are added to treat infections, microbial evolution speeds up as
the emergent “pathobiome” enters an evolutionarily uncharted
environment. As these pathobiomes compete for fixation niches,
they become hidden from clinicians in protected sites where they
do their dirty work at arms’ length from the immune system.
Uncovering the dynamics of this host–pathogen interactome and
the sites in which it occurs will lead to novel lines of inquiry and
hypotheses to explain more completely the occurrence, course,
and outcome of life-threatening infections that develop in the
critically ill and all around the world.
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