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Background
Recently with the development of network technology and the accumulation of big data, 
more and more healthcare services have appeared, including online medical information 
retrieval and biomedical question answering applications, which can help people seek 
health information and biomedical knowledge quickly and economically [1]. Among 
these healthcare application scenarios, biomedical question answering technology, a 
sub-task of natural language processing in the biomedical domain which could locate 
and extract required biomedical text spans, is a basic and useful method for knowledge 
retrieval and representation.

Question answering (QA) task is an essential part of neural language processing 
(NLP), of which biomedical question answering is always an important and challenging 

Abstract 

Background:  Biomedical question answering (QA) is a sub-task of natural language 
processing in a specific domain, which aims to answer a question in the biomedical 
field based on one or more related passages and can provide people with accurate 
healthcare-related information. Recently, a lot of approaches based on the neural 
network and large scale pre-trained language model have largely improved its perfor-
mance. However, considering the lexical characteristics of biomedical corpus and its 
small scale dataset, there is still much improvement room for biomedical QA tasks.

Results:  Inspired by the importance of syntactic and lexical features in the biomedical 
corpus, we proposed a new framework to extract external features, such as part-of-
speech and named-entity recognition, and fused them with the original text represen-
tation encoded by pre-trained language model, to enhance the biomedical question 
answering performance. Our model achieves an overall improvement of all three 
metrics on BioASQ 6b, 7b, and 8b factoid question answering tasks.

Conclusions:  The experiments on BioASQ question answering dataset demonstrated 
the effectiveness of our external feature-enriched framework. It is proven by the experi-
ments conducted that external lexical and syntactic features can improve Pre-trained 
Language Model’s performance in biomedical domain question answering task.

Keywords:  Biomedical question answering, Feature fusion, Pre-trained language 
model, POS, NER

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Xu et al. BMC Bioinformatics          (2021) 22:272  
https://doi.org/10.1186/s12859-021-04176-7

*Correspondence:   
xugezheng@buaa.edu.cn 
1 State Key Laboratory 
of Software Development 
Environment, Beihang 
University, No.37 Xueyuan 
Road, Beijing 100191, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04176-7&domain=pdf


Page 2 of 19Xu et al. BMC Bioinformatics          (2021) 22:272 

branch. Nowadays, with the emergence of large-scale labelled question answering data-
sets and the development of neural network models, machine reading comprehension 
(MRC) based QA tasks have been widely studied. In general, the goal of MRC based QA 
task is to answer a specific question given one or more related passages. It could still be 
divided into two main sub-classes according to different methods of obtaining answers: 
extractive and generative. For generative QA task, the expected answer is usually not 
present in the given context and needs to be inferred and generated [2]; whereas for the 
extractive task, the answer span could be extracted from one or more precise places in 
the given passages [3], which is more reasonable and expected for biomedical question 
answering researches. It is useful and highly applicable since it could provide a reliable 
answer to the users among many related biomedical passages and act as the last step in 
the automatic biomedical QA system and some healthcare services.

Traditionally, a pipeline of question answering consists of three main steps: feature 
engineering, question classification and answer processing [4], where the first step is 
about text feature construction such as named-entity recognition (NER) and part-of-
speech (POS). Since the emergence of the language model and deep neural network 
model, people started to leverage continuous text representation to complete QA task, 
in which feature engineering is still an important part. They usually keep question-
answer word matching and other syntactic and lexical information as additional feature 
embeddings aligned with word embeddings to enhance task performance [3]. Recently, 
large-scale pre-trained language models (PLM) have achieved excellent performance in 
various NLP tasks [5, 6] including question answering.

As for biomedical question answering, considering the specific characteristics of 
biomedical corpora, feature engineering plays a more important role in the question-
answer matching process and affects the final task performance. Researchers have made 
many attempts in this regard. On the one hand, they employed the unlabeled biomedical 
text to train a domain language model, in order to obtain a more adaptive biomedical 
text representation [4, 7]; on the other hand, they tried to introduce some domain fea-
tures like biomedical NER to enrich the original QA text [8, 9]. However, there are still 
a lot of problems to be solved in BioQA task. For example, compared with general cor-
pora, biomedical text usually contains a large number of abbreviations, domain proper 
nouns, and non-alphanumeric characters [10], which can hardly be all covered by the 
biomedical NER that merely focuses on a specific biomedical category named entity’s 
recognition such as disease entity or gene entity; besides, for a biomedical question like 
“What is the genetic basis of Ohdo syndrome?”, the start-of-the-art model’s answer is 
“Lujan syndrome” [11], which is far from the golden answer “mutations in MED12” as 
it pays too much attention to biomedical concept “syndrome” but ignores syntactic fea-
tures and confuses expected answer type of question. Moreover, considering the small 
scale of biomedical QA dataset, inappropriate ways of adding biomedical information 
such as latent answer type (LAT) in the domain task fine-tuning process can sometimes 
affect the robustness of the original model and even result in some negative effects [12].

In this research, we focused on extractive question answering task in biomedical 
domain and proposed a framework to extract external syntactic and lexical features, 
such as POS and general NER, and to fuse these auxiliary features into the sentence rep-
resentation encoded by pre-trained language model in order to enrich the model with 
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more syntactic information, emphasize the lexical representation of biomedical text, 
enhance the matching degree between question and passages and bridge the representa-
tion gap between general and domain corpus without disturbing the PLM performance. 
We have demonstrated our idea in BioASQ 6b, 7b, 8b tasks and achieved a promising 
performance.

Related work

Biomedical Question Answering Models
The biomedical QA task has attracted many NLP researchers’ attention in recent years 

due to its wide range of applications and unique domain textual characteristics. Lots of 
approaches and models have been proposed in the community. For example, Wiese et al. 
[4] proposed an RNN-based QA model, leveraging biomedical Word2Vec embeddings 
to realize the domain transfer learning. Nowadays, with the emergence of pre-trained 
language model including ELMo [6], BERT [5], XLNet [13], researchers usually use 
PLM structure as embedding and encoding modules, then add several concise down-
stream task layers to transfer the pre-trained language model to complete a specific task, 
such as question answering and text classification. In the biomedical domain, Lee et al. 
presented BioBERT [7], a large scale pre-trained language model based on BERT and 
trained on several biomedical corpora, including 200k PubMed abstracts, 270k PMC full 
texts, and a combination of these two, which leads to an obvious performance augmen-
tation in many biomedical NLP tasks. Based on biomedical pre-trained language model, 
Jeong et al. [14] recently proposed to make use of transfer learning to enhance domain 
QA’s performance.

External Features in general NLP Tasks
Featuring engineering always plays an important role in machine learning. With the 

development of neural network framework in recent years, many efforts have been 
devoted to capturing external textual features and merging them into deep learning 
models to enhance their performance in different NLP related tasks. There are vari-
ous manifestations of external features. For example, based on RNN framework, Chen 
et al. [3] proposed an open-domain QA model DrQA, which used lexical and semantic 
features like POS, NER, and question-context matching information as a part of input; 
Qu et  al. [15] proposed a history answer embedding as the external characteristics to 
the original BERT embedding in the conversational question answering task. Besides, 
to obtain a better textual representation under PLM framework, Levine et al. [16] took 
advantage of lexical-semantic level information extracted by WordNet in the BERT pre-
training phase; Wang et al [17] incorporated word and sentence structural features into 
pre-training process to enhance language understanding.

On the other hand, how to introduce these external features without influencing the 
robustness and performance of the original neural network model has also been widely 
studied. For instance, Chen et al. [3] simply aligned POS and NER features with input 
text as additional labels in DrQA. Wu et al. [18] emphasized the entity place informa-
tion by adding ‘$’ symbol in the raw input sentence for the entity relation classification 
task using BERT pre-trained language model. Qu et al. [15] directly added the additional 
embedding information on the original BERT embeddings for the conversation QA task.
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External Features in Biomedical Question Answering Task
Considering the domain characteristics of biomedical texts, scientific researchers have 
already noticed the importance of external features. For example, in RNN-based mod-
els, lexical and syntactical features play an important role in the QA task. Wiese et al. 
[4] added bio-entity tag embeddings as external features in extractive biomedical QA 
task. Besides, under the bidirectional attention flow network structure, Oita et al. [19] 
attempted a post-processing module to match the candidate answers with biomedi-
cal NER features in the answer selection process, which indeed improved the model’s 
performance but was still inferior to pre-trained language model. Lamurias et  al. [8] 
enriched the question and answer texts using MER [9], a biomedical named entity recog-
nition tool, for ranking and selecting type QA task. However, their attention is mainly on 
biomedical features and domain terminology. Nowadays, under the framework of pre-
training language models, the training process involves both biomedical corpus and gen-
eral texts, but not enough attention has been paid to general external features. How to 
select and extract meaningful external features from both of these two different domains 
at the same time has not been widely concerned. Besides, considering the small-scale 
dataset of Biomedical QA task, the choice of the added external features and the feature 
fusion method should be paid special attention; otherwise, it may cause negative effects. 
For example, Telukuntla et al. [12] introduced latent answer type (LAT) features in the 
biomedical QA task by adding special marks to the original question and passages text, 
which has realized the type distinction goal but caused a slight decline in the overall per-
formance of the model.

Unlike the aforementioned methods which did not attach special attention to gen-
eral features or which did not elaborate their usage of these features clearly, this article 
focuses on the general lexical and syntactical features such as POS and NER. Further-
more, based on the pre-trained language model, a new feature fusion framework is pro-
posed to explore a reasonable method of how to use these external features, aiming to 
improve the performance of question answering tasks in the biomedical field.

Methods
In this section, we will explain our feature-enriched framework for biomedical question 
answering task. The overall architecture is shown as Fig. 1. Firstly, we will give the prob-
lem definition and the model overview. Secondly, we will introduce the usage of pre-
trained language model and external feature extraction methods. Afterwards, we will 
present the feature fusion module and the answer selection process.

Problem definition and model overview

For an extractive question answering task, given a context passage P = {x1, . . . , xm} 
and a question Q = {q1, . . . , qn} , supposing there exists one and only one answer span 
A = {xi}

lb
la

 consisting of continuous tokens in the context passage, where xi represents 
context token, qi represents question token, m is the context passage length and n is the 
question length. Besides, la and lb represent respectively the start and end position of 
answer span in context passage. The goal is to locate the answer boundary la and lb.

In this framework, we will firstly use pre-trained language model BioBERT to encode 
our input sentences P and Q into a sequence of continuous representation. Since 
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BioBERT leverages the same vocabulary list and WordPiece tokenization method as 
BERT, although the biomedical vocabulary is quiet different from general vocabulary, 
the domain words will be separated into small pieces and it can largely avoid the out-
of-vocabulary (OOV) phenomena. Therefore, the final input of BioBERT model is 
{[CLS],Q′, [SEP],P′} where P′ and Q′ are sub-tokenized word pieces sequence of origi-
nal P and Q, and [CSL], [SEP] are BERT special marks used for separating the sentence 
pairs and for some classification tasks. We note output of BioBERT pre-trained language 
module as Hb:

Simultaneously, the input sentences will be mapped to a sequence of tokens embedded 
in a continuous space by the external feature extraction module, noted as Hf  , with the 
same form of Hb.

Afterwards, we will use a feature fusion module to merge these two sentences repre-
sentations and finally send them to the specific task layer, and predict the answer span 
start and end position la and lb.

External feature extraction

External features can provide various and rich information for unstructured texts. As it is 
better to fine-tune our PLM on both general QA dataset (SQuAD [20]), and biomedical QA 

(1)Hb = {[CLS], t1, . . . , tn′, [SEP], tn′+2, . . . , tm′}
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dataset (BioASQ dataset) [21] for a better QA performance, we introduced POS and NER 
these two general textual features which can bridge the gap between the general corpus and 
the biomedical contexts while providing needed syntactic and lexical features.

In order to introduce and merge these semantic and lexical features in QA task, we uti-
lized some off-the-shelf tools, including NLTK and spaCy. spaCy is a library for advanced 
Natural Language Processing in Python and Cython, it provides fast and convenient APIs 
for tasks such as tagging, parsing and named entity recognition, based on very latest 
research. As for natural language toolkit (NLTK) [22], it is a platform built for NLP learn-
ing, providing a lot of annotated corpora and a suite of text processing libraries for various 
NLP tasks.

As shown in Fig. 1, we utilized these two tools to tag the POS and NER features of input 
tokens and align them with BERT WordPiece tokenization result. Then, we used an embed-
ding layer, which is a linear transformation, to map these two one-hot features, FPOS and 
FNER , to a continuous feature space, respectively. Afterwards, we concatenated these two 
feature embeddings as the feature extraction module output:

where MPOS ∈ R
1×mPOS and MNER ∈ R

1×mNER are trainable weights, mPOS and mNER are 
hyperparameters, and “;” represents concatenation in the last dimension.

Feature fusion

In this post-BERT block, we proposed a feature fusion structure to merge together extracted 
external features and BioBERT output, aiming to bring in the external textual information 
without disturbing original BERT’s stability, and then utilized a simple task layers to pre-
dict the answer span boundary. Feature fusion consists of three sub-layers, firstly, we used 
a hard fusion layer, extending the feature embeddings to the same dimension as BioBERT 
output, adding them together roughly and activating by a sigmoid function:

Next, we used a highway network [23] to further fuse these representations. For the 
feedforward non-linear transformation layer F(·) , we utilized tanh as activation func-
tion; as for the transform gate T (·) , we used sigmoid function to activate:

where “ ⊙ ” represents the element-wise multiplication. Afterwards we leveraged a trans-
former-encoder [5, 24] to catch the inter-dependency between the feature-enriched 
tokens, as shown in Fig. 1:

where Hencoded is the final output of feature fusion module.

(2)EPOS =MPOSFPOS ,ENER = MPOSFPOS

(3)Hf =[EPOS;ENER]

(4)Hhard = σ(Hb +Mf Hf )

(5)
HHighway

= F(Hhard)⊙ T (Hhard)+Hhard ⊙ (1− T (Hhard))

(6)Hencoded = TEncoder(HHighway)
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Answer span prediction

To complete the answer boundary prediction task, we added a simple fully-connected 
layer at the end and utilized softmax activation function to simulate the start and end 
token position’s distribution:

where Pi
s represents the possibility that the i-th token is the answer start position, and 

the m′ is the total length of input sequence.
We defined average log-likelihood of start and end position as our training objective:

where N is the batch size and yns  , yne represent respectively golden answer’s start and end 
token index for n-th example.

Results
Datasets

The main data of the experiment comes from BioASQ challenge, an annual competition 
on large-scale biomedical semantic indexing and question answering (QA) organized 
since 2013 [25]. BioASQ comprises two main tasks, task A is about the annotation of 
new biomedical documents from PubMed, a free search engine for life science and bio-
medical references, with MESH headings; task B consists of several biomedical semantic 
QA tasks, including information retrieval, multi-type (yes/no, factoid and list) question 
answering, and summarization tasks. In this research, we focused mainly on factoid 
question answering of task B, which is the most similar branch with reading compre-
hension based QA task. Therefore, We employed the factoid QA datasets of 2018 (6b), 
2019 (7b) and 2020 (8b) challenges to verify our model. To enhance the reliability of the 
comparison experiments and verify the effectiveness of our model, we directly used the 
pre-processed 6b, 7b1 and 8b2 training data provided by DMIS-Lab.

Besides, since the emergence of pre-trained language models, the performance of 
question answering tasks has been remarkably improved on a lot of large-scale general 
QA datasets, including SQuAD1.0 [20], a widely used general reading comprehension 
dataset containing more than 100k question-answer pairs posed by crowd workers on 
a set of Wikipedia articles3. However, limited by the size of training data, the perfor-
mance of domain QA tasks still has room for improvement. It is verified by Gururangan 

(7)Pi
s =

exp(Wt ·H
i
encoded)∑m′

k=0 exp(Wt ·H
k
encoded)

(8)P
j
e =

exp(Wt ·H
j
encoded)∑m′

k=0 exp(Wt ·H
k
encoded)

(9)L = −
1

2N

N∑

n=1

logP
yns
s + logP

yne
e

1  https://​github.​com/​dmis-​lab/​bioasq-​biobe​rt
2  https://​github.​com/​dmis-​lab/​bioas​q8b
3  https://​datar​eposi​tory.​wolfr​amclo​ud.​com/​resou​rces/​SQuAD-​v1.1

https://github.com/dmis-lab/bioasq-biobert
https://github.com/dmis-lab/bioasq8b
https://datarepository.wolframcloud.com/resources/SQuAD-v1.1
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et al. [26] that fine-tuning a PLM firstly on a general task-oriented dataset can help to 
improve model’s performance of this task on a domain dataset as well, and this method-
ology is widely used in biomedical natural language processing tasks. Therefore, in our 
experiments, we utilized SQuAD1.0 [20] to firstly fine-tune our model and to promise 
the performance. Table 1 shows some basic statistical information about the general and 
biomedical datasets mentioned above, from which we could notice the huge distance 
between biomedical QA datasets and general QA dataset in number.

Configuration and training details

In the experiment, we mainly utilized BioBERT parameters to initialize our network and 
fine-tuned the model sequentially in SQuAD and biomedical training set. As we men-
tioned in “Methods” section, we employed two off-the-shelf tools, NLTK and spaCy, 
to extract part-of-speech (POS) and named-entity recognition (NER) features from 
unstructured question and passages. We have kept all of the 36 part-of-speech tags and 
chosen 12 commonest named-entity tags that appeared in the biomedical text, including 
PERSON, NORP, ORG, DATE, TIME, PERCENT, GPE, PRODUCT, QUANTITY, ORDI-
NAL and CARDINAL. Regarding padding tokens and BERT marks as two independent 
classes, we set 38 and 14 as hyper-parameters for embedding dimensions in the feature 
extraction module. The parameters of BioBERT pre-trained language model, feature 
embedding module, feature fusion module, and task layers are all trainable. To avoid the 
contingency of the experimental results and to verify the robustness of the model, we 
chose different seeds (12345, 24, 488) randomly to repeat the experiments, and the aver-
age results are shown in Table 4. Other than that, the other tables’ results (in Tables 2, 3 
and 5) are the optimal experimental results among these three seeds.

Table 1  Dataset overall information

Dataset name Raw training set Post-processed training set Testing set

SQuAD1.0 107,785 107,785 –

BIOASQ 6b 619 4772 161

BIOASQ 7b 779 5537 162

BIOASQ 8b 941 10147 151

Table 2  Comparison of best experimental results on BioASQ 6b, 7b and 8b

Bold values represent the highest results

Model 6b Factoid QA 7b Factoid QA 8b Factoid QA

SAcc LAcc MRR SAcc LAcc MRR SAcc LAcc MRR

AUTH [29] 0.2015 0.4020 0.2713 0.2363 0.3710 0.2898 0.1642 0.2853 0.2105

ZhuLab-Fudan [30] 0.2387 0.3314 0.2762 0.2765 0.3922 0.3252 0.3509 0.5141 0.4115

Google [31] – – – 0.4201 0.5822 0.4798 – – –

BioBERT [11] 0.4286 0.5714 0.4841 0.4367 0.6274 0.5115 – – –

UNCC [12] – – – 0.3554 0.4922 0.4063 – – –

Umass [32] – – – – – – 0.3133 0.4798 0.3780

KU-DMIS-2020 [14] 0.4141 0.6134 0.4805 0.4510 0.6245 0.5163 0.3819 0.5719 0.4593

Our Model 0.4517 0.6294 0.5197 0.4444 0.6419 0.5165 0.3937 0.6098 0.4688
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Besides, to further compare and verify the effectiveness of the proposed model, we 
also conducted two contrast tests using BERN biomedical named entity extractor [27] 
and SciBERT pre-trained language model [28] respectively. BERN APIs could extract 
seven different categories of biomedical named-entity from a free passage, including 
gene, disease, drug, specie, mutation, miRNA and pathway. SciBERT is a BERT based 
PLM trained on scientific texts containing biomedical corpus.

Table 3  Ablation experiment results of our model

Bold values represent the highest results

Model 6b Factoid QA 7b Factoid QA 8b Factoid QA

Sacc Lacc MRR Sacc Lacc MRR Sacc Lacc MRR

Baseline (BioBERT) 0.3973 0.6217 0.4838 0.4318 0.6164 0.5007 0.3848 0.5585 0.4492

+FF (Feature Fusion) 0.4328 0.6296 0.5066 0.4467 0.5998 0.5085 0.3928 0.5813 0.4636

+POS+FF 0.4363 0.5957 0.5024 0.4353 0.6171 0.5051 0.3994 0.5786 0.4660

+NER+FF 0.4471 0.6114 0.5072 0.4471 0.6114 0.5072 0.4053 0.5795 0.4678

Full model 
(BioBERT+POS+NER+FF)

0.4517 0.6294 0.5197 0.4444 0.6419 0.5165 0.3937 0.6098 0.4688

Table 4  Robustness detection experiment results using the average evaluation value and the 
standard deviation among different seeds (12345, 24, 488)

Bold values represent the highest results

Model 6b Factoid QA

SAcc LAcc MRR

BioBERT (main baseline) 0.4048 ± 0.0107 0.6278 ± 0.0061 0.4927 ± 0.0102

Our Model (BioBERT+POS+NER+FF) 0.4325 ± 0.0167 0.6200 ± 0.0138 0.5063 ± 0.0137

Model 7b Factoid QA

SAcc LAcc MRR

BioBERT (main baseline) 0.4362 ± 0.0087 0.6146 ± 0.0121 0.5059 ± 0.0045

Our Model (BioBERT+POS+NER+FF) 0.4359 ± 0.0078 0.6379 ± 0.0035 0.5122 ± 0.0037

Model 8b Factoid QA

SAcc LAcc MRR

BioBERT (main baseline) 0.3859 ± 0.0087 0.5566 ± 0.0061 0.4509 ± 0.0065

Our Model (BioBERT+POS+NER+FF) 0.3916 ± 0.0033 0.5898 ± 0.0156 0.4652 ± 0.0040

Table 5  Contrast experiment results between different pre-trained language models and different 
external features

Bold values represent the highest results

Model 6b Factoid QA 7b Factoid QA 8b Factoid QA

SAcc LAcc MRR SAcc LAcc MRR SAcc LAcc MRR

SciBERT 0.3688 0.5974 0.4544 0.4203 0.6051 0.4919 0.3793 0.5737 0.4496

SciBERT+POS+NER 0.3967 0.5959 0.4766 0.4253 0.5901 0.4900 0.3874 0.5523 0.4499

Baseline (BioBERT) 0.3973 0.6217 0.4838 0.4318 0.6164 0.5007 0.3848 0.5585 0.4492

BioBERT+BioNER+FF 0.4380 0.6075 0.5078 0.4355 0.6113 0.5012 0.3982 0.5875 0.4692
BioBERT+POS+BioNER+FF 0.4171 0.6263 0.5011 0.4419 0.6211 0.5106 0.4032 0.5858 0.4689

Our model 
(BioBERT+POS+NER+FF)

0.4517 0.6294 0.5197 0.4444 0.6419 0.5165 0.3937 0.6098 0.4688
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All experiments are compiled and tested on a Linux server (CPU: Intel(R) Xeon(R) 
CPU E5-2678 V3 @ 2.50GHz; GPU: NVIDIA GeForce RTX 2080Ti). We trained our 
model with a relatively small batch size of 8.

Experimental results and analysis

For each factoid question, it is required to return 5 best matched answer spans extracted 
from one or multiple given passages in order. We employed three official metrics used by 
BioASQ challenge, strict accuracy (SAcc), lenient accuracy (LAcc) and mean reciprocal 
rank (MRR), to evaluate the result, of which SAcc measures the strict answer location 
capability, LAcc measures the model’s perception of answers range, and MRR reflects 
the overall quality of the returned answers [25]:

where n is the test set size; C1 represents the number of factoid questions correctly 
answered by the first returned answer span, while C5 is the number of questions that 
have been correctly answered considering the whole five returned answers, and r(i) is 
the rank of golden answer among the five returned answer spans for each question i. 
In situation that golden answer of question j does not occur among returned spans, we 
considerate r(j) as infinite and 1

r(j) as 0. We have leveraged the official tools provided in 
the BioASQ web site to evaluate our experimental results [25].

We conducted several different experiments and evaluated our model on BioASQ 6b, 
7b and 8b test sets. The results are shown as following. Table 2 shows the comparison 
results of our model and different baseline models on BioASQ 6b, 7b and 8b challenges, 
where the comparative results were collected from the related papers and BioASQ web-
site4. In particular, for the baselines’ results of 8b challenge, considering the consistency 
of the model’s performance, we selected the best models that participated in all five 
batch competitions to compare. The chosen models in this research are historical par-
ticipants with excellent results in the BioASQ challenge:

•	 AUTH [29] Participating in BioASQ 6b and 7b tasks, AUTH model utilized word 
embedding as textual representations directly and extracted some external biomedi-
cal features based on MetaMaps, BeCAS, and WordNet to enhance model’s perfor-
mance;

•	 ZhuLab-Fudan [30] ZhuLab system adopted both traditional information retrieval 
approaches and knowledge-graph based method to conduct factoid question answer-

(10)SAcc =
C1

n

(11)LAcc =
C5

n

(12)MRR =
1

n

n∑

i=1

1

r(i)

4  http://​parti​cipan​ts-​area.​bioasq.​org/​resul​ts/​8b/​phaseB/

http://participants-area.bioasq.org/results/8b/phaseB/
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ing task in BioASQ 6b and 7b challenges; in 8b challenge, they experimented with 
different pre-trained language models, such as BERT [5], BioBERT [7], XLNet [13] 
and SpanBERT [33], combining with transfer learning and voting method [34], to 
better solve biomedical factoid QA task.

•	 Google [31] Based on BERT pre-trained language model [5], Hosein et al. firstly fine-
tuned QA model on two general QA datasets NQ [35] and CoQA [36] and then 
completed domain QA task;

•	 BioBERT [11] BioBERT was based on pre-trained language model BERT [5] as well 
but further retrained on a large-scale biomedical corpus. After continuously fine-
tuning on SQuAD1.0 and BioASQ training sets, it achieved a remarkable improve-
ment in BioASQ 6b test set and won the first place in 7b challenge;

•	 UNCC [12] Based on domain pre-trained language model BioBERT, UNCC fine-
tuned the model firstly on SQuAD2.0 [37] and added biomedical lexical answer type 
as additional features;

•	 Umass [32] Based on BioBERT PLM, Umass team introduced a biomedical entity de-
noising task in the pre-training process to help the PLM learn a better domain text 
representation;

•	 KU-DMIS-2020 [14] Jeong et al. proposed using MultiNLI dataset [38] and natural 
language inference (NLI) tasks to enhance BioBERT’s performance for domain QA 
tasks, which gained excellent results on BioASQ 8b challenge.

Following the same fine-tuning process as the main baseline model BioBERT, our model 
was initialized with BioBERT PLM and leveraged POS, NER these two external features 
as additional information on both general QA training set (SQuAD 1.0) and biomedi-
cal training process under proposed framework shown in Fig.  1. In our experiments, 
we have noticed an improvement of all of three metrics(SAcc, LAcc, and MRR) by our 
model, and achieved a SOTA result for all metrics on 6b, 8b test sets and two metrics 
on 7b test set, which demonstrated that our feature-enriched structure could indeed 
improve biomedical question answering task’s performance.

Besides, we took several ablation experiments as well to prove the importance of both 
POS and NER features. All experiments are implemented under the same seed and 
hyper-parameters. Experimental results are shown in Table  3, where the base model 
is the BioBERT model. FF model is the base model simply added by an encoder layer, 
which can eliminate the influence of a deeper neural network structure in the feature 
fusion module. We also verified the effectiveness of POS and NER features, respectively. 
The results show that the addition of a single feature makes the experimental results 
unstable and sometimes even leads to a side effect, and the combination of all of these 
modules could achieve the best performance. We will further discuss this phenomenon 
with concrete examples in the “Discussion” section.

To further explore the framework’s stability and execute the error analysis of the mod-
el’s performance, we randomly selected several different seeds for repeated experiments 
on 6b, 7b and 8b three data sets. Shown in Table 4, the experimental results slightly fluc-
tuated on SAcc and LAcc two metrics, while the overall indicator MRR showed a better 
performance and proved the effectiveness of our method. Overall, the baseline model 
BioBERT and our model have similar standard deviations in multiple experiments.



Page 12 of 19Xu et al. BMC Bioinformatics          (2021) 22:272 

Furthermore, we also conducted several comparative experiments to demonstrate 
the proposed general features’ effectiveness and the overall framework’s reasonability, 
of which the results are shown in Table 5. On the one hand, we replaced BioBERT pre-
trained language model utilized in our model with SciBERT, another scientific domain 
PLM, and experimented on BioASQ 6b, 7b and 8b, proving the effectiveness of the pro-
posed framework. Although SciBERT was also retrained on the biomedical corpus, it is 
demonstrated that its overall performance is worse than BioBERT. On the other hand, 
we compared the selected general features with biomedical domain features. In our 
experiments, we leveraged BERN [27] as the BioNER annotator, which could recognize 
seven different categories of biomedical named-entity. Similarly, implemented under the 
same hyper-parameters, it is demonstrated in Fig. 5 that our proposed framework and 
the selected general features can better improve the performance of biomedical QA task. 
Remarkably, as the training dataset in the biomedical domain expands and the volume of 
data increases, the role of domain named entities is gradually amplified under our pro-
posed framework, which reflects the importance of data in the neural network models 
and the effectiveness of our feature fusion method. The results also remind us that as the 
biomedical domain community grows and domain labeled data increase, we should pay 
more attention to domain features and taggers.

Discussion

Case study

Here we introduce some test cases to analyze the concrete influence of two external 
features added in our models in an intuitive way, as shown in Fig. 2, where the text in 
orange represents the correct answer, and the number in brackets represents the prob-
ability ranking of the extracted answer. For the first instance, the expected answer is a 

Example 1:
Question: Which RNA polymerase II subunit carries RNA cleavage activity?
Golden Answer: TFIIS
Baseline Model: A12.2 [1],  Rpb9 [2],  RNAPII [3],  rpb2 [4], TFIIS [5]
POS Model: [Golden answer is not in the top ten answers]
NER Model: TFIIS [1],  RNAPII [2],  A12.2 [3],  Rpb9 [4],  second largest subunit [5]
Full Model:  RNAPII [1],  A12.2 [2],  Rpb9 [3],  TFIIS [4],  second largest subunit [5]

Example 2:
Question: What is the genetic basis of Ohdo syndrome?
Golden Answer: mutations in MED12
Baseline Model:  Lujan syndrome [1],  FG syndrome [2],  Opitz-Kaveggia (FG) syndrome, Lujan syndrome [3],  FG syndrome, Lujan 
syndrome [4],  X-linked Ohdo syndrome [5]
POS Model: Mutations [1], Maat-Kievit-Brunner [2],  FG syndrome [3], Maat-Kievit-Brunner type [4],  Lujan syndrome [5]
NER Model: [Golden answer is not in the top ten answers]
Full Model: Maat-Kievit-Brunner [1], Opitz-Kaveggia (FG) syndrome [2], Mutations in MED12 [3], Maat-Kievit-Brunner type [4],
Opitz-Kaveggia (FG) syndrome, Lujan syndrome [5]

Example 3:
Question: How many PML isoforms exist in the human genome?
Golden Answer: 7, designated I to VII, I-VII
Baseline Model: [Golden answer is not in the top ten answers]
POS Model: several isoforms designated PMLI to VII [8]
NER Model: several isoforms designated PMLI to VII [4]
Full Model: several isoforms designated PMLI to VII [6]

Fig. 2  Biomedical QA case study—QA examples. Three examples are extracted from BioASQ challenge test 
set. Baseline model is the BioBERT Model; POS Model is baseline model plus POS feature and FF (Feature 
Fusion) module; NER Model is baseline model plus NER feature and FF module; Full Model is baseline model 
plus NER, POS features and FF module. The orange text represents the correct answer, and the number in 
brackets represents the probability ranking of the extracted answer
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biomedical proper noun, and it is recognized as an ORG entity by NER tool. Although 
the entity tag is meaningless for a transcription factor TFIIS, it locates and emphasizes 
the boundary of this entity, which can supply extra information for our model. We can 
notice that the NER model provides the best performance in the first example. In this 
example, POS features would not have been practical, and the introduction of such syn-
tactic structure even reduced the sensitivity of the model to the true answer to some 
extent, which also confirms the instability of a single feature shown in Table 3.

Besides, sometimes paying too much attention to an entity can misdirect our network 
and lead to a wrong answer type. In the second case, the expected answer is a genetic 
action, but both the baseline model and the NER model focus too much on “syndrome”; 
instead, the POS model which introduces syntactic features can correctly identify the 
expected answer type. Besides, from the Fig. 3 where the depth of the color represents 
the possibility that the token is selected as one of the answer boundaries, we can notice 
more intuitively that our feature-enriched model can distinct better both biomedical 
named-entity (Xq13) and the expected answer (mutations in MED12).

The third instance shows a trade-off among POS, NER and the full model when the 
question involves biomedical entity, where the baseline model can not detect the target 
answer span even considering the first ten returned answers while our feature enriched 
models can catch the required number information indeed and ameliorate model’s per-
formance in different degree.

Fig. 3  Biomedical QA case study—answer extraction Heatmap. The left side is the result of our model 
(BioBERT plus NER, POS features based on Feature Fusion Module), and the right side is the result of the 
baseline (BioBERT) model. The darker the color, the more likely this location is predicted to be the answer 
boundary
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POS and NER analysis

We analyzed statistical information and performance of the extracted features in 
detail. The statistic distribution of POS and NER tags among four training datasets 
are shown as Figs.  4 and 5. We can notice that the POS distribution in biomedical 
corpus is similar to that on SQuAD, however, the NER distributions have a great 

Fig. 4  NER statistical information among four datasets. The figure shows the distribution information of 
the extracted NER (Named Entity) features, where for example, “ORG” stands for entities such as companies, 
agencies and institutions; “CARDINAL” represents general numeral entities; “GPE” stands for entities including 
countries, cities and states

Fig. 5  POS statistical information among four datasets. The figure shows the distribution information of 
the extracted POS (Part-Of-Speech) features, where for example, “NN” is the tag of the noun, “JJ” stands for 
adjective, and “IN” represents preposition and subordinating conjunction
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difference. As we leveraged a general name entity recognition tool and the expected 
entity classes are mainly companies/agencies/institutions (ORG), countries/cities/
states (GPE), non-GPE locations (LOC), date, times, and other numeral words or 
phrases, these general named entity tags marked on biomedical corpora do not have 
strong semantic significance, but they remain the consistency with the general corpus 
and simultaneously play an important role in entity boundary distinction and entity 
classification.

In addition, in order to compare with the chosen general NER features, we also 
implemented our experiments with biomedical NER, of which the distribution 
information among four datasets is shown in Fig.  6. With fewer types of entities, 
we could notice a great distribution difference in GENE, SPECIES and DRUG these 
three classes between general and biomedical domain data. According to the number 
of marked NER tags, biomedical NER could indeed enrich biomedical domain lexi-
cal information; however, it could only provide limited external information on the 
SQuAD dataset and its performance improvement for QA tasks under our framework 
is weak and unstable when the domain dataset size is small. As mentioned earlier in 
the “Results” section, it is noteworthy that the role of biomedical domain entity fea-
tures becomes more and more manifest as the domain training data increases. In the 
future, with the emergence of more labelled biomedical QA data, we should prob-
ably consider more on how to better utilize the domain annotators and incorporate 
the domain features such as BioNER into the model to improve the performance of 
QA tasks further. Besides, as the amount of biomedical domain QA training data 
becomes more balanced with general domain training data, we could also consider 
using domain-specific POS taggers such as MedPost [39] and scispaCy [40], which 
were trained on the biomedical domain corpus, to better capture the structural fea-
tures of domain text and to improve task performance.

Fig. 6  Biomedical NER statistical information among four datasets. The figure shows the distribution 
information of the extracted Biomedical NER (Named Entity) features
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Unanswerable questions

Our model for factoid question answering is mainly based on extractive machine 
reading comprehension, which means the golden answer can always be continuously 
extracted from the given passage. However, after analyzing the BioASQ test data con-
cretely, we found some “Unanswerable Questions” that can not be directly answered by 
the given contexts, ignoring the case difference. Further divided into two sub-categories, 
weakly unanswerable and strongly unanswerable, these questions’ statistical information 
is shown in Table 6. Among them, “weakly unanswerable” means that similar answers 
can be extracted from the given text and can be equated with the golden answer after 
lexical transformation, singular-plural transformation, abbreviation reduction, special 
symbol processing, phrase structure changes, etc. For example, for question “Which 
phosphatase is inhibited by LB-100?” in batch 1 of 8b test data, the given context is 
“Here, we examined radiosensitizing effects of LB-100, a novel inhibitor of PP2A against 
AAM as a novel treatment strategy”, and the golden answer is “Protein phosphatase 2A”. 
From the given context, we could only extract “PP2A”, the abbreviation of the correct 
answer. In such cases, the text fragment returned by direct extraction is equivalent to the 
golden answer at the semantic and knowledge level, only the representation of the text is 
different, and some regularized or artificial changes can obtain the target answer.

As for the “strongly unanswerable” questions, golden answers usually cannot be 
obtained by single-point extraction, and often need to be extracted at multiple places 
in the given passages, spliced and summarized from the extracted fragments. There are 
some answers that even require the common sense and domain knowledge and could be 
obtained only by generative models. Answering these questions involves more inference, 
numeric calculation, multi-passage question answering, and text generation technolo-
gies, which is beyond our current model’s capabilities.

Conclusions
In this work, we leveraged external textual features to improve the QA text’s matching 
degree for biomedical question answering task. We adopted general syntactic and lexical 
features such as POS and NER to improve the QA matching degree, emphasize the bio-
medical sentence structure and proper entity, and bridge the gap between general and 
biomedical corpus. Besides, we proposed a novel framework to merge these features into 

Table 6  Statistical analysis of unanswerable factoid questions

Bold values represent the overall percentage of unanswerable questions

Title Batch 1 (%) Batch 2 (%) Batch 3 (%) Batch 4 (%) Batch 5 (%) All (%)

6b Weakly unanswerable ratio 9.7 4.8 9.4 18.2 18.2 13.0

Strongly unanswerable ratio 12.9 9.5 12.5 9.1 15.9 12.4

All unanswerable ratio 22.6 14.3 21.9 27.3 34.1 25.4
7b Weakly unanswerable ratio 17.9 16.0 10.3 5.9 17.1 13.6

Strongly unanswerable ratio 12.8 4.0 13.8 5.9 5.7 8.6

All unanswerable ratio 30.7 20.0 24.1 11.8 22.8 22.2
8b Weakly unanswerable ratio 3.1 8.0 17.9 2.9 9.4 7.9

Strongly unanswerable ratio 18.8 16.0 14.3 14.7 6.2 13.8

All unanswerable ratio 21.9 24.0 32.2 17.6 15.6 21.7
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the pre-trained language model in order to enhance downstream QA task performance. 
The results of experimental studies on BioASQ challenges have shown that the proposed 
method can achieve satisfying performance.

In the future, on the one hand, for those unanswerable questions in BioASQ chal-
lenge, we will further study how to introduce inference and generation modules in our 
framework to better answer these questions and complete machine reading comprehen-
sion task in the biomedical domain; on the other hand, we would like to further ana-
lyze the role of external features in terms of model interpretability at the theoretical 
and experimental levels, to utilize both the general and the biomedical domain features 
better. Besides, the work will also be developed to better merge external features, as an 
enhancement of knowledge detection and representation, into a pre-trained language 
model to improve the model’s performance on cross-domain natural language process-
ing understanding and generation tasks.
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