
5124  |  	﻿�  Ecology and Evolution. 2018;8:5124–5138.www.ecolevol.org

1  | INTRODUC TION

One of the threats for large mammals in mountainous regions is 
climate change (Granados & Brodie, 2016), because mountain re-
gions are sensitive to warming (IPCC 2007). It affects animal spe-
cies by modifying their local habitats (Sexton, McIntyre, Angert, 
& Rice, 2009; IPCC (Intergovernmental Panel on Climate Change), 
2007). Climate change has already altered the future availability of 
suitable habitats for mountain ungulates such as the wild yak (Bos 
mutus), chiru (Pantholops hodgsonii), kiang (Equus kiang), Tibetan 

gazelle (Procapra picticaudata), Przewalski’s gazelle (Procapra prze-
walskii) (Luo, Jiang, & Tang, 2015; Schaller, 1998), and Himalayan 
musk deer (Moschus chrysogaster) (Lamsal, Kumar, Aryal, & Atreya, 
2018). Warmer winters have been shown to increase adult survival 
of Alpine ibex (Capra ibex) (Jacobson, Provenzale, von Hardenberg, 
Bassano, & Festa-Bianchet, 2004). Plant phenology changes due to 
warming caused reduced periods of access to high-quality forage 
leading to declines in young recruitment of Alpine ibex and bighorn 
sheep (Ovis Canadensis) (Pettorelli, Pelletier, von Hardenberg, Festa-
Bianchet, & Coté, 2007). Habitats for the giant pandas on mountain 
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Abstract
Identifying the factors predicting the high-elevation suitable habitats of Central 
Asian argali wild sheep and how these suitable habitats are affected by the changing 
climate regimes could help address conservation and management efforts and iden-
tify future critical habitat for the species in eastern Tajikistan. This study used envi-
ronmental niche models (ENMs) to map and compare potential present and future 
distributions of suitable environmental conditions for Marco Polo argali. Argali oc-
currence points were collected during field surveys conducted from 2009 to 2016. 
Our models showed that terrain ruggedness and annual mean temperature had 
strong correlations on argali distribution. We then used two greenhouse gas concen-
tration trajectories (RCP 4.5 and RCP 8.5) for two future time periods (2050 and 
2070) to model the impacts of climate change on Marco Polo argali habitat. Results 
indicated a decline of suitable habitat with majority of losses observed at lower ele-
vations (3,300–4,300 m). Models that considered all variables (climatic and noncli-
matic) predicted losses of present suitable areas of 60.6% (6,928 km2) and 63.2% 
(7,219 km2) by 2050 and 2070, respectively. Results also showed averaged habitat 
gains of 46.2% (6,106 km2) at much higher elevations (4,500–6,900 m) and that ele-
vational shifts of habitat use could occur in the future. Our results could provide in-
formation for conservation planning for this near threatened species in the region.
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ranges at the edge of the Tibetan Plateau have already shown frag-
mentation due to climate change (Shen et al., 2015). Also, climate 
change can decrease the abundance of species (Aryal, Brunton, & 
Raubenheimer, 2014; Thomas, 2004), not only because of disap-
pearing habitats (Tamburello, Côté, & Dulvy, 2015), but also because 
mountain ungulates and other mammals are especially sensitive to 
warming temperatures in montane regions (Hansen, 2009; Haynes, 
Kung, Brandt, Yongping, & Waller, 2014). The harmful effects of cli-
mate change for ungulates are of critical importance as large mam-
mals have a lower tolerance for deviation of body core temperature 
(van Beest & Milner, 2013; Fuller, Mitchell, Maloney, & Hetem, 2016; 
Jessen, 2001). Ungulates in southeastern Norway showed subopti-
mal movement behavior above their critical temperature thresholds 
in changing climates (van Beest & Milner, 2013). Therefore, it is es-
sential to have a better understanding of how species distributions 
and habitat use patterns are affected by changing climate regimes in 
order to inform discussions on potential management options.

Argalis (Ovis ammon) are wild sheep restricted to Asia in 
Afghanistan, China, Kazakhstan, Kyrgyzstan, Mongolia, Pakistan, 
Russia, Tajikistan, and Uzbekistan (Valdez & Weinberg, 2011). 
Marco Polo argali (O. a. polii) occurs in eastern Tajikistan and adja-
cent areas of surrounding countries: China, Afghanistan, Pakistan, 
and Kyrgyzstan. They are highly desired big-game trophies because 
of their long horns of up to 191 cm (75 in). Argalis are listed as en-
dangered by the U.S. Fish and Wildlife Service throughout their 
range, except in Kyrgyzstan, Tajikistan, and Mongolia where they 
are designated as threatened. They are listed in CITES Appendix 
II and as Near Threatened in the IUCN Red List. Argali have de-
clined in numbers and distribution during the last century (Harris 
& Reading, 2008; Valdez & Weinberg, 2011). Eastern Tajikistan has 
greater numbers of argali than any other country with a minimum of 
24,000 in the Pamir region (Michel & Muratov, 2010; Valdez, Michel, 
Subbotin, & Klich, 2016). Due to the high elevation of the Pamirs, 
the region is extremely susceptible to climate-driven threats, such as 
glacier recession (Khromova, Osipova, Tsvetkov, Dyurgerov, & Barry, 
2006), and decrease in water storage and supply (Finaev, Liu, Bao, 
& Li, 2016) that could harmfully impact wildlife habitats (BIOFOR 
2001). Glaciers play a crucial role in the hydrological cycle of high-
altitude regions (Nogués-Bravo, Araujo, Errea, & Martinez-Rica, 
2007) as they, together with snow packs, provide freshwater and 
soil moisture necessary for the survival of vegetation communities. 
Because argali sheep sightings occur nearest to water sources where 
available forage is abundant (Salas, Boykin, & Valdez, 2016), and ri-
parian habitats have been shown to be the strongest predictors for 
argali occurrence in Tibet (Singh, Yoccoz, Bhatnagar, & Fox, 2009) 
and in the Pamirs of Tajikistan (Salas, Valdez, & Michel, 2017), in-
creased temperatures in mountainous regions could decrease forage 
availability in proximity to riparian areas and hence the amount of 
suitable habitat for argali. IPCC (Intergovernmental Panel on Climate 
Change) (2007) reported that retreat of various large glaciers could 
accelerate through the 21st century, which would initially increase 
summer flow but, in the long term, could reduce water availability 
in regions supplied by meltwater from major mountain ranges in 

Central Asia. This increased water scarcity could cause extensive 
habitat loss and degradation of mountain ecosystems (Breu & Hurni, 
2003).

Hole et al. (2009) highlighted the need to project future habitat 
for species affected by climate change in order to aid in conservation 
and management efforts and identify critical habitats. Environmental 
niche models (ENMs) are valuable spatial ecological tools to better 
assess the relationship between species distributions and environ-
mental factors, and understand future steps for species manage-
ment and policy (Elith & Leathwick, 2009; Salas, Seamster, Boykin, 
Harings, & Dixon, 2017; Wiens, Seavy, & Jongsomjit, 2011). In this 
study, we used niche models (Elith & Leathwick, 2009; Peterson 
et al., 2011) to project availability of suitable environmental con-
ditions for argali species using various climate projections derived 
from general circulation models (GCMs), and postprocessed via ap-
plication of a simple statistical downscaling method. We contrasted 
future projected climate envelope suitability results produced from 
combinations of four GCMs and two greenhouse gas concentration 
trajectories for two future time periods. Our methodology used five 
niche models to predict environmental argali habitat suitability in 
contrast to all other wild sheep habitat climate change studies which 
used a single modeling technique. To account for the uncertainties 
of each statistical model and improve predictions of the current 
distribution of a species (Araújo, Whittaker, Ladle, & Erhard, 2005; 
Marmion, Parviainen, Luoto, Heikkinen, & Thuiller, 2009), we did an 
ensemble of five ENMs to assess the agreement or disagreement of 
their predictions. Combining ENMs within an ensemble could add 
information not shown in one single algorithm (Meller et al., 2014).

This is the first modeling study in Tajikistan to assess the impacts 
of climate change on argali habitat and the first quantitative study 
of factors driving climatic distribution patterns of argali. This study 
is directed toward filling this knowledge gap by combining statistical 
models with field sightings of argali collected in eastern Tajikistan. 
Our objective is threefold: to develop models of present-day and po-
tential future distributions of suitable environmental conditions for 
argali in mountainous regions in eastern Tajikistan, to compare how 
climate change impacts the future availability of habitat for argali, and 
to provide information of the diverse climatic and nonclimatic vari-
ables that could potentially affect argali habitat. Lastly, we hypothe-
sized that there would be elevational habitat shifting of argali under 
future climate conditions when projected to years 2050 and 2070.

2  | MATERIAL S AND METHODS

The methodology was composed of three major steps: (i) processing 
of argali occurrence dataset and environmental variables, (ii) mod-
eling of current environmental conditions that includes selection 
of ENMs and evaluation of current conditions, and (iii) modeling of 
future environmental conditions that includes selection of GCMs, 
representative concentration pathways (RCPs), and projection of 
current conditions to future conditions. We modeled argali habitat 
with two approaches, first using a model consisting of climatic and 
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nonclimatic variables (all environmental variables), and a second 
model with only climatic variables.

2.1 | Study area

The study area (Figure 1) is located in the eastern region of Tajikistan 
between latitudes 37°N to 40°N and longitudes 72°E to 76°E in 
the province of Gorno-Badakhshan, and comprises approximately 
41,000 km2. About 93% of Tajikistan is mountainous, and over half 
of the country is situated above 3,000 m. The terrains in the east of 
the country form the highest mountain systems in Central Asia, the 
Pamirs. The Pamir region is known as the “roof of the world” with 
wide and grassy valley floors, and meandering rivers and streams 
(Breu & Hurni, 2003). In the study area, elevations in the northern 
region range from 4,500 to 7,300 m, while those in the southern 
region range from 3,300 to 5,200 m above mean sea level (Salas, 
Valdez, & Boykin, 2015). The January mean temperature in the east-
ern Pamirs varies from −15 to −20°C with extreme seasonal tem-
perature variations (WHC 2013). At lower elevations, the average 
January temperature is −1 to 3°C (NCCA 2003). Because of the spe-
cific climate conditions and varied landscape in Tajikistan, the coun-
try is deemed the main glacial center of Central Asia. The Fedchenko 
Glacier (907 km2), the largest glacier in Central Asia, is situated in 
the northern Pamir region of Tajikistan (Merzlyakova, 2002). In fact, 
the Tajik Pamirs alone provide approximately 60% of the freshwater 
reserves of Central Asian lowlands (Badenkov, 1992).

The dominant plant species are semishrubs such as teresken 
and sagebrush (Artemisia spp.); grasses (e.g., Poa spp., Festuca spp., 
Hordeum spp., Elymus spp.); sedges (Carex spp. and Kobresia spp.); 
and forbs (e.g., Dracocephalum spp., Oxytropis spp., Astragalus spp., 

Acantholimon spp., Crepis flexuosa, and Potentilla pamirica) (Valdez 
et al., 2016).

The highest elevations of the northern region of the study area 
are in the Tajik National Park. The park is one of the largest high 
mountain protected areas in the Palearctic realm (Haslinger, Breu, 
Hurni, & Maselli, 2007). The state agency of Natural Protected 
Areas supervises all management activities in the park (WHC 2013). 
However, even in the Core Zone activities such as fuel wood cutting, 
livestock grazing, and hunting tourism take place (Weaver 2013), in-
cluding a sport hunting concession primarily for Marco Polo sheep 
(Valdez et al., 2016).

The only other wild ungulate species in the study area is the 
Siberian ibex (Capra sibirica). Wild predators include wolf (Canis 
lupus), red fox (Vulpes vulpes), brown bear (Ursus arctos isabellinus), 
and snow leopard (Panthera uncia). There is limited mining activity 
at the southern edges of the park, and only one paved road with 
little traffic, and some unpaved roads in the study area. A barbed 
wire fence forms a barrier to argali movements with few gaps along 
the Tajik–Chinese border. Most of the area becomes inaccessible in 
the winter because of heavy snow accumulation. The majority of the 
study area outside of the park is assigned to private businesses as 
hunting concessions. Some of the hunting concession areas are pa-
trolled to minimize illegal hunting, while other areas are unprotected 
(Valdez et al., 2016). Domestic ungulates include sheep (Ovis aries), 
goat (Capra hircus), yak (Bos grunniens), and cattle (Bos Taurus); do-
mestic sheep are the most numerous followed by yak and few cattle 
and goats. Domestic animals, except for yak and few herds of sheep 
and goats, are moved to lower pastures during the fall, winter, and 
early spring (October–May) because of the harsh winter conditions 
at higher elevations.

F IGURE  1 Location of study area in the eastern region of Tajikistan (inset) between latitudes 37°N to 40°N and longitudes 72°E to 76°E, 
and covers an area of approximately 41,000 km2. The Central Asian country of Tajikistan is bordered by Afghanistan, China, Kyrgyzstan, and 
Uzbekistan
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2.2 | Argali data

Argali occurrences were based on observations from field surveys 
over multiple years. Using the GPS location of the observers, the 
distance (measured by range finder or roughly guessed) and azimuth 
(measured with electromagnetic compass) between observers and 
observed animals, sightings of argali herds were georeferenced 
(Michel & Muratov, 2010; Valdez et al., 2016). Field surveys were 
conducted in March 2015, July 2015, August 2010, 2011, 2016, 
September 2013, and December 2009, 2013, 2014. Because clus-
tered point occurrences could introduce potential spatial bias, our 
algorithm removed multiple presence localities in a grid and analyzed 
a single occurrence per pixel (Salas, Seamster, et al., 2017). A total 
917 of 976 locations were used in the model. Further, we divided all 
occurrences into 70%–30% training–testing subsets when running 
our models.

2.3 | Environmental variables

To build the models, we used 26 environmental variables (Table 1), 
of which 19 were bioclimatic variables from WorldClim datasets 
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), and the rest 
were habitat and topographic variables that were previously iden-
tified as preferable for argali habitat (Salas, Valdez, et al., 2017). 
WorldClim provides climate projections statistically downscaled 
using a “delta method” approach to a spatial resolution of 30 arc-
sec, roughly 900 m at the equator. All raster images were resam-
pled to the spatial resolution of the WorldClim data. We derived 
the green vegetation cover and sparse vegetation cover from the 
Global Land Cover 2000 project (Tateishi, Zhu, & Sato, 2000) and 
used them to represent forage abundance. Previous studies con-
sidered vegetation distribution as an important predictor in mod-
eling the argali habitat (Salas et al., 2015; Singh et al., 2009). For 
escape terrain, we created a continuous distance around polygon 
patches with slopes ≥ 30° (Smith, Flinders, & Winn, 1991; Turner, 
Douglas, Hallum, Krausman, & Ramey, 2004). The processed DEM 
with a 1 arc-second, or about 30 m (98 feet) resolution was sourced 
from NASA’s Shuttle Radar Topography Mission (SRTM) digital el-
evation dataset that is available for download online (USGS 2016). 
We computed the slope and the aspect from the DEM. To further 
capture the relief characteristics of the landscape terrain, the ter-
rain ruggedness index (TRI) was calculated from the DEM based on 
Sappington, Longshore, and Thomson (2007). Turner et al. (2004) 
showed that TRI could be a better predictor than proximity to es-
cape terrain when both are used in the same modeling set. The TRI 
shows the average change in elevation between a center pixel and 
its eight neighboring pixels in a 3-by-3 window. All candidate vari-
ables were clipped to the extent of the study area.

2.4 | Species distribution modeling

To model the potential distribution of argali, we used the following 
statistical methods: generalized linear model (GLM), Random Forest 

(RF) (Breiman, 2001; Liaw & Wiener, 2002), boosted regression tree 
(BRT) (Elith, Leathwick, & Hastie, 2008), Maxent (Phillips, Anderson, 
& Schapire, 2006; Phillips & Dudík, 2008), and multivariate adaptive 

TABLE  1 List of variables used in the model development for 
argali populations in eastern Tajikistan. Climate variable names and 
descriptions are based on WorldClim (Hijmans et al., 2005). An 
asterisk (*) denotes final variables selected by our algorithms in 
modeling the argali habitat

Predictor Description Unit

Climate

Bioclim 1* Annual mean temperature °C

Bioclim 2* Mean diurnal range °C

Bioclim 3* Isothermality °C

Bioclim 4* Temperature seasonality °C

Bioclim 5 Maximum temperature of the 
warmest month

°C

Bioclim 6 Minimum temperature of the 
coldest month

°C

Bioclim 7 Temperature annual range °C

Bioclim 8 Mean temperature of wettest 
quarter

°C

Bioclim 9* Mean temperature of driest 
quarter

°C

Bioclim 10 Mean temperature of warmest 
quarter

°C

Bioclim 11 Mean temperature of coldest 
quarter

°C

Bioclim 12 Annual precipitation °C

Bioclim 13 Precipitation of wettest month °C

Bioclim 14 Precipitation of driest month °C

Bioclim 15* Precipitation seasonality °C

Bioclim 16 Precipitation of wettest quarter °C

Bioclim 17 Precipitation of driest quarter °C

Bioclim 18* Precipitation of warmest quarter °C

Bioclim 19 Precipitation of coldest quarter °C

Topographic Feature

DEM Digital elevation model m

TRI (terrain 
ruggedness)*

Captured the difficulty of the 
landscape terrain 
√

Abs((%Max)2− (%Min)2) 

Aspect* Derived from DEM 

Slope* Derived from DEM %

Vegetation cover* Vegetation cover derived from the 
Global Land Cover 2000 project

Sparse cover* Sparse vegetation cover derived 
from the Global Land Cover 2000 
project

Distance to 
escape terrain* 

Provides continuous distance from 
a defined slope of ≥30°

m

Distance to 
riparian areas*

Provides continuous distance from 
identified riparian areas

m
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regression splines (MARS) (Leathwick, Elith, & Hastie, 2006). We se-
lected ENMs based on their performance with presence-only data 
(Elith et al., 2006). GLM, MARS, and BRT could be used for count 
data under the assumption that a count response could be modeled 
as Poisson (Talbert, 2012). The GLM is a linear regression adapted 
to binary count data. The method uses stepwise procedure to select 
covariates in the model. The MARS nonparametric algorithm builds 
flexible models by fitting piecewise logistic regressions. Although it 
has similarities with GLM, MARS is better in accommodating nonlin-
ear responses to predictors and at the same time lessens the effects 
of outlying observations. The model RF uses decision trees through 
random grouping of the covariates. Random Forest models both in-
teractions of the variables and their nonlinear relationships, and does 
not split the data into training and testing as RF utilizes bootstrap-
ping to fit individual trees (Breiman, 2001). Like the Random Forest, 
BRT also uses decision trees, but the method is robust to missing ob-
servations. BRT uses cross-validation by choosing models based on 
model comparisons of evaluation metrics (Elith et al., 2008). Maxent 
is best for presence-only modeling. While observed absence is valu-
able in modeling, data are often not available and hence using only 
presence data are unavoidable (Talbert, 2012). Models were imple-
mented in the modeling tool Software for Assisted Habitat Modeling 
(SAHM) run within VisTrails (Morisette et al., 2013; Talbert, 2012). 
The tool creates a workflow of the selected ENMs and devel-
ops models for present-day conditions. As species lacked absence 
data, the tool randomly generated background points (i.e., pseudo-
absences [Phillips & Dudík, 2008]) within a 95% minimum convex 
polygon defined by the presence data.

We removed one of each pair of highly correlated (r > .7) 
(Dormann et al., 2013) environmental variables to avoid collinear-
ity among predictors (Gama, Crespo, Dolbeth, & Anastácio, 2015). 
We made the choices between variables based on the results of a 
species-specific literature search. In particular, we selected variables 
that were identified in one or more studies regarding the argali as 
having an effect on the argali’s range or population dynamics. In 
cases where the results of the literature search could not differen-
tiate between two highly correlated climatic variables, we used a 
qualitative assessment of the distribution of values of the variable at 
all presence points and of the relationship between the variable and 
species presence or pseudo-absence (Talbert, 2012). We provided 
an asterisk in Table 1 to denote the final variables that were selected 
by our algorithms when modeling the argali habitat.

We produced ensemble maps for the current distributions. The 
ensemble map is a summation of binary maps generated from prob-
ability surfaces from each statistical modeling algorithm (Liu, Berry, 
Dawson, & Pearson, 2005; Lobo, Jiménez-Valverde, & Real, 2008; 
Stohlgren et al., 2010). We optimized the threshold using specific-
ity = sensitivity in discretizing the probability maps (Manel, Williams, 
& Ormerod, 2001). The final maps consisted of pixel values that rep-
resented the number of models in agreement to indicate that a par-
ticular pixel is suitable for argali. A pixel with a value of zero meant 
that none of the models identified bioclimatic suitability for the spe-
cies at that location, while a value of 5 meant there was agreement 

across all five models. We used the current distributions estimated 
by the ensemble ENMs and projected each to the future.

2.5 | Model evaluation

We evaluated confidence in individual model results in terms of 
concordance among the different distribution models. We had 
higher confidence that environmental conditions were suitable for 
a species when three or more (at least 60% of) algorithms were in 
agreement (e.g., Rehfeldt, Crookston, Sáenz-Romero, & Campbell, 
2012). We compiled information on various measures of model per-
formance, including the area under the receiver operating charac-
teristic (ROC) curve (AUC) for the test data, correct classification 
rate (Co%) (Fielding & Bell, 1997; Warren & Seifert, 2011), and the 
true skill statistic (TSS) (Allouche, Tsoar, & Kadmon, 2006) for each 
algorithm. The AUC value is the probability that the model would 
rank a randomly chosen presence observation higher than the ran-
domly chosen absence observation. Swets (1988) classified values of 
AUC as follows: those >0.9 indicated high accuracy (excellent), from 
0.7 to 0.9 indicated good accuracy, and those <0.7 indicated low ac-
curacy. The TSS, a threshold-dependent statistics, is presented as 
an improved measure of model accuracy that, unlike the common 
kappa statistics (Allouche et al., 2006; Cohen, 1960), is not depend-
ent on species prevalence (i.e., proportion of occurrence points for 
which the species is present). Acceptable models are those with 
at least a TSS of 0.5, and excellent those with TSS around 0.7. We 
checked other qualitative assessments of model performance, 
which included the inspection of calibration and deviance of residual 
plots. Calibration plots indicate whether models tend to over or un-
derpredict habitat suitability. Deviance of residual plots is used to 
identify individual data points that may require further inspection 
or whether there may be an important environmental layer missing 
from the model inputs (Morisette et al., 2013).

2.6 | Species habitat forecasting

From WorldClim, we derived the eight sets of downscaled fu-
ture climate projections produced by four GCMs highlighted 
in the National Climate Change Action (NCCA 2003) plan for 
Tajikistan. The selected GCMs include the following: Community 
Climate System Model version 4 (CCSM4; Gent et al., 2011), 
Hadley Centre Global Environment Model version 2-Earth System 
(HadGEM2-ES; Collins et al., 2011), Model for Interdisciplinary 
Research on Climate version 5 (MIROC5; Watanabe et al., 2010), 
and the Geophysical Fluid Dynamics Laboratory Coupled Model 
(GFDL-CM3; Donner et al., 2011). We downloaded raster data 
for two RCPs (4.5 and 8.5) available for all selected GCMs and 
for two time periods (year 2050—average for 2041 to 2060 and 
year 2070—average for 2061 to 2080). RCP 4.5 was selected as 
it is more or less stable throughout the century among all RCPs 
in terms of reductions in greenhouse gas emissions (Arora et al., 
2011; Roeckner, Giorgetta, Crueger, Esch, & Pongratz, 2011). For 
RCP 8.5, it is the most extreme scenario in that it entails the highest 
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projected increase in the concentration of multiple greenhouse 
gases in the atmosphere (Vuuren, Edmonds, & Kainuma, 2011) 
and associated increases in global surface temperatures (Knutti 
& Sedláček, 2013). Results of the current argali distributions were 
projected to the future using the data from the four GCMs and 
according to the two RCPs. To avoid generating hundreds of map 
results, again we used ensembles to produce combination maps 
for the future distribution of the species. Each RCP result from 
the four GCMs was combined. In the end, a set of projection maps 

for the year 2050 and another set for the year 2070 according to 
each RCP were generated.

Finally, after considering the agreement (overlap) of at least three 
species distribution models and two GCMs, we compared the cur-
rent and future ensemble maps to determine areas of stability, gains, 
and losses in suitable habitat conditions between present day and 
the two projected years. Suitable habitat is considered stable when 
present and future ensemble maps agree that the area is suitable 
for Marco Polo argali. There is gain in suitable habitat when future 

TABLE  2 Statistical results for the five different modeling algorithms. Model abbreviations are as follows: GLM, generalized linear model; 
MARS, multivariate adaptive regression splines; BRT, boosted regression tree, and RF, Random Forest. Statistics for models with climate 
variables are enclosed in parenthesis

Stats GLM MARS BRT MAXENT RF

AUC 0.84 (0.81) 0.82 (0.81) 0.94 (0.93) 0.86 (0.84) 0.89 (0.86)

TSS 0.51 (0.50) 0.47 (0.46) 0.73 (0.70) 0.53 (0.50) 0.60 (0.59)

%Co 75.7 (73.9) 73.5 (73.2) 86.4 (84.4) 77.5 (74.2) 81.0 (80.1)

F IGURE  2 Current habitat suitability areas (in green) for the argali in eastern Tajikistan using climatic and nonclimatic variables in the 
models: (a) BRT, boosted regression tree, (b) GLM, generalized linear model, (c) MARS, multivariate adaptive regression splines, (d) Maxent, 
(e) RF, Random Forest, and (f) suitable area based on the agreement of at least three ENMs. Gray lines depict the contours in the region. The 
darker the lines, the higher the elevation
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ensemble projects newly suitable areas beyond the extent of the 
present suitable map. There is loss of suitable habitat when present 
ensemble is converted to unsuitable condition in the future.

3  | RESULTS

3.1 | Model performance and variable importance

The AUC values for all models were above 0.80 (Table 2). Statistics 
for models with climate variables only are enclosed in parenthesis. 
BRT was the strongest with AUC = 0.94 (AUC = 0.93) followed by 
RF with 0.89 (0.86), Maxent with 0.86 (0.84), GLM with 0.84 (0.81), 
and MARS with 0.82 (0.81). BRT also had the highest values for TSS 
(0.73 and 0.70) and %Co (86.4 and 84.4). Results on the variable 
importance for models with both climatic and nonclimatic variables 
showed that the annual mean temperature (bioclim 1), precipitation 
of warmest quarter (bioclim 18), and temperature seasonality (bio-
clim 4) were identified as the three most relevant climatic variables 

for predicting habitat suitability and distribution of argali in all five 
models. The terrain ruggedness was also considered an important 
predictor, placing it in the top five among variable inputs. The TRI 
was the highest-ranked nonclimatic variable. Other nonclimatic vari-
ables of importance included the vegetation cover, proximity to ri-
parian areas, and aspect.

3.2 | Current distribution models

Using all variables, the five ENMs showed similar patterns of po-
tential suitable conditions for argali in the northern and south-
eastern regions of the study area (Figure 2). Visual assessment of 
the maps revealed some differences, however. The five statisti-
cal models projected differing size of suitable areas even though 
they were using the same dataset of occurrence points. Among the 
five models, only RF and BRT (Figure 2a and e) identified poten-
tial suitable conditions in locations where presence points were 
mostly concentrated. These two suitability maps are associated 

F IGURE  3 Current habitat suitability areas (in green) for the argali in eastern Tajikistan using only climatic variables in the models: (a) 
BRT, boosted regression tree, (b) GLM, generalized linear model, (c) MARS, multivariate adaptive regression splines, (d) Maxent, (e) RF, 
Random Forest, and (f) suitable area based on the agreement of at least three ENMs. Gray lines depict the contours in the region. The darker 
the lines, the higher the elevation
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with fairly high AUC values in Table 2 for RF (0.89) and BRT (0.94). 
GLM, MARS, and Maxent (Figure 2b, c, and d) highlighted suitable 
conditions in the western part of the study area, although MARS 
accentuated the suitable environmental conditions in the extreme 
eastern portion. The area of the current potential distribution 
of the argali, considering climatic and nonclimatic variables and 
based on the agreement of at least three ENMs, is 11,432 km2. 
Using climatic variables only, more locations were identified as 

potential suitable conditions for argali in all five models (Figure 3) 
compared to models that included the nonclimatic variables. The 
area of the current potential distribution of the argali, consider-
ing climatic variables only and based on the agreement of at least 
three ENMs, encompasses 13,242 km2. Similar to the results 
in Figure 2, only RF and BRT (Figure 3a and e) identified poten-
tial suitable conditions in locations where presence points were 
mostly concentrated.

F IGURE  4 Comparison of suitable habitat distributions between present and future scenarios for Marco Polo argali in eastern Tajikistan 
using all environmental variables (climatic and nonclimatic). Future model was based on general circulation models projected according to: (a) 
RCP 4.5 to the year 2050; (b) RCP 8.5 to the year 2050; (c) RCP 4.5 to the year 2070; (d) RCP 8.5 to the year 2070. Maps show areas where 
present and future habitats agree (stable in green), future habitat projects new suitable conditions (gained in yellow), present suitable habitat 
may be converted to unsuitable in the future (lost in red), and areas where conditions are unsuitable now and in the future (unsuitable in 
gray). Black dots represent argali occurrence in our data sets. The entire map was generated using the tool of ArcGIS 10.2 (ESRI, Redlands, 
CA, USA, http://www.esri.com/)

F IGURE  5 Comparison of suitable habitat distributions between present and future for the Marco Polo argali in eastern Tajikistan using 
only bioclimatic variables. Future model was based on general circulation models projected according to: (a) RCP 4.5 to the year 2050; (b) 
RCP 8.5 to the year 2050; (c) RCP 4.5 to the year 2070; (d) RCP 8.5 to the year 2070. Maps show areas where present and future habitats 
agree (stable in green), future habitat projects new suitable conditions (gained in yellow), present suitable habitat may be converted to 
unsuitable in the future (lost in red), and areas where conditions are unsuitable now and in the future (unsuitable in gray). Black dots 
represent argali occurrence in our data sets. The entire map was generated using the tool of ArcGIS 10.2 (ESRI, Redlands, CA, USA, http://
www.esri.com/)

http://www.esri.com/
http://www.esri.com/
http://www.esri.com/
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3.3 | Projecting models to future climatic conditions

Effects of climate change for present suitable areas for argali are 
shown in Figures 4 and 5. These are maps of projected scenarios 
generated through comparison of ensembles of suitable conditions 
between present and projected future climatic conditions. These 
maps show areas where ensembles agree between present and fu-
ture (stable), future ensemble projections of new suitable conditions 
(gain), and where present suitable ensemble projections may be con-
verted to unsuitable conditions in the future (loss), and areas where 
conditions are unsuitable now and in the future (non). According to 
our projections for models using all environmental predictors, gains 
were observed even for the worst climate scenario—RCP 8.5 pro-
jected to year 2070 (Figure 4d). The average gains for 2050 and 
2070 projections (Figure 4) were more than doubled the present 
suitable habitat (Table 3). Gains were also observed for models with 
climatic variables only (Figure 5). The total area containing suitable 
conditions (Figure 5a–d) increased from present to projected future, 
with an average gain of 46.3% by 2050 and 46.0% average gain by 
2070 (Table 3).

While gains were observed in new locations, the current areas 
of suitable habitat for the argali were projected to decline in 2050 
and 2070 under all RCP scenarios (Figures 4 and 5). Majority of the 
losses were observed in the lower elevation (3,300 to 4,300 m) in 
the southeastern region of the study area where occurrence points 
were mostly concentrated. Models with climate variables predicted 
that 63.0% (8,347 km2) and 65.6% (8,683 km2) of present suitable 
argali habitat would be lost by 2050 and 2070, respectively (Table 3). 
Models that considered all environmental variables also predicted 
losses of 60.6% (6,928 km2) and 63.2% (7,219 km2) by 2050 and 
2070, respectively. Fortunately, we observed current suitable areas 
located in higher elevations in the northern region (4,500–6,900 
m) would continue to persist with future climate change. Also, we 
observed more habitat gains at much higher elevation in the study 
area, showing that elevational shift of habitat use could occur in 
the future. Total gains observed for models with all environmental 
variables were 118% (13,485 km2) for 2050 scenario and 116.8% 
(13,356 km2) for 2070 scenario.

In terms of habitat stability, the percentages of areas that would 
remain suitable for argali in 2050 and 2070 were a little higher for 
scenarios using climatic variables only than with scenarios using all 

environmental variables. For instance, 37.0% (4,895 km2) of cur-
rent suitable areas would remain suitable in 2050 for models with 
climatic variables only, while those models that considered all pre-
dictors showed 39.4% (4,504 km2). The same could be deduced for 
projection results for 2070: 34.4% (4,559 km2) (climatic variables) 
and 36.9% (4,212 km2) (all variables).

This overestimation was likely the result of error of commission, 
where regions were considered climatically suitable in spite of un-
derlying environmental conditions that make actual presence im-
probable (Sohl, 2014).

4  | DISCUSSION

The effects of climate change are already being detected in the 
shifting and contraction of species’ ranges (Raxworthy, 2008; 
Sexton et al., 2009; Su, Aryal, Nan, & Ji, 2015), variations in spe-
cies’ ecological interactions (IPCC 2007), and suboptimal move-
ment behavior patterns (van Beest & Milner, 2013). This change 
could be deleterious (Lannoo, 2005), leading to reduction in 
species abundance as habitats deteriorate (Halpin, 1997). When 
global temperatures exceed 2.5°C, there could be negative con-
sequences for biodiversity especially in montane habitats, where 
extensive species losses (up to 60% under high emission sce-
nario by 2080) could occur (IPCC (Intergovernmental Panel on 
Climate Change), 2007). Further, the reduction in glacier thick-
ness would have detrimental effects on many organisms, specifi-
cally on mammals and large predators (Haynes et al., 2014; IPCC 
(Intergovernmental Panel on Climate Change), 2007). In Tajikistan, 
the fauna of high mountain regions are the most sensitive to cli-
mate change (NCCA 2003), and could result in declines of rare and 
at-risk species, such as argali. Our models indicated that climate 
change would have significant negative impacts on argali habitat 
in eastern Tajikistan.

4.1 | Present and future projections

This is the first study to model climate change and map the current 
and future habitat suitability of argali in Tajikistan (and in Asia). This 
is also the first study to use an ensemble of modeling algorithms 
and climate models for a large mammal species endemic to the 

TABLE  3 Areas (km2) and percentages of potential habitat stability, gain, and loss of Marco Polo argali for projections to 2050 and 2070 
under climate change. Suitable habitat is considered stable when present and future ensemble maps agree that the area is suitable for the 
species. Gain in suitable habitat is recorded when projections find suitable habitat beyond the extent of the present suitable areas. There is 
loss of suitable habitat when present suitable areas become unsuitable in the future

Year

Climatic variables only All variables

Average for RCPs 4.5 & 8.5 Average for RCPs 4.5 & 8.5

Stable (km2) (%) Gain (km2) (%) Lost (km2) (%) Stable (km2) (%) Gain (km2) (%) Lost (km2) (%)

2050 4,895 (37.0) 6,126 (46.3) 8,347 (63.0) 4,504 (39.4) 13,485 (118.0) 6,928 (60.6)

2070 4,559 (34.4) 6,085 (46.0) 8,683 (65.6) 4,212 (36.9) 13,356 (116.8) 7,219 (63.2)
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mountainous regions of Central Asia. We modeled the argali suit-
able habitats under current and future climates using two datasets, 
one with only climatic variables and another set that included other 
environmental variables. Models of present conditions were con-
trolled by annual mean temperature, suggesting that this important 
climatic variable was a major limiting factor for argali. The associa-
tion of argali to low temperatures was also reported in Khan et al. 
(2015), where it was labeled a major factor influencing species 
distribution and habitat suitability for ungulates in the Karakoram-
Pamir Landscape between China and Pakistan. Other studies also 
acknowledged the importance of temperature in modeling ungulates 
habitat suitability (Aryal, Raubenheimer, & Brunton, 2013; Forrest 
et al., 2012), although some used elevation as a substitute for tem-
perature (Aryal, Brunton, Ji, et al., 2014). Apart from the annual 
mean temperature, we expected the precipitation data in the warm-
est quarter to rank high in the models, which our results confirmed. 
Other modeling studies for argali such Khan et al. (2015) did not in-
clude precipitation in the warmest quarter as a predictor. Abundant 
precipitation in dry months is key to moist meadows and forage 
development. St-Louis and Côté (2014) found that forage quality 
can be a key factor determining habitat selection patterns for large 
herbivores. Likewise, the vegetation cover was found by our models 
to be an important contributor to the predicted habitat of Marco 
Polo argali. Salas et al. (2015) showed that the availability of forage 
and the distribution of argali are strongly correlated. Previous stud-
ies also reported cases where the normalized difference vegetation 
index (NDVI) (Guyot & Gu, 1994), used as an index of forage abun-
dance (NDVI > 0.4) (Singh et al., 2009), was linked to the distribution 
of large herbivores (Pettorelli, 2014). The slope and elevation did not 
rank high on importance unlike previous studies showing them as 
major limiting factors for ungulates (Aryal, Brunton, Ji, et al., 2014; 
Forrest et al., 2012). However, terrain roughness was a significant 
predictor of habitat probably because the variable is, in part, defined 
by slope. Suitable areas for argali were found primarily on gentler 
slopes (0° to 15°), as also observed by Singh et al. (2009), Chetri and 
Pokharel (2005), and Namgali, Fox, and Bhatnagar (2004).

While there were differences in results among models, all future 
projections showed similar spatial patterns of habitat losses in 2050 
and 2070, driven by climatic factors. The significant reduction in the 
present-day distribution of suitable conditions for the argali would 
potentially occur at lower elevations in the southeastern Pamirs. The 
massive habitat loss could be attributed to the decrease in precipi-
tation projected specifically for the lower elevation areas of south-
eastern Tajikistan (SHCOEP 2014). NCCA (2003) has documented 
the effects of climate change in the Tajikistan Pamirs with continuing 
glaciers degradation. In contrast, in the northern part of the study 
area where relatively high elevations occur, suitable habitats are pro-
jected to remain stable. On average, Marco Polo argali could lose 
more than two-thirds of their present suitable habitat by 2070. Our 
results predicted higher estimates of loss than those ungulate stud-
ies conducted in other mountainous regions. For example, Luo et al. 
(2015) predicted more than half of the current suitable areas for the 
Tibetan ungulates would be lost by 2080 due to climate change. This 

difference in estimates could be because the Tibetan Plateau, com-
pared to other mountain systems, is retreating at an accelerating rate 
due to global warming (IPCC (Intergovernmental Panel on Climate 
Change), 2007; Radi et al., 2014). Also, ungulates located in different 
regions of the mountain may have different habitat requirements 
and not equally sensitive to climate change (Chen, Hill, Ohlemuller, 
Roy, & Thomas, 2011).

Although our future models detected retention of suitable hab-
itat in parts of the northern region, we still observed a shift of the 
species distribution northward (latitudinal) and possibly to higher 
elevations propelled by climate change, as the southern region ex-
perienced a major decline of suitable habitat. Previous research 
showed the spatial response to climate change for a variety of spe-
cies—shifting distributions northward and upward (Alvarez, Salas, 
Harings, & Boykin, 2017; Ogawa-Onishi, Berry, & Tanaka, 2010; 
Popy, Bordignon, & Prodon, 2010; Root et al., 2003; Wilson et al., 
2005). In our results, about 20% (2,500 km2) of the average habitat 
gains in 2070 showed a shift northwards. In contrast to Luo et al. 
(2015) that detected no elevational shift of Tibetan ungulates, our 
model projected a future altitudinal change of suitable areas from 
lower to higher elevations in the northern region of the study area 
where the highest elevations occur. An elevational shift of forage 
productivity to higher latitudes (Singh, Grachev, Bekenov, & Milner-
Gulland, 2010) could result in altitudinal shifting of argali in response 
to climate change.

4.2 | Uncertainty and robustness of future 
projections

Three have been objections by a handful of studies about the 
use of climatic variables alone to model the climate envelope of 
species (Geyer, 2011; Sax, 2007) because there are a wide range 
of climate change-related stresses that are at play that could af-
fect population ecology and physiology. Climatic variables alone 
may not always correctly ascertain current or future species dis-
tribution over space (Salas, Seamster, et al., 2017). Despite the 
limitations of models using climatic variables solely, several pro-
ponents have praised their crucial role to provide broad insights 
on the future effects of climate change on species distribution 
(Guisan & Thuiller, 2005; Soberón, 2007). Although complete 
assessment of the effects of climate change on argali includes 
other indirect variables such herders’ presence and general 
human presence (Panthi, Khanal, Acharya, Aryal, & Srivathsa, 
2017; Shrestha et al., 2014) (including poaching pressure) or pre-
dicted paved roads and villages, they are not often utilized when 
projecting to future distributions. Also, a study by Bucklin et al. 
(2015) using 14 vertebrate species found that climate variables 
were more critical in ENMs than other environmental predictors. 
Our models used nonclimatic dataset that were found to optimize 
model performance and ecological applicability. However, vari-
ables that would have added value to the current study, such as 
species life history, dispersal capacity, and the complex ecologi-
cal interrelationships among species (Soberón, 2007), were not 
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integrated into the modeling process due to data unavailability. 
Furthermore, when we projected present conditions to future 
years, we assumed that the land cover and other topographic fac-
tors in the region would remain stable in the future. These short-
comings of our models could result to spatial mismatch between 
the projected future and real distributions of argali habitats. 
Results of our study may not deliver the most accurate predicted 
distributions; however, they could still facilitate in Marco Polo ar-
gali conservation planning in the region and provide approxima-
tion of changes of species distribution in the context of climate 
change.

In terms of our modeling techniques, multiple limitations asso-
ciated with the projection of species distributions into the future 
under different climate scenarios have been documented. Three 
broad categories of uncertainties affecting the climate variables 
used to drive the ENMs include (a) uncertainties in future green-
house gas concentrations (Meinshausen, 2011), (b) limitations in 
the accuracy of GCM-simulated, large-scale physical climate re-
sponses to changing greenhouse gas levels (Knutti & Sedláček, 
2013), and (c) shortcomings and assumptions inherent to statis-
tical downscaling methods used to refine GCM results to a finer 
level of spatial detail (Barsugli, 2013; Dixon, 2016). By utilizing 
data products derived from four GCMs and two RCPs, this study 
partially explores two of these three sources of climate variable 
uncertainty. Stoklosa, Daly, Foster, Ashcroft, and Warton (2015) 
specifically discuss approaches to account for some uncertain-
ties in the climate variables used to drive ENMs. Furthermore, 
several authors have shown variability among future projections 
of suitable climatic conditions when using different climate mod-
els applied to the same species occurrence dataset (Bakkenes, 
Alkemade, & Ihle, 2002).

Variability of results makes assessment of projections of future 
conditions a complex effort. First, it is not possible to determine 
which single ENM could provide the most accurate information for 
a species, although one could argue that the climate model with the 
highest accuracy in capturing the present-day suitable habitat con-
ditions may produce more accurate future projections. However, 
Thuiller (2004) reasoned that even when a model has the highest 
AUC and K statistics, the model may not provide the best estimate 
of the future distribution of suitable conditions, especially as every 
model is based on different assumptions. It is most fitting to use an 
ensemble model of future projections, as this ensemble represents 
the areas of agreement among individual model projections. The re-
liability of future conditions produced by ensembles may be ques-
tioned, but ensemble results do incorporate the positive aspects 
of multiple models and provide a more conservative assessment of 
these conditions.

5  | CONCLUSION

The main contribution of this study is the quantification of the 
possible impact of climate change regimes on the availability of 

future suitable habitats for Marco Polo argali. Results in all our 
models showed major losses of suitable habitat for the popula-
tions of argali in eastern Tajikistan. While our results are poten-
tial projections of future Marco Polo argali suitable habitat, this is 
the first quantitative assessment of habitat shifts of argali under 
future climate change in eastern Tajikistan, which could provide 
information for conservation planning for this near threatened 
species in the region. There is a need to conduct a similar study 
to include habitats in adjacent populations in Afghanistan, China, 
Pakistan, and Kyrgyzstan and to determine the extent of changes 
in critical habitats in climate scenarios.
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