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Abstract: Most animal models of infection utilize planktonic bacteria as initial inocula. However, this
may not accurately mimic scenarios where bacteria in the biofilm phenotype contaminate a site at the
point of injury. We developed a modified CDC biofilm reactor in which biofilms can be grown on the
surface of simulated fracture fixation plates. Multiple reactor runs were performed and demonstrated
that monomicrobial biofilms of a clinical strain of methicillin-resistant Staphylococcus aureus, S. aureus
ATCC 6538, and Pseudomonas aeruginosa ATCC 27853 consistently developed on fixation plates. We
also identified a method by which to successfully grow polymicrobial biofilms of S. aureus ATCC
6538 and P. aeruginosa ATCC 27853 on fixation plates. This customized reactor can be used to grow
biofilms on simulated fracture fixation plates that can be inoculated in animal models of biofilm
implant-related infection that, for example, mimic open fracture scenarios. The reactor provides a
method for growing biofilms that can be used as initial inocula and potentially improve the testing
and development of antibiofilm technologies.

Keywords: biofilm; reactor; customized; monomicrobial; polymicrobial; MRSA; S. aureus; P. aeruginosa

1. Introduction

Bacterial biofilm-related infections complicate open fracture sites, thereby challenging
clinical care and patients’ quality of life [1–4]. Since open fracture severities were defined
in 1984 [5], rates of infection have remained largely unchanged (ranging from 18–52%) [6,7].
Time to treatment following trauma is directly proportional to the risk of open fracture
infection [8]. Orthopedic surgeons continue to seek solutions to manage and treat these
infections in both military and civilian sectors. Animal models that more closely replicate
contamination events at the point of injury, or that replicate the presence of mature biofilms
in an infected site are pivotal to improving the development of therapeutics that can
specifically target the biofilm phenotype and accompanying infections [9–13].

Biofilms are dynamic communities of organisms, containing cells in a variety of
metabolic states [14,15]; more metabolically active cells dwell in the exterior regions of the
community, whereas more quiescent cells with lower metabolism reside deep in the biofilm
core. Deeper-residing cells are often referred to as “persisters [14,16]”; due to their lower
metabolic state, they are less susceptible to antibiotic perturbation and thus “persist” in
wound sites and contribute to recalcitrant biofilm-related infections. Estimates suggest that
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the majority of bacteria in natural ecosystems—including soil, mud, resident flora of skin,
or mucosal membranes—preferentially dwell in the biofilm phenotype [17]. As such, open
fractures that are contaminated at the point of injury with soil, mud, or resident flora, are
likely to be contaminated with bacteria residing in dynamic biofilm communities [9].

Most animal models that mimic traumatic events or clinical scenarios utilize planktonic
(free-floating) bacterial cells as initial inocula to develop an infection signal. The concept is
that as planktonic bacteria adhere to hardware in the surgical site, they can form a biofilm
and cause infection. Yet, planktonic inocula may not have the same infectious potential
or immediate antibiotic recalcitrance as biofilm inocula [9]; we showed in a swine model
that wound sites inoculated with planktonic bacteria may be cleared more readily by the
host than biofilm inocula [11]. Phagocytic limitations may explain the outcome. Planktonic
bacteria have diameters of ~1 µm and thus can be phagocytosed more readily than bacteria
in biofilms. Biofilms develop structures in the order of tens to hundreds of µm [18], which
frustrate phagocytic clearance as neutrophils cannot phagocytose materials larger than
their own diameter (~10 µm) [19].

Planktonic phenotypes are more susceptible to antibiotic therapies than biofilm inoc-
ula [20,21]. Consider a clinical scenario wherein antibiotic(s) is administered systemically
close to the time of an injury or even at the point of injury. A patient may receive a
prophylactic dose of antibiotic that reaches a blood concentration of ~10–50 µg/mL.

If planktonic bacteria are susceptible to the antibiotic(s) (e.g., a minimum inhibitory
concentration (MIC) value of 0.5–2 µg/mL depending on the antibiotic), and blood levels
are 5–50× in excess of the MIC, the antibiotic(s) will have greater potential to kill the
planktonic phenotypes than the recalcitrant fraction of the biofilm; some biofilm phenotypes
are known to be 1000× more tolerant to antibiotics than their planktonic counterparts [20]
(in our lab we observe biofilms that are 64,000× more tolerant to antibiotics compared to
planktonic bacteria). An antibiotic blood level of 500 µg/mL or more may be required to
eradicate established biofilms that contaminate an injury site. Yet, such blood levels cannot
be achieved due to toxic thresholds.

Thus, therapeutics that are administered and tested against planktonic inocula in
animal models may lead to false positive outcomes in cases where biofilm inocula may
be more relevant—such as open fracture scenarios. The limitations of systemic antibiotic
therapies drive surgeons to consider alternative approaches including directly adding
antibiotic powder to surgical sites [22–24], or loading antibiotics into cement beads and
packing them around hardware in hopes that higher doses of the antibiotic will be delivered
and affect the biofilm [25–27]. Biofilms drive these approaches as they underpin the
recalcitrant nature of difficult-to-treat infections [3].

Functionally, inoculating with planktonic bacteria during an experimental surgery is
usually performed by either directly pipetting a bacterial suspension in the experimental
wound or dipping implant materials into a bacterial suspension prior to placement. With
this technique, it is difficult to keep the inoculation solution in its intended location at its
intended concentration. These solutions frequently drip out of the wound as the margins
are sewn together upon closure and contaminate non-target sites. Stationary biofilms
are more manageable as they stay put and produce exceptionally reproducible infection
outcomes [10,11,28].

We have shown that biofilm inocula develop low-grade, chronic infection in sheep
models [10,12,28]. This work also involved a modified CDC biofilm reactor in which
biofilms were grown on polyetheretherketone (PEEK) membranes [29]. Yet, a limitation of
that reactor and inoculation approach is that the PEEK introduces an additional foreign
body that is not present when a fracture fixation plate is surgically placed [10,28].

Thus, in this study we designed and developed a customized CDC biofilm reactor to
grow biofilms directly on the surface of simulated fracture fixation plates, which builds on
our previous work, advances our sheep model of recalcitrant open fracture infection [10,28],
and allows for an improvement of antibiofilm therapies. The fixation plates were designed
for surgical implantation onto the proximal medial aspect of sheep tibiae; the plates serve
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as the substrate for biofilm growth and inoculation into a surgical site that mimics the
clinical scenario of an open fracture that is contaminated with biofilm at the point of injury,
and/or that displays immediate recalcitrance to antibiotic therapies as a model of biofilm
implant-related infection.

We quantitatively and qualitatively assessed the reactor’s versatility to growing mo-
nomicrobial biofilms of methicillin-resistant Staphylococcus aureus (MRSA), S. aureus ATCC
6538, Pseudomonas aeruginosa ATCC 27853, and polymicrobial biofilms of S. aureus ATCC
6538 and P. aeruginosa ATCC 27853.

2. Methods and Materials
2.1. Materials

CDC biofilm reactor glass vessels, hollow tubes for a CDC biofilm reactor lid, baf-
fles, and baffle rods were purchased from Biosurface Technologies (Bozeman, MT, USA).
Polypropylene, 316L stainless steel, and Grade 5 titanium (TiV4Al6) stock materials were
purchased from McMaster Carr (Elmhurst, IL, USA). Brain heart infusion broth (BHI) was
purchased from Becton Dickinson (Franklin Lakes, NJ, USA; via Fisher Scientific (Waltham,
MA, USA)). General materials and reagents were purchased from Fisher Scientific. Peri-
staltic pump tubing, reactor inlet tubing, and effluent tubing were purchased from Cole
Parmer (Chicago, IL, USA).

2.2. Isolate Selection

S. aureus ATCC 6538, and P. aeruginosa ATCC 27853 were purchased from the Ameri-
can Type Culture Collection (ATCC; Manassas, VA, USA). S. aureus ATCC 6538 is a com-
mon isolate used for standardized tests, including military specifications MIL G-13734B.
P. aeruginosa ATCC 27853 is also a common standard isolate used in susceptibility testing
and quality control. MRSA was a clinical isolate collected from a patient who underwent
knee surgery and developed an infection; the isolate has been used as an inoculum source
in animal models of infection [10,28,30,31].

2.3. Simulated Fracture Fixation Plates and Customized CDC Biofilm Reactor

Simulated fracture fixation plates were machined out of Grade 5 titanium. Each plate
had dimensions of 1.75 cm × 1.75 cm × 0.85 mm (Figure 1A). Corner radii were machined
to 1.25 mm. Four holes with 2.85 mm diameter (distance from plate edge to circle middle
was 4.7 mm) were drilled into each plate corner to house cortical bone screws (Figure 1A).

Reactor lids (polypropylene) were custom machined to house holding arms that
were designed to suspend the simulated fracture fixation plates in the base of the reactor
(Figure 1B). The reactor lid had the same dimensions as a CDC biofilm reactor with the
exception of the holding arm ports, which were machined to hold four guillotine-like
arms. Each port was oval and had a slight inset such that the arm would seat into it and
prevent air transfer to reduce potential contamination (Figure 1B). The lid was machined to
accommodate the three hollow tubes that surround the glass baffle rod system of a CDC
biofilm reactor. Hollow tubes were press fit and placement-matched those of a standard
CDC biofilm reactor. The glass rod and attachment system were likewise the same as a
standard CDC biofilm reactor.

Similar to the modified membrane CDC, biofilm reactor we developed previously,
whereby each arm had a guillotine-like design; each consisted of an oval head with a rect-
angular attachment point and a rectangular base that secured two parallel bars (Figure 1C).
Each bar of the arm (7.357 in long × 0.25 in wide × 0.25 in deep) was machined with a slot
(0.106 in wide × 0.051 in deep) that ran the length of each parallel bar and a notch (0.827 in
height) such that two simulated fracture fixation plates could be placed into the notch and
slide down the slots of the arm and reside in the base of the reactor vessel (Figure 1C). The
customized reactor held a total of eight fracture fixation plates (Figure 1D).
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Figure 1. Customized CDC biofilm reactor. (A) Model of a simulated fracture fixation plate. (B) 
Model of the customized lid with oval openings through which reactor holding arms can be inserted 
and hold the fixation plates. (C) Model of a holding arm into which fixation plates can be placed. 
(D) Model of the reactor lid and holding arms, each with two fixation plates (total of n = 8 plates/re-
actor). (E) Assembled reactor with relevant tubing consistent for reactor use. (F) Reactor with “co-
zies” surrounding the bottom portion; cozies reduced temperature fluctuations due to temperature 
swings in the lab. 

Reactor lids (polypropylene) were custom machined to house holding arms that were 
designed to suspend the simulated fracture fixation plates in the base of the reactor (Fig-
ure 1B). The reactor lid had the same dimensions as a CDC biofilm reactor with the excep-
tion of the holding arm ports, which were machined to hold four guillotine-like arms. 
Each port was oval and had a slight inset such that the arm would seat into it and prevent 

Figure 1. Customized CDC biofilm reactor. (A) Model of a simulated fracture fixation plate. (B) Model
of the customized lid with oval openings through which reactor holding arms can be inserted and hold
the fixation plates. (C) Model of a holding arm into which fixation plates can be placed. (D) Model
of the reactor lid and holding arms, each with two fixation plates (total of n = 8 plates/reactor).
(E) Assembled reactor with relevant tubing consistent for reactor use. (F) Reactor with “cozies”
surrounding the bottom portion; cozies reduced temperature fluctuations due to temperature swings
in the lab.

The simulated fracture fixation plates were specifically designed to reside on the
proximal medial aspect of sheep tibiae, consistent with previous work (Figure 2).
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effect of temperature fluctuations in the reactor broth (ambient temperatures fluctuated 

Figure 2. Two simulated fracture fixation plates secured to the proximal medial aspect of a cadaveric
sheep tibia (from a separate IACUC-approved study). This region of sheep bone is relatively flat.
Plates are sized to reside (mostly) in plane with the flat portion of the bone.

2.4. Monomicrobial Biofilm Growth and Quantification

The customized CDC biofilm reactor and accompanying parts were washed with
Alconox detergent and rinsed for 30 min under running de-ionized (DI) or reverse osmosis
(RO) water.

Prior to growing biofilms on simulated fracture fixation plates, the plates were pas-
sivated and etched to remove machining oil, clean, and roughen the surface to improve
biofilm growth. Plates were sonicated for 10 min in Alconox detergent, then rinsed for
10 min in DI or RO water. Plates were placed in 50–100 mL beakers and exposed to a
10:1 ratio of 70% nitric acid:DI water for 30 min. They were again rinsed in running DI or
RO water for 10 min, then placed into the arms of a clean reactor. The reactor assembly and
plates were autoclaved at 121 ◦C for a minimum of 20 min.

Biofilms were grown on the plates using a modified protocol from ASTM standard
E2562-07 [10,29,32,33]. In short, two to three colonies of an overnight bacterial culture on
tryptic soy agar (TSA) or Columbia blood agar were collected and used to adjust bacterial
suspensions of a 0.5 McFarland standard (~7.5 × 107 colony forming units (CFU)/mL)
using a colorimeter. The reactor was filled aseptically with 500 mL of 100% BHI broth.
One mL of a bacterial suspension was aseptically inoculated into the 500 mL of BHI broth,
resulting in a concentration of ~1.5 × 105 CFU/mL.

The reactor was placed on a hot stir plate set at 130 rpm and 34 ◦C. To reduce the effect
of temperature fluctuations in the reactor broth (ambient temperatures fluctuated in the
lab), Styrofoam was custom cut and placed around the base of the glass vessel of the reactor
(Figure 1).

Bacteria were allowed to grow and condition their environment in batch phase (no
broth flow) for 24 h. Diluted BHI broth (10%) was then flowed through the reactor for an
additional 24 h using a peristaltic pump set at 6.94 mL/min. After 48 h of total growth,
simulated fracture fixation plates were sterilely removed from the reactor and the level of
biofilm burden on each plate was quantified. Quantification was performed by placing a
fixation plate into 10 mL of 10% BHI or phosphate-buffered saline (PBS), vortexing for 1 min,
sonicating (47 kHz) for 10 min, vortexing for another 30 s, and using a 10-fold dilution series
to plate on tryptic soy agar (TSA) [10,29,31,33,34]. TSA Petri dishes were incubated at 37 ◦C
for 24–48 h and CFU counted to determine CFU/plate following established protocols.

A total of n = 25 simulated fracture fixation plates of MRSA (randomly selected) were
quantified from 15 separate reactor runs (2–3 plates quantified per reactor; other plates
were used as initial inocula in a sheep study not presented here as it is still ongoing).
Furthermore, n = 30 simulated fracture fixation plates of S. aureus ATCC 6538 (randomly
selected) were quantified from 19 separate reactor runs (2–3 plates quantified per reactor;
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other plates were used as initial inocula in the ongoing sheep study). A total of n = 25
simulated fracture fixation plates of P. aeruginosa ATCC 27853 (randomly selected) were
also quantified from 10 separate reactor runs (2–3 plates quantified per reactor; others used
in the ongoing sheep study).

2.5. Polymicrobial Biofilm Growth and Quantification

The same growth protocol outlined above was used to grow polymicrobial biofilms
with the exception of the inoculation procedure. Specifically, S. aureus ATCC 6538 and
P. aeruginosa ATCC 27853 were adjusted to a 0.5 McFarland standard. The S. aureus suspen-
sion was diluted to 1:1000 and the P. aeruginosa suspension was diluted to 1:10,000,000 (we
determined and previously published that this ratio difference was required between the
two organisms for them to grow together as opposed to one outcompeting the other). Five
hundred µL of each bacterial suspension was aseptically added to the 500 mL of broth in
the reactor. A timer was set after the first inoculation and another 500 µL of each bacterial
suspension was aseptically added to the 500 mL of reactor broth 15 min, 45 min, 1 h 45 min,
and 3 h 45 min after the first inoculation. We experimentally determined that five broth
inoculations with each isolate improves the development of polymicrobial biofilms.

Furthermore, n = 10 plates with polymicrobial biofilms from two separate reactor runs
(five plates from each reactor) were likewise quantified as described above.

2.6. Imaging

Select fixation plates were photographed after being removed from a reactor to observe
general biofilm growth patterns.

A subset of fracture fixation plates were also processed for scanning electron mi-
croscopy (SEM) to observe biofilm morphologies on the simulated fracture fixation plate
surfaces following biofilm growth. Select fixation plates were aseptically removed from a
reactor following the growth protocol, fixed in 10% formalin, and dehydrated in ascend-
ing concentrations of ethanol (70%, 95%, 100%) with 3 × 2 h exchanges per concentration.
Samples were air dried and sputter coated with gold, then imaged in a JEOL JSM-6610 SEM.

2.7. Outlier Handling

Some fixation plates had variable growth, which may have been affected by tempera-
ture fluctuations in the lab (cold nights challenge an exposed reactor system). To handle
outliers, the mean and standard deviation of each group was calculated. Each sample was
given a z-score using the Z = (Mean-sample)/standard deviation equation. Outliers were
considered to have a z-score of greater than 3 or less than −3, otherwise known as three
standard deviations from the mean. Only one reactor of P. aeruginosa ATCC 27853 was
removed from the study, all other samples fell within three standard deviations of the mean
of their respective groups.

3. Results
3.1. Monomicrobial Biofilms

MRSA, S. aureus ATCC 6538, and P. aeruginosa ATCC 27853 biofilms grew without
contamination events, which was important to confirm outcomes as monomicrobial biofilms.
Quantification data indicated that MRSA produced biofilms with 9.06 ± 0.44 log10 CFU/plate
(Figure 3). S. aureus ATCC 6538 produced biofilms with 8.56 ± 0.90 log10 CFU/plate
(Figure 3). P. aeruginosa produced biofilms with 8.92 ± 0.22 log10 CFU/plate (Figure 3).
Overall, each isolate produced a CFU/plate count that was within ~0.5 log10 units.
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Figure 3. Quantification results for monomicrobial and polymicrobial biofilms. MRSA, S. aureus
ATCC 6538, and P. aeruginosa ATCC 27853 had similar bioburden levels as monomicrobial biofilms,
each having close to 109 CFU/plate. S. aureus ATCC 6538 had roughly 102 more CFU/plate than
P. aeruginosa ATCC 27853 in the polymicrobial biofilms. S. aureus ATCC 6538 in the polymicrobial
biofilms had ~0.8 log10 more CFU than its monomicrobial counterpart, whereas P. aeruginosa ATCC
27853 had ~0.8 log10 less CFU than its monomicrobial counterpart.

Photographs showed that biofilms of each isolate on fixation plates were visible with
the naked eye. Biofilm appeared to accumulate to a greater degree near the edged regions
of each fixation plate, such as the outer border or cliff regions of drill holes (Figure 4A).
Nevertheless, the biofilm coverage was extensive across the surfaces of all plates. SEM
images likewise confirmed a relatively even distribution of biofilm growth across fixation
plate surfaces (Figure 4).

SEM images of monomicrobial MRSA biofilms showed that they produced three-
dimensional structures, similar to what we observed previously with the same isolate.
Indications of water channels and extracellular polysaccharide substance (EPS), or biofilm
matrix components were readily observable (Figure 4C). MRSA biofilms produced classic
plume-like structures (Figure 4B). Bacterial cells appeared to preferentially accumulate
within or around a three-dimensional structure as opposed to residing individually on
the surface of the plate (Figure 4B). A similar morphology and pattern was observed for
S. aureus ATCC 6538, yet biofilm communities of this isolate tapered to a point more so
than creating a plateau as MRSA did (Figure 4D).

We observed the biofilm structure of P. aeruginosa ATCC 27853 previously [33]. Data
corroborated these previous observations; P. aeruginosa biofilms produced more sheet-like
biofilm structures than plume-like formations. Yet, subtle regions of raised formations were
observed (Figure 4).

SEM images also showed that there was a distinct linear region along the outer portions
of the plates where biofilms formed to a lesser degree. This region is where simulated
fracture fixation plates came in contact with the slide track (slot regions) of the parallel bars
of the holding arm (Figure 4). The same pattern was observed for each isolate.
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Figure 4. Representative SEM images of monomicrobial biofilm growth. (A) Stitched image collated
from multiple high resolution micro graphs showing the growth pattern of MRSA biofilms on a
simulated fracture fixation plate. Biofilm growth was more prominent along the border and screw
hole regions. The distinct line that runs along the top of the plate indicates the region where the plate
was in the slot of the reactor holding arm. (B) Higher resolution image of MRSA biofilms indicate that
the biofilm colonies had a flat, plateau-like top. (C) Representative image of MRSA biofilms showing
the presence of EPS materials. (D) Biofilm morphology of S. aureus ATCC 6538. Biofilm communities
had significant three-dimensional structures that tapered to a point, in contrast to MRSA biofilms
which had a plateau-like appearance. (E) Stitched image of P aeruginosa ATCC 27853 biofilms on
the surface of a simulated fracture fixation plate. Image was collated from multiple high-resolution
images. Similar to what was observed for each isolate, biofilms showed relatively uniform coverage
across the surface of the simulated fracture fixation plate. (F) Higher resolution image of P aeruginosa
ATCC 27853 biofilms. This isolate produced sheet-like structures of biofilms as opposed to the distinct
plumes of S. aureus.

3.2. Polymicrobial Biofilms

Similar observations as those made with monomicrobial biofilm formation were seen
with polymicrobial biofilms; they distributed relatively evenly across the surface of simu-
lated fracture fixation plates (Figure 5A) and were visible to the naked eye. Yet, gross pho-
tographs or low-resolution SEM images were not able to indicate whether S. aureus ATCC
6538 and P. aeruginosa ATCC 27853 successfully developed polymicrobial biofilms. Higher
resolution SEM images were required to determine the isolates’ dual growth properties.

SEM data showed that the two isolates successfully developed polymicrobial biofilms.
Indeed, the polymicrobial biofilm communities were robust with intriguing cotton ball-like
formations, several of which developed bridged connections between plumes (Figure 5B).
Interestingly, whereas P. aeruginosa ATCC 27853 developed sheet-like structures as a mo-
nomicrobial biofilms, the isolate appeared to not only adopt, but enhance the develop-
ment of three-dimensional biofilm structures when combined with S. aureus ATCC 6538
(Figure 5B–D). Overall, the two cell types appeared to integrate seamlessly into a biofilm
community with EPS, or matrix components that were readily produced and observable
(Figure 5C,D).
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Figure 5. Representative SEM images of polymicrobial biofilms of S. aureus ATCC 6538 and
P. aeruginosa ATCC 27853. (A) Stitched image of multiple high-resolution SEM images of polymi-
crobial biofilms. The biofilm plumes were noticeably more distinct and larger than those of the mo-
nomicrobial biofilms. (B) Biofilm communities had three-dimensional connected cotton ball-like mor-
phologies that did not resemble their monomicrobial biofilm morphologies (compare Figure 3D–F).
(C,D) Higher resolution images of the polymicrobial biofilms indicated that both cell types were
present and appeared to integrate seamlessly with EPS material present.

Because these isolates produce different morphologies on TSA, we were able to iden-
tify and count individual colonies and calculate the respective CFU/plate for each isolate.
Quantification data indicated that there were more S. aureus ATCC 6538 cells in the polymi-
crobial biofilms than P. aeruginosa ATCC 27853. Specifically, there were approximately
9.81 ± 0.10 log10 CFU/plate for S. aureus and 8.17 ± 0.05 log10 CFU/plate for P. aeruginosa
(Figure 3). Although the isolates were inoculated into BHI broth with a 4 log10 difference
between the inoculation amounts, there was only a ~2 log10 difference in CFU counts
between isolates following growth (Figure 3).

P. aeruginosa appeared to enhance S. aureus growth compared to when it was grown as
a monomicrobial biofilm, whereas P. aeruginosa had slightly fewer CFU/plate compared to
its monomicrobial counterpart. However, there was no statistically significant difference in
any comparison between groups (p < 0.05 for all following an independent samples t test).



Microorganisms 2022, 10, 759 10 of 12

Taken together, the data indicated that the customized CDC biofilm reactor was able to
successfully produce monomicrobial and polymicrobial biofilms on the surface of simulated
fracture fixation plates.

4. Discussion

Biofilms underpin difficult-to-treat implant-related infections, which adversely affect
open fractures and accompanying hardware [3,13]. Improved antibiofilm therapies are still
in demand. We propose that one of the most promising improvements that can be made
toward translating effective antibiofilm therapies is the use of biofilms as initial inocula in
animal models of infection [9].

To date, biofilm reactor systems have primarily been developed for in vitro analyses
(e.g., CDC biofilm reactor, drip flow reactor, rotating disk biofilm reactor) not for in vivo
inoculation procedures and subsequent analysis. We have developed multiple reactor
systems that address this limitation. For example, we developed a reactor to grow biofilms
on PEEK membranes for inoculation into the proximal medial aspect of sheep tibiae [10,28],
another to grow biofilms on collagen coupons for inoculation into excision wounds of a pig
back model [11], and another (developing) to grow biofilms on the surface of silica beads
that model sand particles that contaminate blast-related injuries [12].

The customized CDC biofilm reactor presented herein was developed to contribute
to these efforts and provide a method by which to inoculate a traumatic injury site with
biofilms grown directly on the surface of simulated fracture fixation plates; thereby im-
proving upon our sheep model of traumatic and instantly recalcitrant open fracture-related
infection. The sheep model is being used to determine efficacy profiles of various an-
tibiofilm technologies that are on the market and that are under development.

Notably, biofilm growth methods and inoculation approaches are not limited to sheep.
We are currently developing biofilm reactor systems and inoculation methods for the
knee joint space in rats. We also envision additional reactor growth systems with varying
substrates including glass, collagen, or metal that can be scaled for rabbit or mice models.

Data indicated that monomicrobial biofilms of MRSA, S. aureus ATCC 6538, and
P. aeruginosa ATCC 27853 had similar CFU/plate, which was promising as the reactor
system and growth protocol resulted in consistent growth across multiple isolates. Quan-
tification data were pooled for each isolate across the various reactor runs, which meant
that robustness and repeatability were not strictly determined for each individual run yet
indicated that consistent growth could be achieved after multiple reactor runs.

Our quantification procedure for polymicrobial biofilms resulted in growing S. aureus
ATCC 6538 and P. aeruginosa ATCC 27853 on the same agar plates following vortexing
and sonicating. Colony morphology differences were used to calculate the CFU. As these
isolates are known to have competitive effects, future work may be needed to confirm
that S. aureus does in fact produce higher counts than P. aeruginosa; differential agars may
more accurately determine their growth profiles. One reason we mention this is, as we
observed the SEM images, there appeared to be more P. aeruginosa cells than S. aureus,
yet SEM images are limited in that they provide an analysis of the surface of the biofilm
structure; there could have been more S. aureus cells below the outer surface, which led to
increased counts via quantification.

We used stainless steel to machine the holding arms and titanium to machine the
plates. Different materials could have been used and can be customized based on need
or desire. Yet, because the plate materials come in contact with the holding arms, which
was made obvious by the reduced biofilm growth in those regions where the materials
came in contact, it is important to consider material selection and potential interaction.
Various metals interact with one another in aqueous environments. Data indicate that
stainless steel–titanium interactions may be less of a problem than stainless steel–stainless
steel interactions. We have not yet tested biofilm growth on stainless steel plates in this
particular reactor system, yet if other materials were to be selected, interaction effects
should be considered.
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5. Conclusions

The machining, assembly, and growth protocol for a customized CDC biofilm reactor
was straightforward and achievable. This reactor system or modifications thereof have the
potential to broaden the selection profile of reactors that can be used to grow biofilms and
can be used as initial inocula in animal models to produce recalcitrant, hardware-related
infections, and improve the development of antibiofilm therapies.
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