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Dendritic cells (DCs) are important initiators of adaptive immunity, and they possess

a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell

mediated immunity against invading pathogens. PRR ligands are frequently conjugated

to tumor-associated antigens in a vaccination strategy to enhance the immune response

toward such antigens. One of these PPRs, DC-SIGN, a member of the C-type

lectin receptor (CLR) family, has been extensively targeted with Lewis structures and

mannose glycans, often presented in multivalent fashion. We synthesized a library

of well-defined mannosides (mono-, di-, and tri-mannosides), based on known “high

mannose” structures, that we presented in a systematically increasing number of copies

(n = 1, 2, 3, or 6), allowing us to simultaneously study the effect of mannoside

configuration and multivalency on DC-SIGN binding via Surface Plasmon Resonance

(SPR) and flow cytometry. Hexavalent presentation of the clusters showed the highest

binding affinity, with the hexa-α1,2-di-mannoside being the most potent ligand. The four

highest binding hexavalent mannoside structures were conjugated to a model melanoma

gp100-peptide antigen and further equipped with a Toll-like receptor 7 (TLR7)-agonist

as adjuvant for DC maturation, creating a trifunctional vaccine conjugate. Interestingly,

DC-SIGN affinity of the mannoside clusters did not directly correlate with antigen

presentation enhancing properties and the α1,2-di-mannoside cluster with the highest

binding affinity in our library even hampered T cell activation. Overall, this systematic study

has demonstrated that multivalent glycan presentation can improve DC-SIGN binding

but enhanced binding cannot be directly translated into enhanced antigen presentation

and the sole assessment of binding affinity is thus insufficient to determine further

functional biological activity. Furthermore, we show that well-defined antigen conjugates

combining two different PRR ligands can be generated in a modular fashion to increase

the effectiveness of vaccine constructs.

Keywords: DC-SIGN, TLR7, glyco-antigen, vaccine model, peptide conjugate, tumor-associated antigens,
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GRAPHICAL ABSTRACT | Synthetic multivalent presentation of CLR ligands on tumor antigens together with TLR7 agonist, provides DC targeting and induction of

tumor specific T cells.

INTRODUCTION

DC-SIGN (CD209) is an extensively studied receptor, due to its
expression on various dendritic cell (DC) populations and its
role in infection of certain viruses, like HIV (Bernardi et al.,
2013; van Kooyk et al., 2013). This C-type Lectin Receptor (CLR)
recognizes carbohydrate-based Pathogen-Associated Molecular
Patterns (PAMPs) containing Lewis structures and high mannose
glycans commonly found on bacteria, fungi and viruses
(Geijtenbeek and Van Kooyk, 2003). DC-SIGN occurs on the cell
surface as a tetramer, and therefore multivalent presentation of
its carbohydrate ligand is favored for high affinity binding (van
Kooyk et al., 2013).

Two strategies have been developed to target DC-SIGN
using mannose-based ligands to deliver cargo to DCs. The first
strategy uses mannosyl monosaccharides or analogs thereof, as
these are readily available. Because the binding affinity of the
mono-mannosides for DC-SIGN is relatively low with respect
to larger and more complex oligo-mannosides (van Liempt
et al., 2006), they are generally incorporated into dendrimers,
liposomes or nanoparticles to achieve a multivalent presentation,
enhancing the binding to DC-SIGN (Fehres et al., 2015;
Ordanini et al., 2015; Silva et al., 2015; Berzi et al., 2016; Le
Moignic et al., 2018). The other strategy uses larger and more
complex oligomannosides with intrinsic multivalence. Various
oligosaccharides have been explored for DC-SIGN binding (Ni
et al., 2006; McIntosh et al., 2015), a prime example being the
“high mannose” structure Man9 (Figure 1A). Both strategies
have previously been used to deliver cancer antigens to DCs to
enhance uptake and antigen presentation for the development
of more effective cancer immunotherapies (Buskas et al., 2005;
Moyle et al., 2007; Srinivas et al., 2007; McIntosh et al., 2015;
Glaffig et al., 2018).

Another approach for the development of well-defined
anti-cancer vaccines entails the covalent attachment of other
adjuvants to the antigens of choice, targeting other Pattern

Recognition Receptors (PRR), such as members of the Toll-
Like Receptor (TLR) family (Deres et al., 1989; Cho et al., 2000;
Blander and Medzhitov, 2006; Fujita and Taguchi, 2012; Willems
et al., 2014), the NOD-like receptor (NLR) family (Willems et al.,
2016), or combinations thereof (Buskas et al., 2005; Moyle et al.,
2007; Sedaghat et al., 2016; Zom et al., 2019). PAMP recognition
by TLRs induces DCmaturation, stimulating antigen processing,
and presentation for the induction of pathogen-specific T cells
(Ackerman and Cresswell, 2003). The covalent attachment of a
TLR agonist to an antigen can accelerate uptake and enhances
antigen presentation while DCmaturation via the TLR-ligands is
maintained (Khan et al., 2007; Ignacio et al., 2018). Furthermore,
it has been shown by simultaneous targeting of CLRs and TLRs,
that CLR stimulation influences the TLR signaling cascades.
For example, simultaneous triggering of DC-SIGN with TLR4
strengthens and prolongs TLR- signaling to enhance pro-
inflammatory cytokine production in DCs (Fritz et al., 2005;
Gringhuis et al., 2007). Since DC maturation is a necessity
for upregulation of antigen processing and presentation, we
hypothesized that a peptide-antigen conjugate, equipped with
both a mannose-based DC-SIGN targeting glycan and a TLR-
ligand, could lead to synergy in antigen presentation and improve
specific T cell activation. We here describe the generation
of such conjugate vaccine modalities, composed of a well-
defined DC-SIGN targeting oligomannose cluster, a synthetic
long peptide gp100 antigen, and a TLR7-agonist. TLR7 was
selected as candidate due to its residency within the endosomes.
We hypothesized that upon binding and internalization via DC-
SIGN, the vaccine conjugate would be processed in endosomes
where it can encounter TLR7. Using this strategy, we additionally
avoid competition between binding of DC-SIGN and other cell
surface TLRs.

Synthesizing high mannose structures is time and labor
intensive and obtaining these structures in large quantities is
challenging (Evers et al., 1998; Umekawa et al., 2008; Amin
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FIGURE 1 | Schematic overview of the Mannose-cluster library. (A) Symbolic and chemical representation of the high affinity DC-SIGN ligand high mannose N-glycan

Man9. The 5 mannoside configurations within Man9 are indicated in the figure. (B) From left to right, the 5 different oligomannosides. Top-down, the peptide

backbone with increased valency. The total library of 20 mannoside clusters are illustrated as symbols and coded A1–E6.

et al., 2011; Temme et al., 2013). We have therefore dissected
the “high mannose” Man9-structure in smaller oligomannosides
to explore which oligomannoside configurations could be
used as a tool to effectively target the DC-SIGN receptor. To
this end, we synthesized an array of oligomannose containing
clusters (Figure 1B) that varied in number (ranging from
1 to 6 copies) and type of mannoside, each representing a
part of the Man9 oligosaccharide (mono-; α1,2-di-; α1,3-
di-; α1,6-di-; and an α1,3-α1,6-tri-mannoside, coded A–E,
Figure 1A). This library has allowed us to compare side-by-side,

the different mannoside configurations in different, well-
defined clustered representations. The high affinity binders
were used for conjugation to a model peptide antigen,
containing the helper T cell epitope gp100280−288 and
effector T cell epitope gp10044−59, to generate conjugates
that could be targeted to DCs. To enhance the presentation
of the antigens embedded in the conjugates by the DCs,
we equipped the conjugates with a previously reported
8-oxo-adenosine analog (Jin et al., 2006; Gential et al.,
2019), a ligand for the endosomal TLR7 which resulted in
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trifunctional conjugates (CLR-antigen-TLR). Using monocyte-
derived dendritic cells (moDCs) we showed that the generated
trifunctional conjugates represent attractive vaccine modalities
that effectively targeted and activated DCs allowing effective
antigen presentation.

RESULTS AND DISCUSSION

Synthesis of the Oligomannoside Clusters
The design of the oligomannoside cluster array is based on
the Man9–N-glycan structure as depicted in Figure 1A and
encompasses structures displaying 1, 2, 3, or 6 copies of
mono-, di-, or trimannosides. The assembly of the array is
shown in Figure 2 and it employs an oligo-azidolysine (6-
azidonorleucine) backbone to which propargyl mannosides can
be coupled. The required oligomannosides were all generated
using propargyl α-D-mannopyranoside 1 as a starting compound
(Daly et al., 2012). In order to keep the anomeric alkyne moiety
intact, reductive transformations were avoided and acid/base
labile protective groups were applied throughout the syntheses.
Selective protection of the equatorial hydroxyls in 1 with a
1,2-butane diacetal, was followed by silylation of the primary
hydroxyl to yield acceptor 3 in 54% yield over two steps.
Glycosylation of 3 with imidate donor 2 (Thomas et al., 2007)
provided the protected 1,2-linked disaccharide 4 in 82% yield.
Acidic removal of the ketal and silyl ethers was followed by a
basic deacetylation leading to α1,2-di-mannoside 6 in 58% yield
over two steps. For the assembly of the 1,3-linked dimannoside,
the higher nucleophilicity of the C-3-OH in 6 with respect to
the neighboring, axial C-2-OH (van der Vorm et al., 2018) was
exploited in a regio- and stereoselective glycosylation reaction.
The condensation of acceptor 6 and donor 2 (Carpenter and
Nepogodiev, 2005; Sauer et al., 2019) provided disaccharide 7

in 80% yield. Subsequent removal of the protective groups by
sequential acid and base treatment resulted in α1,3-di-mannoside
8 in 90% yield over two steps. The 1,6-linked disaccharide was
obtained by tritylation of the primary hydroxyl in propargyl
mannopyranoside 1, acetylation of secondary hydroxyls and
trityl removal to give acceptor 9 in 63% yield over three steps.
Glycosylation of 9 with donor 2 yielded disaccharide 10 in 79%
yield, and after deacetylation α1,6-di-mannoside 11was obtained
in 66% yield. The set of propargyl mannnosides was completed
with the previously described synthesis of tri-mannoside 14

from 2,4-di-O-benzoyl mannose acceptor 12. This diol was
mannosylated with two copies of donor 2 to yield the fully
protected trisaccharide 13 in 82% yield, which was deacylated to
effectively generate trimer 14 (Wong et al., 2015).

With the required propargyl mannosides in hand, the
assembly of the array was undertaken. Using solid phase peptide
synthesis (SPPS), four different backbones with 1, 2, 3, or 6 azides
were synthesized for the attachment of the mannose clusters
(15–18). To match the length of the hexavalent scaffold 18 with
the trivalent backbone, glycine residues were incorporated in
the latter scaffold to separate the azidolysines in 17. Similarly,
the azidolysines in the divalent scaffold 16 were also separated
by a glycine residue. All backbones contained a lysine at the
C-terminus for further functionalization. Via Cu(I) catalyzed

Azide-Alkyne Cycloaddition (CuAAC) reactions the propargyl
mannosides (5, 8, 11, 14) and peptides backbones (15–18) were
clicked together. This resulted in a library of 20 well-defined
structures (A1–A6; B1–B6; C1–C6; D1–D6; E1–E6, Figures 1B,
2), subdivided in five series in which the A series bears α-
mannose 1, the B series carries α1,2-di-mannoside 5, the C

series presents α1,3-di-mannoside 8, the D series displays α1,6-
di-mannoside 11, and the E series is equipped with α1,3-α1,6-
tri-mannoside 14. All mannoside-clusters were equipped with a
biotin handle for cellular assays by reacting the primary amine
of the C-terminal lysine with Biotin-OSu to provide compounds
a1–e6. For conjugation with the model epitope clusters the
clusters B6, C6, D6, and E6 were functionalized with an alkyne
handle resulting in conjugation-ready compounds 19–22.

Binding Profile of the Mannoside Library
The affinity of the clusters for the extracellular domain (ECD)
of the DC-SIGN receptor (DC-SIGN ECD) was estimated
via surface plasmon resonance (SPR) assays (Tabarani et al.,
2009). The apparent Kd was calculated in direct interaction
mode using a surface functionalized in an oriented manner
with DC-SIGN ECD. In this assay, tetrameric DC-SIGN ECD
is attached to the surface of the sensor chip via the N-
terminus of its neck oligomerization domain, thus presenting
its four carbohydrate recognition domains toward the solvent,
realistically mimicking the presentation of the receptor on cell
surface (Porkolab et al., 2019). For some of the low affinity
ligands, in the mM range, it was not possible to determine their
affinity with this assay, and therefore a competition experiment
was performed providing IC50 values (Timpano et al., 2008)
(Figure 3A). A-specific interactions with the peptide backbone
were excluded, since control clusters G1 and G2 (propargyl
β-D-galactose clicked to backbones 15 and 16) showed no
interaction (Supplementary Figures 1A, 5). When comparing
equivalent clusters, the α1,2-di-mannoside (B series) bound with
the highest affinity (Figure 3A). Hexavalent presentation (n= 6)
of the oligomannosides showed micromolar affinity toward DC-
SIGN. B6 had the highest affinity in the library with an apparent
Kd of 0.95µM, followed by the α1,3-dimannoside cluster C6

(1.17µM), and the trimannoside clusters E3 (2.44µM) and E6

(2.78µM). Interestingly, the affinity of the trisaccharide series
(E series) did not improve going form the tri- to the hexavalent
representation (E3 vs. E6, Figure 3A). A potential explanation for
this effect could be that the spacing of clusters is more important
for the larger tri-mannosides. For the monovalent mannosides
A1 and C1 we could not determine a reliable IC50 in this setup,
indicating that their binding affinity for DC-SIGN is too weak
(see Supplementary Figures 2, 3 for all SPR sensorgrams).

Next, we assessed the binding of our clusters to cellular DC-
SIGN using moDCs (Figure 3B, Supplementary Figure 1B). To
this end, binding of the clusters a1–a6, b1–b6, c1–c6, d1–d6,
and e1–e6, decorated with a biotin handle, was determined
by flow cytometry. Clusters were bound to moDCs for 30min
at 4◦C. By staining using fluorophore-conjugated streptavidin
and washing at 4◦C, the bound clusters could be quantified
by flow cytometry. Complementary to the SPR assays, the flow
cytometric experiments revealed an enhancement in binding
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FIGURE 2 | Synthesis of mannoside clusters. Reagents and conditions: (a) Daly et al. (2012); (b) Thomas et al. (2007); (c) i. 2,3-butanedione, HC(OMe)3, MeOH, CSA,

reflux, 55%; ii. TBDMSCl, imidazole, DMF, 99%; (d) Donor 2, TMSOTf, DCM, −20◦C, 82%; (e) i. TFA, H2O, 71%; ii. NaOMe, MeOH, 82%; (f) PhCH(OMe)2, CSA,

ACN, 50◦C, 300 mbar, 51%; (g) Donor 2, TMSOTf, DCM, −20◦C, 80%; (h) i. AcOH, H2O, 95%; ii. NaOMe, MeOH, 95%; (i) i. Ph3CCl, imidazole, DCM, followed by

Ac2O, pyridine, 90%; ii. BF3·Et2O, MeOH, toluene, 70%; (j) i. Donor 2, TMSOTf, DCM, −20◦C, 79%; (h) NaOMe, MeOH, 66%; (l) i. PhC(OMe)3, CSA, ACN; ii. H2O,

52%; (m) Donor 2, TMSOTf, DCM, −25◦C, 82%; (n) NaOMe, MeOH, 75% (see reference Wong et al., 2015); (o) Fmoc-SPPS; (q) CuI, THPTA, DIPEA, DMSO, H2O; (r)

BiotinOSu or Pent-4-ynoic acid succinimidyl ester, DIPEA, DMSO.
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FIGURE 3 | DC-SIGN has the highest affinity for α1,2-di-mannoside in a hexavalent configuration on multiple interaction levels. (A) Surface plasmon resonance (SPR)

analysis demonstrates increase of affinity for DC-SIGN with increasing multivalence (n = 1 > 2 > 3 > 6). Clusters presenting the α1,2-di-mannoside 5 (B series) have

the highest affinity in comparison to the other mannosides in this array. (B) Binding of the biotinylated mannoside library to DC-SIGN on moDC was measured by flow

cytometry. Normalized to the unbound control, the clusters displayed increased binding with increasing multivalence. (C) Overall binding profile of the library,

normalized to A1, indicating that the highest affinity binders are the B6, C6, D6, E3, and E6 clusters. *p < 0.05 and **p < 0.01.
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with increasing amount of mannosides for the a, b, and c

series (Figure 3B). We observed significantly higher binding for
the hexavalent mono-mannoside compared to the monovalent
mannoside (a1 vs. a6). These results are in agreement with earlier
work suggesting DC-SIGN has a preference for high mannose
like mannosides (Feinberg et al., 2007). The α1,2-mannosides (b
series) showed enhanced binding in comparison to the mono-
mannoside and the α1,6- or α1,3-dimannosides, in line with the
SPR results and earlier results (Feinberg et al., 2007). In the
cellular assay we also did not observe an increase in binding
with an increasing number of tri-mannosides from the trivalent
to the hexavalent cluster (e3 vs. e6), in line with the SPR
results. This result again illustrates the need to carefully consider
the spacing between oligomannoses in multivalent mannoside
clusters. The cellular assay also showed no increase in binding
of the α1,6-dimannoside clusters when increasing the valency
from d3 to d6, again highlighting the potential influence of the
scaffold design. In control experiments ligand binding to DC-
SIGN was inhibited using a blocking anti-DC-SIGN antibody
(Supplementary Figure 1C). Small residual binding remained,
revealing a cluster-dependent increase in binding for the a–c

series and a similar trend in binding of the d- and e-series. This
suggests that other carbohydrate binding receptors, such as the
mannose receptor, may play a role in binding the mannoside
clusters (Raiber et al., 2010; He et al., 2015).

The binding profile of all mannose clusters is graphically
summarized in Figure 3C. The strongest binding was observed
for the hexavalent scaffolds, engaging DC-SIGN with µM
affinity. The α1,2-di saccharide (B series) bound strongest and
the monosaccharide (A series) bound with the lowest affinity.
Therefore, we selected the B6, C6, D6, and E6 clusters for
conjugation to the melanoma gp100 antigen-TLR7 construct.
Although cluster E6 bound without affinity improvement for
DC-SIGN comparing to E3, the former cluster was selected to
allow for a direct comparison between the different clusters at the
glycoconjugate level.

Antigen and Adjuvant Conjugation
We next proceeded by synthesizing the mannose cluster-peptide-
TLR7-agonist-conjugates via Fmoc-SPPS chemistry. Starting
from Tentagel R© S RAM amide resin we coupled Fmoc-
Lys(Mmt)-OH as the first amino acid to allow the conjugation of
the TLR7 ligand after assembly of the peptide (see Figure 4). The
gp100 peptide contains the gp100280−288 sequence for antigen
presentation to CD4+ T cells connected to the N-terminus of
the gp10044−59 sequence for CD8+ T cells. The epitope was
elongated with four extra amino acids on each side to act as
spacers. To prevent potential oxidation Cys60 was replaced by
its isosteric analog α-amino-butyric acid (Wlodawer et al., 1989),
which did not influence the antigen presentation of the peptide
(Supplementary Figures 1G, 6). The peptide was elongated with
Fmoc-Lys(N3)-OH followed by acetylation of the N-terminus
resulting in 24. C-terminal functionalization was achieved by
selective removal of the Lys(Mmt) group, and subsequent
coupling of an ethylene glycol spacer followed by introduction
of the TLR7 agonist (Chan et al., 2009). Using our previously
described protocol (Gential et al., 2019), we could introduce Boc

protected TLR7-ligand 23 on-resin, resulting in functionalized
solid support 25. Release of the peptide-TLR7 ligand conjugate
from the resin and concomitant global deprotection of the
side chains under acidic conditions resulted in azido-peptide
26, which was purified by HPLC. Control peptides lacking the
N-terminal azide and/or the TLR7 ligand were synthesized to
investigate the effect of the CLR clusters (gp100 and gp100-

TLR7L, see Supplementary Figure 6).
Attempts to synthesize gp100 peptides elongated with

six azidolysines through SPPS proved to be troublesome
and therefore we used a modular approach in which the
pre-assembled CLR clusters (19–22) (Figure 2) were ligated
to TLR7-peptide conjugate 26 via a CuAAC click reaction
(Figure 4) (Conibear et al., 2016). This resulted in four
conjugates containing a TLR7 agonist and a hexavalent α1,2-
dimannnoside cluster (B6-gp100-TLR7L); an α1,3-dimannoside
cluster (C6-gp100-TLR7L); an α1,6-dimannoside cluster
(D6-gp100-TLR7L); or an α1,3-α1,6-trimannoside cluster
(E6-gp100-TLR7L) that could be tested for their antigen
presenting capacities.

Targeting Efficacy of the
Mannoside-Peptide Conjugates
Immature dendritic cells are present in the peripheral
tissue, acting as the first-line of defense against pathogens.
In immature state, dendritic cells are optimized for phagocytosis
of extracellular material and antigens. Upon maturation,
triggered by e.g., pathogenic stimuli that activates TLRs,
phagocytic processes are downregulated, while co-stimulatory
molecules for T cell activation are upregulated and antigen
presentation is enhanced (Ackerman and Cresswell, 2003). After
the trifunctional peptides are internalized, the maturation
process prepares the dendritic cell for optimal antigen
presentation to T cells. To assess the efficacy of the selected
compounds, we analyzed different biological processes that the
trifunctional peptides are routed through. First, the uptake of
biotinylated clusters by immature DCs was measured, followed
by the ability of the trifunctional conjugates to induce DC
maturation, and lastly the capability of the gp100 epitopes to be
presented (Figure 5A).

Among the various conjugates produced, two could be
evaluated by SPR for their binding properties to ensure that
conjugating the mannose-cluster to gp100 alone or gp100-
TLR7L modules do not mask their accessibility for DC-
SIGN recognition. B6-gp100 and E6-gp100-TLR7L are still
binders with µM affinities of DC-SIGN surfaces, however the
conjugation to either gp100 or gp100-TLR7L module decreased
this affinity by a factor of about 10, suggesting that gp100
conjugation reduced binding somewhat (Comparing Figure 3A

and Supplementary Figure 1A, the Kd−app goes from 0.9 to
10.6µM for B6 to B6-gp100, and for E6 to E6-gp100-TLR7L the
Kd−app goes from 2.7 to 31µM, each time increasing by about a
factor 10, Supplementary Figure 3).

For the internalization, the moDCs were incubated with
clusters b6, c6, d6, and e6 for 1 h at 4◦C, where after unbound
ligands were washed away with ice-cold medium.Warmmedium
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FIGURE 4 | Synthesis of trifunctional CLR-epitope-TLR conjugates. Reagents and conditions: (a) Fmoc-SPPS; (b) TFA, DCM; (c) Fmoc-SPPS; (d) 23 (Gential et al.,

2019), HCTU, DIPEA, DMF; (e) TFA, TIS, H2O, octanethiol, phenol; (f) CuI, THPTA, DIPEA, DMSO, H2O, (+ NaAsc, Arg, H2O), CLR clusters (19–22).
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FIGURE 5 | E-gp100-TLR7L increases antigen presentation of monocyte-derived dendritic cells despite slower internalization. (A) Schematic representation of the

moDC readouts used. (B) The internalization of the hexavalent mannoside clusters by moDCs was measured by flow cytometry. One donor is depicted here as

representation of four individual clusters b6, c6, d6 are rapidly internalized, while e6 remains longer at the surface. (C) Expression of the DC maturation marker CD86

upon overnight stimulation with the trifunctional conjugates is measured by flow cytometry. All compounds harboring the mannoside cluster and a TLR7 ligand induce

expression of CD86. LPS stimulation (10 ng/mL) is used as positive control. (D) Antigen presentation by the moDCs was determined by IFNγ release of the activated T

cells. The B6-gp100-TLR7L conjugate shows minimal T cell activation while the C6-, D6-, and E6-gp100-TLR7L conjugates increased T cell activation compared to

gp100-TLR7L. Overall, conjugate E6-gp100-TLR7L showed the strongest antigen presentation enhancement by moDCs.

was added to the moDCs, and samples were taken at the
indicated time points and put on ice. Upon staining the
moDCs with fluorophore-conjugated streptavidin, we could
measure the signal loss of the membrane via flow cytometry. To
exclude ligand-receptor dissociation before internalization, the
moDCs were fixed under gentle conditions, hereby inhibiting
receptor-mediated endocytosis. On fixed moDCs the clusters
remained at the surface, as no signal loss could be detected
(Supplementary Figure 1D). Notably, the uptake of clusters b6,
c6, d6, and e6 by immature moDCs did not correlate with
their affinity for DC-SIGN (Figures 3B, 5B). The di-mannoside
clusters (b6, c6, and d6) were internalized relatively fast, with

a 50% uptake within 5min (Figure 5B). The tri-mannoside
cluster e6 however remained longer at the membrane surface and
only a 25% uptake was seen after 30min. Similar results were
seen using a pH-sensitive fluorophore. In acidic environments,
such as the endosomes and lysosomes, the fluorescence
of this dye increases. Pre-complexed clusters mirrored the
accelerated uptake of the di-mannoside clusters over the e6

cluster (Supplementary Figure 1E). Although the DC-SIGN
mediated uptake mechanism is known (Cambi et al., 2009), the
initiation trigger for endocytosis upon DC-SIGN-ligand binding
remains unclear. Recognition of the di-mannoside clusters could
induce signaling leading to accelerated uptake, whereas the
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tri-mannoside cluster could trigger a different signaling pathway.
Nonetheless, the clusters harboring the smaller mannosides are
preferred. Although the binding affinity of the clusters ranged
from 0.9 to 6.6µM, the di-mannosides induce more rapid DC-
SIGN internalization over the tri-mannosides, and can thus
increase intracellular peptide concentrations more efficiently for
further antigen processing and presentation.

Next, the four trifunctional-conjugates were evaluated for
their ability to mature moDCs and compared to non-
mannosylated conjugates gp100 and gp100-TLR7L. Maturation
of the moDCs was measured by the expression of CD86
and CD83, two costimulatory molecules necessary for T cell
activation. As expected, gp100, lacking the TLR7 agonist, did not
induce maturation of the moDCs. All the conjugates with the
mannoside clusters and the TLR7 ligand induced the expression
of the moDCs maturation marker CD86 (Figure 5C), as well
as CD83 (Supplementary Figure 1F) compared to the TLR7
agonist lacking gp100 control, indicating the DCs potential to
activate T cells. These results show that the conjugation of
TLR7 ligand to the peptide antigen or the peptide-mannose
cluster conjugates does not hamper the TLR activating ability of
the ligand.

Lastly, antigen presentation was determined in a human
T cell antigen presentation model (Figure 5D). In this assay,
the potency of DCs to present the internalized gp100 antigen
on the cell surface to gp100-specific T cells is analyzed. The
IFNγ secretion of activated T cells upon recognition of the
cell surface presented gp100 is measured. Day 5 moDCs were
stimulated for 30min, as the internalization was relatively fast,
with the glycopeptides at the assay-optimized concentration of
20µM(Supplementary Figure 1H). The constructs were washed
away before overnight co-culture with gp100-specific T cells.
Although we observed significant natural donor variability,
all conjugates showed similar mannoside-dependent trends in
response. Surprisingly, although the α1,2-di-mannoside cluster
B6 showed the strongest binding affinity and b6 was internalized
rapidly, B6-gp100-TLR7L did not enhance antigen presentation.
The obstruction of antigen presentation was primarily seen
with the B6-gp100-TLR7L contradicting the assumption that
the best binding constructs will simultaneously maximize T
cell activation. The other di-mannoside conjugates (C6-gp100-
TLR7L & D6-gp100-TLR7L) performed better in the antigen
presentation assay than B6-gp100-TLR7L. E6-gp100-TLR7L

demonstrated the strongest antigen presentation in the three
donors tested. With some exceptions in donor 1, the antigen
presentation was readily enhanced compared to gp100-TLR7L

and all other constructs within each donor, even though
the binding affinity of E6 was a 3-fold lower than B6. The
enhancement in antigen presentation of tri-mannoside conjugate
E6-gp100-TLR7L may be a result of the stagnant uptake of
tri-mannoside clusters (Figure 5B), altered DC-SIGN signaling
and/or different intracellular routing or processing of the
conjugates, compared to the di-mannosides. This indicates that
oligosaccharides with high binding affinity for DC-SIGN are
not per se the most suitable for use in covalent saccharide-
antigen conjugates, designed for optimal antigen presentation
and that the size of the clusters may affect the rate by which

peptidases trim the conjugates enabling loading on MHC
molecules for presentation.

It has previously been reported that a negative correlation
between high internalization efficiency and antigen presentation
may be due to altered intracellular processing (Chatterjee et al.,
2012) and that DC-SIGN endocytosed ligands can traffic to
differential endosomal compartments upon internalization. The
trifunctional conjugates here are assumed to dissociate from the
DC-SIGN receptor in the early endosomes, to allow triggering
of TLR7 and enable their processing (Engering et al., 2002;
Wilson et al., 2019). Our data may be explained by differential
routing of the conjugates or differences in processing efficiency
(Chatterjee et al., 2012). Alternatively, binding of the clusters
to different mannose binding lectins, may also impact uptake
and routing. In this regard, the mannose receptor could be a
contributing inhibitory factor as high affinity binding of the
smaller mannoside clusters to this receptor is known to prohibit
ligand-receptor dissociation, halting further antigen processing
in the early endosomes (Hiltbold et al., 2000). Future experiments
will have to shed light on how and where conjugates of this type
are processed, to enable the further optimization of rationally
designed self-adjuvating peptide vaccines.

CONCLUSION

With the field of dendritic cell-based immunotherapy in
acceleration, the range of glycoconjugates aimed at modulating
the dendritic cell phenotype has rapidly expanded (Hotaling
et al., 2014). Our paper documents a systematic array of DC-
SIGN-targeting clusters, with well-defined mannoside structures
(mono-, di-, and tri-mannosides) and controlled (mono-, di-,
tri-, hexavalent) presentation. From this array, we have identified
multiple hexavalent ligands that bind DC-SIGNwithmicromolar
affinity, with the α1,2-dimannoside cluster B6 being the best
binder. The hexavalent clusters were conjugated to a model
antigen and a TLR7 agonist, and tested for their ability to mature
DCs and to enhance antigen presentation. Conjugation of the
peptide to the sugar clusters does not hamper their binding to
DC-SIGN nor does the conjugation impede TLR7 activation.
Improved antigen presentation was observed for three of the
four conjugates that were equipped with a TLR7 ligand and
a mannoside cluster. Surprisingly, the conjugate harboring the
highest affinity DC-SIGN binder, B6, showed lower antigen
presentation that itsC6-,D6, and E6-counterparts. This indicates
that the affinity for DC-SIGN of particular mannoside clusters
does not directly translate into enhanced antigen presentation of
conjugates equipped with the clusters. Differences in processing
pathways and speed of the multifunctional conjugates have to
be taken into account and future research will be directed at
mapping the events between uptake and presentation to enable
the design of the next generation vaccine conjugates with tailor
made activity. Taking natural variations between donors into
account, the E6-gp100-TLR7L conjugate showed the best T cell
activating properties and will serve as a lead for further conjugate
development. The modular chemistry developed here, allows the
future design of conjugates bearing multiple PRR ligands in a
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single molecule. The multivalent presentation of a TLR ligand
may enhance the activation of its cognate TLR, and different
PRR-ligands may be combined to achieve synergistic activation
of DCs, for example by exploiting simultaneous TLR and NLR
activation (Ignacio et al., 2018).

MATERIALS AND METHODS

General Synthesis
The brief general synthetic procedures are described
below, comprehensive experimental descriptions and
analytical spectra for each construct can be found in the
Supplementary Materials section.

The solid-phase peptide synthesis of the azidolysine
backbones was performed on a TRIBUTE R© Peptide Synthesizer
(Gyros Protein Technologies AB, Arizona, USA) applying Fmoc
based protocol starting with Tentagel S-RAM resin (∼0.22
mmol/g) on a 100 µmol scale using established synthetic
protocols (Chan and White, 2000).

For the conjugation of propargyl glycosides and
azidopeptides, all solvents were degassed by sonicating
while bubbling argon through the solutions. A solution of
azidopeptides in DMSO (0.5M, 1 eq) was mixed with a solution
of propargyl glycoside in water (0.5M, 1.2 eq per azide) followed
by addition of an aliquot of a stock solution of CuI (0.1 eq),
THPTA (0.3 eq), and DIPEA (0.2 eq) in water ([Cu+] = 0.5M).
The reaction was stirred at 40◦C and the process was followed
via LC-MS. When reactions did not progress and turned blue,
a sodium ascorbate solution (0.2–1 eq, 1M, aq) was added.
Generally, reactions were stirred overnight at 40◦C. When
not complete after 16 h an extra aliquot of the copper stock
was added. After completion a small amount of Quadrasil R©

AP (washed with water) was added, stirred for 1 h, filtered and
applied on gel filtration (Toyopearl HW40S, 150mMNH4HCO3,
1.6× 60 cm, 1 mL/min) followed by lyophilization.

To introduce the biotin handle, glycoclusters (A1–E6) were
dissolved in DMSO (0.02M). To this, a stock solution of Biotin-
OSu (0.15M, 3–4 eq) and DIPEA (0.015M, 0.3–0.4 eq) in DMSO
were added and shaken overnight after which compounds were
purified via RP-HPLC (linear gradient 10–16 % B in A, 12min,
5 mL/min, Develosil RPAQUEOUS 10.0 × 250mm) followed
by lyophilization.

For the synthesis of alkyne labeled clusters 19–22, a solution
of glycoclusters (B6, C6, D6, or E6) in water (0.2M, 1 eq) was
mixed with a stock solution of S9 (0.15M, 3 eq) and DIPEA
(0.05M, 1 eq) in DMSO and shaken 1 h. Reaction progress
was followed via LC-MS and when completed, the 4-pentynoic
amides were purified via gel filtration (Toyopearl HW-40S, 1.6
× 60 cm, 150mM NH4HCO3, 1 mL/min) or RP-HPLC followed
by lyophilization.

The solid-phase peptide synthesis of the gp100 peptides was
performed on a TRIBUTE R© Peptide Synthesizer (Gyros Protein
Technologies AB, Arizona, USA) applying Fmoc based protocol
starting with Tentagel S-RAM resin (∼0.22 mmol/g) on a 100–
250 µmol scale using established synthetic protocols (Chan and
White, 2000). The consecutive steps for synthesis on 250 µmol
scale∗ performed in each cycle were:

(1) DMF wash (1x) followed by nitrogen purge; (2)
Deprotection of the Fmoc-group with 20% piperidine in DMF
(8mL) (3 × 3min at 50◦C); (3) DMF wash (3x) followed by
nitrogen purge; (4.1) Coupling of the appropriate amino acid∗∗

in 4-fold excess (unless stated otherwise)∗∗∗; (4.2) Step 4.1 was
repeated; (5) DMF wash (3x) followed by nitrogen purge; (6)
capping with a solution of Ac2O/DMF/DIPEA (8mL, 10/88/2,
v/v/v) for 2min; (7) DMF wash (2x).

After the complete sequence the resin was washed with DMF
(3x), DCM (3x), Et2O (3x), followed by nitrogen purge before
treatment with the cleavage cocktail.

∗All amounts are scaled-down in equimolar proportions for
smaller scale.

∗∗The amino acids applied in this synthesis were:
Fmoc-Lys(Mmt)-OH, Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH,
Fmoc-Trp(Boc)-OH, Fmoc-L-α-aminobutyric acid, Fmoc-
Asp(OtBu)-OH∗∗∗∗, Fmoc-Leu-OH∗∗∗∗, Fmoc-Gln(Trt)-OH,
Fmoc-Ala-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Thr(tBu)-OH,
Fmoc-Pro-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Asn(Trt)-OH,
Fmoc-Val-OH, Fmoc-His(Trt)-OH, Fmoc-AEEA-OH
(Fmoc-8-amino-3,6-dioxaoctanoic acid) (Carbosynth),
Fmoc-Cys(Trt)-OH, Fmoc-Lys(N3)-OH (IRIS biotech), and 23.

∗∗∗Generally, the Fmoc amino acid is dissolved in a HCTU
solution in DMF (5.00mL, 0.20M, 1.0 mmol, 4 eq) The resulting
solution was transferred to the reaction vessel followed by a
DIPEA solution in DMF (4.00mL, 0.50M, 2.0 mmol, 8 eq) to
initiate the coupling. The reaction vessel was shaken for 30min
at 50◦C (unless stated otherwise).

∗∗∗∗Aspartic acid and the adjacent Leucine and Arginine were
introduced at with 1 h reaction time at room temperature. Fmoc
removal was achieved with piperide/DMF in 3 × 5min at room
temperature (Behrendt and Offer, 2016).

For the final conjugation of the gp100 peptide 26 with
glycoclusters 19–22, all solvents were degassed by sonicating
while bubbling argon through the solutions. A solution of
azidopeptide 26 in DMSO was mixed with a solution of alkyne
functionalized glycoclusters in water (19, 20, 21, or 22) followed
by addition of an aliquot of a stock solution of CuI (0.1 eq),
THPTA (0.3 eq), and DIPEA (0.2 eq) in water ([Cu+] = 0.5M).
The reaction was stirred at 45◦C and the process was followed via
LC-MS.When reactions did not progress and turned blue, a stock
solution of sodium ascorbate (0.25M) and arginine (Conibear
et al., 2016) (0.5M) (0.2–1 eq ascorbate) in water was added.
After completion a small amount of Quadrasil R© AP (washed
with water) was added, stirred for 1 h, filtered and applied on gel
filtration (Toyopearl HW40S, 150mM NH4HCO3, 1.6 × 60 cm,
1 mL/min) or purified via RP-HPLC followed by lyophilization.

(All compound characterization can be found in the
Supplementary Materials section page 30 and further).

Cell Isolation and Culture
Monocytes were isolated from buffy coats of healthy donors
(Sanquin Amsterdam, reference: S03.0023-XT) using sequential
Ficoll (STEMCELL Technologies) and Percoll (Sigma) gradient
centrifugation, and cultured for 5 days in RPMI 1640 (Invitrogen)
with 10% FCS (Biowittaker), 1.000 U/mL penicillin (Lonza), 1
U/mL streptomycin (Lonza), 262.5 U/mL IL-4 (Biosource), and
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112.5 U/mL GM-CSF (Biosource). The differentiation of the
moDCs was monitored via flow cytometric analysis of DC-SIGN
AZN-D1-Alexa488, in house (Geijtenbeek et al., 2002), CD83 and
CD86 (both PE-conjugated, Becton Dickinson) expression.

Surface Plasmon Resonance Analysis
The ECD of DC-SIGN (residues 66–404) was overexpressed
and purified as previously described (Tabarani et al., 2009).
The DC-SIGN S-ECD construct used for direct interaction
experiment (see below) has been overexpressed and purified as
described elsewhere (Porkolab et al., 2019). The SPR competition
experiments were performed on a BIAcore T200 using a CM3
series S sensor chip. Flow cells were activated as previously
described (Halary et al., 2002). Flow cell 1 was functionalized
with BSA, blocked with ethanolamine and subsequently used as
a control surface. Flow cells 2 and 3 were treated with BSA-Man
α1-3[Manα1-6]Man (Dextra) (60µg/mL) in 10mM NaOAc pH
4 and blocked with ethanolamine. The final densities on flow
cells 2 and 3 were about 2,100 RU. The affinities of the various
compounds for DC-SIGN ECD were evaluated via an established
inhibition assay (Andreini et al., 2011) in which DCSIGN ECD
was injected at 20µM alone or in the presence of increasing
concentration of inhibitors. Injections were performed at 5
µL/min using 25mM Tris-HCl pH 8, 150mM NaCl, 4mM
CaCl2, 0.05% P20 surfactant as running buffer. The surface
was regenerated by the injection of 50mM EDTA. The data
was analyzed in BIAcore BIAevaluation software using four
parameter equation.

The direct interaction experiments were executed on a T200
Biacore with a CM3 series S sensor chip. Contrary to the
competition assay described above, in this test, DC-SIGN ECD
used harbors a StreptagII in its N-terminus (DC-SIGN S-ECD)
to allow its capture and functionalization onto the surface in an
oriented manner. Flow cells were functionalized as previously
described (Porkolab et al., 2019). Briefly, after EDC/NHS
activation, flow cells were functionalized with streptactin protein
in a first step. Flow cell 1 was used as control, while other
flow cells were, in a second round of activation, functionalized
with 100µg/mL of a DC-SIGN S-ECD up to a final density
ranging between 2,500 and 3,000 RU, via tag specific capture
and linkage by amine coupling chemistry simultaneously. The
compounds were injected in running buffer of 25mM Tris pH
8, 150mM NaCl, 4mM CaCl2, 0.05% Tween 20 onto the surface
at increasing concentrations with a flow rate of 30 µL/min.
The ligand titration led to the determination of an apparent Kd

value. The data was analyzed in BIAcore BIAevaluation software
for direct interaction 1:1 calculation assuming that the Kd will
reflect the affinity of the ligands (glycoclusters) for the DC-SIGN
oriented surface used as a whole.

Binding of the Mannose Library to moDCs
Approximately 105 day 5 moDCs were washed and resuspended
in 100 µL culture medium (pre-cooled to 4◦C). 20µg/mL AZN-
D1 (anti-DC-SIGN, in house Geijtenbeek et al., 2002) or purified
mouse anti-human CD206 antibody (Clone 19.2, BD Bioscience)
was added to the moDCs and pre-incubated for 45min on ice.
Subsequently, 10µM of the biotinylated mannoside clusters or
1µg/mL of LewisY-conjugated polyacrylamide (positive control)

was added, and incubated for 30min at 4◦C. Cells were then
washed with pre-cooled PBS (4◦C), and stained with Alexa647-
labeled streptavidin (InvitrogenTM) in PBS supplemented with
0.5% BSA and 0.02% NaN3 (PBA) for 30min at 4◦C. Upon
washing in ice-cold PBA and fixation in PBS with 0.5% PFA,
the fluorescence was measured by flow cytometry (CyAnTM

ADP with SummitTM Software), and further analyzed using
FlowJo v10.

Antigen Presentation
Immature day 5 moDCs were seeded in 96-well plates (Greiner)
at 50·103 cells/well and incubated with 20µM of the different
gp100-conjugates in the presence or absence of the TLR4 ligand
LPS (10 ng/mL) or the TLR7 ligand Imiquimod (2.5µg/mL). The
gp100 short peptide, containing the gp100280−288 sequence, was
taken along as control, as well as the gp100 long peptide without
the four C-terminal linker amino acids (gp100(ctrl)). After
30min, moDCs were washed, and co-cultured overnight with
CD8+ HLA-A2.1 restricted T cell clone transduced with the TCR
specific for the gp100280−288 peptide (10

5 cells per well, E:T ratio
1:2) (Schaft et al., 2003). IFNγ in the supernatant was measured
by sandwich ELISA according to the manufacturer’s protocol
(Biosource), andmeasured by spectrophotometric analysis on the
iMarkTMMicroplate Absorbance Reader (Bio-RAD) at 450 nm.

Internalization Assay
Immature day 5 moDCs were harvested and washed with cold
HBSS (Thermo Fischer), after which half of the moDCs were
gently fixed for 20min at RT with 1% PFA in PBS. Afterwards,
20µM of the different biotinylated mannose-clusters in cold
HBSS were added. The moDCs were incubated for 1 h on ice,
and washed in cold HBSS. Subsequently, warm HBSS was added
to the cells, and cells were incubated at 37◦C in a shaking
heating block. At the indicated time points, a sample of the
cells was taken and put on ice. After the last time point, the
cells were stained with Streptavidin-Alexa647 (Thermo Fisher),
measured using flow cytometry (CyAnTM ADP with SummitTM

Software), and further analyzed using FlowJo v10. The same
procedure was used for internalization with pHrodoTM Red
Avidin (Thermo Fischer). The different biotinylated mannose-
clusters were however incubated with pHrodo-Avidin (ratio 2:1)
for 15min at 37◦C, prior to moDC exposure. The fluorescence
upon internalization was measured using flow cytometry (BD
LSRFortessaTM X-20 with FACSDiva Software), and further
analyzed using FlowJo v10.

Statistics
Unless otherwise stated, data are presented as the mean ± SD
of at least three independent experiments or healthy donors.
Statistical analyses were performed in GraphPad Prism v7.04.
Statistical significance was set at P < 0.05 and was evaluated by
the Mann–Whitney U-test.
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