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Metastatic Prostate Cancer (mPCa) is associated with a poor patient prognosis. mPCa
spreads throughout the body, often to bones, with spatial and temporal variations that
make the clinical management of the disease difficult. The evolution of the disease leads to
spatial heterogeneity that is extremely difficult to characterise with solid biopsies. Imaging
provides the opportunity to quantify disease spread. Advanced image analytics methods,
including radiomics, offer the opportunity to characterise heterogeneity beyond what can
be achieved with simple assessment. Radiomics analysis has the potential to yield useful
quantitative imaging biomarkers that can improve the early detection of mPCa, predict
disease progression, assess response, and potentially inform the choice of treatment
procedures. Traditional radiomics analysis involves modelling with hand-crafted features
designed using significant domain knowledge. On the other hand, artificial intelligence
techniques such as deep learning can facilitate end-to-end automated feature extraction
and model generation with minimal human intervention. Radiomics models have the
potential to become vital pieces in the oncology workflow, however, the current limitations
of the field, such as limited reproducibility, are impeding their translation into clinical
practice. This review provides an overview of the radiomics methodology, detailing critical
aspects affecting the reproducibility of features, and providing examples of how artificial
intelligence techniques can be incorporated into the workflow. The current landscape of
publications utilising radiomics methods in the assessment and treatment of mPCa are
surveyed and reviewed. Associated studies have incorporated information from multiple
imaging modalities, including bone scintigraphy, CT, PET with varying tracers,
multiparametric MRI together with clinical covariates, spanning the prediction of
progression through to overall survival in varying cohorts. The methodological quality of
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each study is quantified using the radiomics quality score. Multiple deficits were identified,
with the lack of prospective design and external validation highlighted as major
impediments to clinical translation. These results inform some recommendations for
future directions of the field.
Keywords: radiomics, metastatic prostate cancer, radiomics quality score, deep learning, PET, CT, MRI
1 INTRODUCTION

Prostate Cancer (PCa) is a pernicious disease that is one of the
leading causes of cancer death among men throughout the world
(1). Early-stage diagnosis yields high 5-year survival rates of
above 90%, however, once the disease metastasises, it becomes
very lethal as 5-year survival rates drop drastically to less than
40% (2). For patients with bone metastases (BM), which is one of
the most common sites of metastases in PCa (3), 5-year survival
rates drop even further to less than 10% (4). Lymph node
involvement (LNI) also yields a poor prognosis for patients (5).
The clinical management of the disease is complicated by its
heterogeneity (6), with current practice aiming to stratify
patients into risk categories such that high-risk lesions are
identified and treated, and the over-treatment of low-risk
lesions is minimized (7). Radical prostatectomy (RP) is a
prominent treatment for localised disease, however, between 20
and 40% of patients presents with biochemical recurrence (BCR)
with the possibility of developing subsequent metastasis (8). The
early identification of localised PCa patients at high risk of
developing subsequent nodal or distant metastases is thus
crucially important and can substantially affect the clinical
decision-making process to the potential benefit of the patient
(9). Established techniques for PCa diagnosis and risk
stratification such as the digital rectal examination (DRE),
prostate-specific antigen (PSA) test, and transrectal ultrasound
(TRUS)-guided biopsy have significant limitations. DRE suffers
from a high false positive rate (10), while PSA is a non-specific
blood biomarker that can be elevated even in the absence of PCa
(11), and even low levels do not preclude the presence of high- or
medium-grade PCa (12). TRUS-guided biopsy is typically
conducted via random sampling and fails to capture the
heterogeneity inherent in the lesion. Furthermore, analysis of
post RP specimens has demonstrated that the Gleason Score
(GS) obtained from the pre-treatment needle biopsy often differs
from that obtained on the final RP specimen (13).

The potential for non-invasive assessment of PCa risk,
metastatic potential, and even treatment response, has been
facilitated by the advance of medical imaging technologies in
recent decades. Medical imaging modalities such as
multiparametric magnetic resonance imaging (mpMRI),
positron emission tomography (PET) and computed
tomography (CT) play an important role in the diagnosis and
management of localised and metastatic prostate cancer (mPCa).
Bone scintigraphy is an important imaging modality that is
commonly used to diagnose the extent of bone metastasis in
mPCa patients (14). mpMRI is the most important imaging
modality in the initial detection and staging of localised PCa due
2

to its superior soft tissue contrast and high resolution and can
localise areas of suspicion for subsequent biopsy (15, 16). PET
radiotracers that target prostate specific membrane antigen
(PSMA) such as 68Ga-PSMA are quickly becoming the
standard of care when it comes to the management of
biochemically recurrent PCa following definitive primary
therapy. PSMA tracers enable detection of suspicious lesions
because they target directly the PSMA receptor which is vastly
overexpressed in the majority of PCa cases (17–19). The
quantitative, rather than qualitative, analysis of each of these
imaging modalities to identify unique diagnostic or prognostic
biomarkers has the potential to become the basis for a
personalised medicine approach to patient treatment.

Radiomics is defined as the extraction of large numbers of
imaging features from medical images to quantify specific
tumour attributes and phenotypes, with the ultimate goal of
utilising these features to glean valuable diagnostic or prognostic
information that can inform clinical decision making (20). The
central hypothesis of radiomics is that these extracted
mathematical features are reflective of the underlying tumour
biology, and that they can therefore be used to guide treatment
procedures and advance personalised therapy on a patient-to-
patient basis (21). Typically, images are visually assessed by
radiologists whose qualitative observations are highly variable
(22–24). The extraction of radiomics features, combined with a
sufficiently quantitative image acquisition, enables a more
quantitative and objective characterisation of the tumour
which can overcome this inter-observer variability, and
potentially yield useful predictive biomarkers that cannot be
discerned via visual analysis. The radiomics approach has the
advantage of being non-invasive, as opposed to other techniques
such as biopsy which, in addition to being invasive (25), are
limited in their capacity to characterise the spatial and temporal
heterogeneity of lesions (26). Non-invasive assessment of intra-
tumoral heterogeneity is highly desirable since it is a known
factor affecting disease progression and response (27).
Furthermore, medical imaging scans are a part of the
conventional clinical management scheme for most patients,
meaning that radiomics models can typically be incorporated
clinically without adding any significant burden to the existing
workflow (28).

Despite the enormous potential of radiomics to facilitate
individualised patient therapy, the process does come with
associated challenges. The radiomics workflow contains a
myriad of factors that can profoundly affect the resulting
quantitative imaging biomarker measurement; anything from
the algorithm used to reconstruct the medical image to the
interpolation method utilised in an up- or down-sampling
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procedure can introduce variability into radiomics research (29,
30). The sensitivity of extracted features to a host of procedural
factors has contributed to poor scientific reproducibility in
radiomics research that substantially affects its translational
capacity (31). Recognising the need to ensure the scientific
rigour of radiomics studies, Lambin et al. (32) introduced the
Radiomics Quality Score (RQS), a points-based system that
rewards and penalises radiomics papers according to specific
attributes of their methodologies. Modelled on the Transparent
Reporting of a multi-variable prediction model for Individual
Prognosis or Diagnosis (TRIPOD) initiative (33), the RQS
identifies key aspects of the radiomics workflow, such as the
necessity of reporting imaging parameters in a comprehensive
fashion, conducting external validation of the results and the
nature of the study (retrospective/prospective), and generates a
score out of 36 providing an indication of how scientifically
rigorous the study is. The RQS, despite some limitations, is a
useful way to identify methodological weaknesses in reported
radiomics studies. The quality of radiomics reporting, as
measured by the RQS, in oncological studies in general is poor
(34), and a plethora of studies have demonstrated that this fact
generalises across a range of malignancies and modalities such as
liver metastases (35), prostate cancer MRI studies (36), neuro-
oncologic studies (37), and non-small cell lung cancer radiomics
research (38). No such analysis has been undertaken for
radiomics studies pertaining to mPCa.

This review aims to, (i) provide a methodological overview of
the radiomics workflow with comments on how artificial
intelligence (AI) techniques can complement the process, (ii)
elucidate the current landscape of literature pertaining to how
radiomics models can potentially be utilised in the clinical
management of mPCa while providing a quality assessment in
the form of a RQS and, (iii) comment on the limitations of the
field and offer recommendations on future research.
2 RADIOMICS: A METHODOLOGICAL
OVERVIEW

The typical radiomics workflow consists of several defined steps,
including: (i) Medical image acquisition and reconstruction;
(ii) Region of Interest (ROI) segmentation; (iii) post-processing
of the acquired image; (iv) feature extraction; (v) feature selection;
and (vi) model development. These steps are summarised in
Figure 1. Critical factors affecting the numerical output of each
feature will be discussed where appropriate as each step is
outlined sequentially below. The applicability of AI methods
and how they can substantively aid the process will also
be discussed.

2.1 Image Acquisition/Reconstruction
The first step in the radiomics pipeline is the acquisition of a
medical image, which becomes the basis for the analysis
conducted throughout the rest of the process. The acquisition
and reconstruction of medical images is subject to significant
variability both within and between different institutions. In
theory, any parameter that will affect the output distribution of
Frontiers in Oncology | www.frontiersin.org 3
voxel intensities will affect the calculated feature values, and thus
the medical image acquisition and reconstruction parameters
will greatly affect the outcome of the feature extraction process.
This remains true regardless of the medical imaging modality
used on the patient and can have a significant effect on the
reproducibility of radiomics studies: features that demonstrate
clinical relevance in one clinical setting may not be useful in a
separate institution where a different imaging protocol is used.
The slice thickness and pixel spacing of reconstructed medical
images, for example, are known factors affecting radiomics
feature output values (39, 40). A recent systematic review
identified the reconstruction algorithm, number of iterations,
and the level of gaussian smoothing as factors also affecting
biomarker reproducibility for PET scans (41). When acquiring
CT scans of patients, acquisition variables such as the tube
current and voltage (42, 43), the pitch (44), and even the
vendor of the scanner can affect the numerical output of
calculated features (45, 46). MRI is particularly challenging as
a modality since voxel intensity values are not standardised and
can vary greatly depending on the acquisition parameters chosen
(47), and studies have indeed demonstrated that some of these
parameters, such as image noise (48), choice of reconstruction
algorithm (49), dynamic range and matrix size (50), do affect the
output feature values. Figure 1 displays a non-exhaustive list of
the critical factors to consider that will affect biomarker outputs
at each step in the radiomics workflow. The large dependence of
radiomics features on acquisition and reconstruction protocols
makes it imperative that these protocols are extensively
documented when presenting the results of radiomics research
to maximise study reproducibility (32).

2.2 ROI Segmentation
A precise delineation of the ROI is a requirement for input into
the feature extraction algorithm. The image voxels within this
ROI define the anatomical/physiological area from which the
features will be extracted in subsequent steps in the radiomics
workflow; therefore, any variability in this segmentation will
affect the numerical output for each feature. Segmentation of
ROI ’s can be done manually, semi-automatically or
automatically. Manual segmentations performed by clinical
experts are typically used, however, performing this task
manually has well documented limitations such as inter-
observer variability and a significant clinical time burden,
which limits its feasibility for radiomics analyses in larger
datasets (51, 52). Variability in manual segmentations has the
effect of introducing bias into the evaluation of quantitative
imaging biomarkers (53). Efforts should be taken to mitigate
against this bias by performing multiple segmentations. Feature
robustness analyses should be conducted both between multiple
independent manual observer segmentations, and also between
manual segmentations and semi- or fully automated algorithms,
where possible (32).

2.3 Image Post-Processing
Prior to radiomics feature analysis, there are a number of
imaging post-processing steps that are typically conducted.
Image discretization is one of these steps, involving the
November 2021 | Volume 11 | Article 771787
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discretization of image voxel intensities from a continuous
spectrum into a set of discrete intensity bins. Limiting the
range of intensity values is necessary to make the calculation of
subsequent radiomics features computationally tractable (22). It
also has the benefit of noise reduction (54). There are two
discretisation schemes available to radiomics researchers,
namely, fixed bin number and fixed bin width, and the method
chosen can affect the quantitative metrics subsequently extracted.
A plethora of studies have demonstrated that the intensity
discretisation scheme used can affect the reproducibility of
radiomics features, and thus potentially affect the predictive
model derived from them (40, 55–59). This fact, among many
others discussed below, underscores the critical importance of
transparent and comprehensive reporting of post-processing
steps undertaken in radiomics studies.

Resampling image voxels to isotropic spacing is another
necessary post-processing technique. Isotropic voxel spacing is
necessary to ensure that the extracted texture features are
rotationally invariant (54). Moreover, in-plane and through-
plane spatial resolutions of medical images are commonly not
unified across patient scans in radiomics datasets which can
affect output feature values; therefore, resampling to a common
spatial voxel resolution can be employed in an attempt to
increase the reproducibility of feature values (30). There is as
yet no consensus on whether up-sampling or down-sampling is
preferred. Down-sampling images to a lower spatial resolution
will necessarily result in information loss, whereas up-sampling
images will result in the addition of false information. Different
interpolation techniques exist to resample images to isotropic
voxel spacing, such as nearest neighbour, trilinear, and cubic B-
Spline; the method chosen can have a significant impact on the
reproducibility of radiomic features. Recent studies have
demonstrated that the chosen interpolation technique affects
the number of reproducible features across all of the common
Frontiers in Oncology | www.frontiersin.org 4
modalities used in mPCa imaging, such as CT (60), PET (61), and
MRI (62). Open and comprehensive reporting of the technique used
is therefore necessary to ensure study reproducibility.

2.4 Feature Extraction
The crux of radiomics is the extraction of features from medical
images. These features become the basis for which diagnostic and
prognostic predictive models are generated which can be utilised
to inform clinical decision making that is personalised to the
specific biological attributes of the patient. In conventional
radiomics practice, mathematically defined features that are
hand-crafted using domain knowledge numbering in the
hundreds, or sometimes thousands, are extracted from the
ROI. However, with the recent surge in deep learning-based
models and their applicability to medical images, it has become
possible to mitigate the use of hand-crafted features and train
complex neural network (NN) and convolutional neural network
(CNN) models that are capable of learning the most salient
features in unsupervised or supervised manners (63, 64). These
two distinct types of features extracted from medical images will
henceforth be referred to as hand-crafted features and machine-
learnt features, respectively.

Hand-crafted features have the ability to capture either spatial
or temporal heterogeneities within the defined ROI and can thus
be categorised broadly as being either static or dynamic (65).
Static radiomic features are time invariant and therefore
characterise only spatial properties of the tumour. They are
comprised of shape-based (morphological) and statistical
features, which are further divided into first-, second-, and
higher-order outputs. Morphological features describe the
geometry of the lesion such as its compactness, sphericity, or
surface to volume ratio (66, 67). First-order statistical features are
derived from first-order histograms describing the distribution of
voxel intensities within the specified tumour volume. Second-
FIGURE 1 | Overview of the radiomics workflow, with a non-exhaustive list of some critical factors affecting feature reproducibility.
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order statistical features, or what are often referred to as ‘texture
features’, are among the most common descriptors used in
radiomics predictive modelling. Texture features are able to
characterise intensity spatial interrelationships between tumour
voxels that first-order statistics fail to capture (65). Texture
features can be extracted from a variety of defined matrices,
such as the grey-level co-occurrence matrix (GLCM) (68), the
grey-level run length matrix (GLRLM) (69), the grey-level size
zone matrix (GLSZM) (70), the neighbourhood grey-tone
difference matrix (NGTDM) (71), and the neighbourhood
grey-level dependence matrix (NGLDM) (72), for use in
predictive modelling. Higher-order statistical features involve
the application of various mathematical transformations to the
original image from which additional statistical features of first-
and second-order can be extracted (21, 73), such as Laplacian of
gaussian transformations, wavelet decompositions, and gabor
filters for edge detection (74, 75). Dynamic features capture
temporal information about the evolution of the disease over
time that can provide more information than a simple snapshot
of a lesion at a single time point. These features might unearth
new biological characteristics of tumours that can be used in
predictive modelling (76). There are, then, a very large array of
possible features that can potentially be extracted from the ROI
during a radiomics study. In practice, these features need not all
be manually defined by the researcher, as the procedure of
feature extraction can be performed by a number of
commercial and open-source projects dedicated to the task.

Deep NN’s and CNN’s can be used to automatically learn
high-level representations of input data such as medical images
and generate machine learnt features. These techniques can be
used to perform end-to-end predictive modelling tasks,
encompassing automated hierarchical feature extraction and
the utilisation of these features for the subsequent classification
or regression task in a single step, or alternatively be used as
standalone feature extractors (63). Deep CNN’s, for example,
involve the repeated convolution of learnable filter grids across
an input medical image whose values are tuned during the
network training process to minimise a cost function such that
the salient features relevant to the clinical task at hand are
extracted. In this fashion, features are engineered automatically
in a hierarchical way where simple characteristics are detected in
the lower layers of the network, and increasingly abstract
representations of the input image are learned as it progresses
deeper through the network architecture (77, 78). There is a
growing body of evidence demonstrating the usefulness of CNN-
based features as a concomitant to traditional hand-crafted
features in radiomics studies pertaining to various
malignancies, such as soft tissue sarcoma (79), glioma (80),
lung cancer (81), and also mPCa (82). Deep learning feature
generators have greater versatility by not limiting themselves
exclusively to manual human-defined features, however, this
comes at the significant cost of reduced interpretability due to
the black box nature of these algorithms. The benefits should
therefore be weighed against the limitation of model
interpretability, which is often desirable in the clinical
context (83).
Frontiers in Oncology | www.frontiersin.org 5
2.5 Feature Selection
The dimensions of the extracted feature space may be large relative
to the patient sample size, partly due to the nature of medical
research where ethical considerations constrain access to patient
data. Generating a predictive model with more explanatory
variables than patient samples prevents generalisability of the
model by over-fitting the sample on which the model was
trained (83, 84). Reducing the dimensionality of the feature
space improves the prediction capabilities of the final model,
increases model interpretability, and shortens the training time.
Selecting a subset of good features is therefore a crucial part of the
radiomics workflow. Feature selection can be conducted according
to the calculation of traditional statistical measures where features
are eliminated through the application of thresholds, or, the
dimensions of the feature space can be reduced by data-driven
algorithms that project the data into lower dimensional spaces.
Through the conduction of the feature selection process,
quantitative imaging biomarkers should be chosen based on the
possession of the following properties: repeatability, non-
redundancy and reproducibility. Reproducibility has been
stressed in the sections above, the main considerations being
feature reproducibility with respect to segmentation and
scanner variability.

Where possible, available test-retest data should be utilised to
assess the repeatability of features across imaging scans taken
under identical conditions (85). It is common to select arbitrary
thresholds based on, for example, intraclass correlation
coefficient (ICC) metrics calculated between the test-retest
biomarker outputs, to exclude non-repeatable features (58, 86).
This simple thresholding method is widely used, but its
drawbacks should be noted. Firstly, comparisons of ICC values
between different populations are invalid since the metric
depends on the variance of the data, and thus also the
underlying characteristics of the population under analysis (87,
88). Secondly, repeatability analysis alone is insufficient to
determine the usefulness of a quantitative imaging biomarker.
In particular, when it comes to response assessment, a feature
with low repeatability may change drastically in response to
therapy and could therefore be more informative as a predictive
biomarker than a feature with high repeatability that changes
only minimally during the same treatment. Therefore, it is not
appropriate in all cases to remove non-repeatable features based
on cut-off values of repeatability metrics. This point has been
argued by Lin et al. (89), who posit a new metric for longitudinal
assessment of predictive biomarkers termed the ‘response-to-
repeatability’ ratio which weighs the biomarker sensitivity
(measured as a change between baseline and follow-up scan)
against its repeatability.

Redundant features that are highly correlated with each other
are unlikely to provide any additional information useful for
predictive modelling and can lead to model instability (90).
Furthermore, their inclusion can increase the chances of
overfitting and hamper model generalisability. Clusters of
highly correlated features can be visualised and reduced to a
single representative feature that is the most informative in the
cluster (21, 87). Unsupervised data-driven algorithms that
November 2021 | Volume 11 | Article 771787
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project the feature space into a lower dimension can also be used
to select non-redundant feature subsets. Principal Component
Analysis (PCA), which is a commonly employed method (28, 91,
92), is a linear dimensionality reduction technique that identifies
successive axes that account for the largest variance in the data
and projects the original feature space onto the hyperplane
defined by those axes. The new, dimension reduced feature
space is comprised of the principal components, each of which
is defined by the projection of the original data onto one of the
principal axes. The orthogonality of the principal components
ensures that feature collinearity is minimised, which makes it an
advantageous technique for the unsupervised removal of
redundant features (28). Non-linear dimensionality reduction
techniques such as local linear embedding (LLE) can also be used
for the selection of salient features (84). It should be noted,
however, that the projection of features into a lower dimensional
space comes at the cost of reduced feature interpretability.

2.6 Model Development
Having selected a subset of salient features, the final step in the
radiomics workflow is the building of the predictive model. The
development of classification models can be done using a variety
of ML and deep learning techniques. It is impossible to know a
priori which method will generate the best predictive model, and
thus experimentation is advised along with comprehensive
documentation of the techniques tested, hyperparameters used,
and validation results. Scientific reproducibility of radiomics
studies is a critical factor that can be facilitated by making
implemented code available on platforms such as Github1. A
summary of some of the more prominent modelling techniques
used, and example papers where they have been used in relation
to mPCa, are provided in Table 1.
3 CONVENTIONAL mPCa BIOMARKERS
AND RISK FACTORS – A BRIEF
OVERVIEW

Various patient biomarkers and characteristics are factored into
assessing the risk of developing mPCa and the clinical
management of the disease if it subsequently develops. Patient
characteristics such as age, presence of co-morbidities, previous
treatment history and personal preference can all affect mPCa
management (101). PSA concentrations carry prognostic
information, with elevated levels associated with an increased
risk of metastatic development (102). Changes between pre- and
post-therapeutic PSA levels is also used to assess patient response
to treatment (103), however, the non-specificity of PSA to PCa
raises questions about its usefulness in this respect (11). Gleason
grading is also a powerful prognostic tool, both for localised PCa
and mPCa in either the castrate-resistant form or the castrate-
sensitive form (104–106). To inform a precision medicine
approach to mPCa management, numerous molecular assays
exist that can provide prognostic information. Detecting the
1https://github.com/
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presence of the AR-V7 splice variant in circulating tumour cells,
for example, is a factor predictive of poor therapeutic response to
androgen receptor inhibitors such as enzalutamide and
abiraterone (107).

In addition to clinicopathologic characteristics, first-
order radiomics imaging features have also demonstrated
usefulness in the clinical management of mPCa. Standardised
uptake value (SUV)max of identified tumours is a prognostic
imaging biomarker (108), and when measured from [18F]-
fluorodeoxyglucose (FDG) PET-avid lesions has been shown to
correlate with patient survival (109). Total lesion glycolysis
(TLG) or total SUV (SUVtotal), measured as the sum of
individual SUVs in each voxel for each individual lesion, is
another prognostic imaging biomarker that has been shown to
correlate with overall survival in metastatic castration-resistant
prostate cancer (mCRPC) patients (110). Radiomics possesses
great potential because rather than attempting to replace these
biomarkers, clinicopathologic risk factors and patient
characteristics can be incorporated into the modelling process
and leveraged to make better model predictions.
4 REVIEW METHODOLOGY

4.1 Study Inclusion Criteria
Databases were searched using a logical search string
[(“radiomics” OR “texture analysis” OR “radiological features”
OR “radiomic features” OR “textural features” OR “texture
features” OR “deep learning” OR “machine learning” OR
“convolutional neural network” OR “CNN”) AND (metastatic
OR metastases) AND (“prostate cancer” OR “prostate lesions”)]
to identify potentially relevant papers published before the 23rd

of June 2021. Inclusion criteria were as follows: (1) human
studies only, (2) analysis of medical imaging modalities only
(radiomics analyses of histopathology slides were not included),
(3) papers must either (i) extract a minimum of second order
statistical features, or (ii) use deep learning techniques for feature
extraction, (4) results must have diagnostic, prognostic, or
predictive applicability to mPCa, (5) minimum of 10 sample
size, and (6) full text of article must be available and accessible
through our institution. A flow diagram illustrating the inclusion
of identified studies is provided in the form of a PRISMA
diagram (111) in Figure 2.

The studies were partitioned into two sections following their
inclusion into this review, namely, (i) Traditional radiomics,
referring to papers that utilised traditional hand-crafted feature
extraction techniques, and (ii) Deep radiomics, referring to
papers that utilised deep learning networks for the extraction
of deep features.

4.2 RQS Criteria
Identified papers utilising traditional hand-crafted feature
extraction were subject to a RQS analysis. The RQS criteria is
comprised of 16 defined items that correspond to critical points
in the radiomics workflow. Each item in the RQS either awards
or deducts points from a paper according to the study
methodology. The RQS is designed to pinpoint methodological
November 2021 | Volume 11 | Article 771787
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weaknesses in radiomics studies and encourage scientifically
rigorous radiomics investigations (32). Table 2 provides a full
description of these items and the points that can potentially be
gained at each. A study may achieve a maximum of 36 points, or
a minimum of -8 points. Each paper was assigned a percentage
based on their score out of 36.
5 RADIOMICS IN mPCa – RESULTS

5.1 Traditional Radiomics
The use of the traditional radiomics paradigm of utilising hand-
crafted features in mPCa is the predominant method of solving
clinical challenges. Tables 3, 4 summarise the salient
characteristics for all identified traditional radiomics papers.

5.1.1 Metastasis Prediction and Detection
The prediction of metastases development, or the detection of its
presence, are the most common outcome objectives of the
Frontiers in Oncology | www.frontiersin.org 7
traditional radiomics studies identified in this review. Wang
et al. (94) constructed a prognostic model for the pre-
treatment prediction of bone metastases in patients with
histologically confirmed PCa without evidence of distant
metastatic spread. 976 radiomic features, including first-order
statistics, shape features and higher order texture features, were
extracted from the outlined primary PCa lesion on T2-weighted
(T2w) and dynamic contrast-enhanced (DCE) T1-weighted
(T1w) images. The final logistic regression model, comprised
of imaging features weighted by their least absolute shrinkage
and selection operator (LASSO) regression coefficients and
clinicopathologic patient variables (age, GS, free PSA) achieved
good discriminative performance in predicting future bone
metastases in the internal validation cohort, with an AUC of
0.895 (95% CI 0.836 - 0.939). The radiomics model
outperformed traditional prognostication methods, such as the
GS (AUC = 0.731), demonstrating the potential for non-invasive
assessment of primary PCa tumours on mp-MRI for prediction
of future bone metastases, with potentially profound impacts for
TABLE 1 | Summary of the prominent modelling techniques used in radiomics research.

Category mPCa
Papers

Technique Description Advantages Disadvantages

Machine
Learning

(93) Support Vector Machine Determines the support vectors in
multidimensional space that define the
hyperplane best separating the classes

Versatile algorithm capable of
both linear and non-linear
classification

Not suited to large datasets
Model is difficult to interpret
Sensitive to feature scaling

(94,
95)

Logistic Regression Binary classification algorithm Probabilistic output
Relatively quick training time

Linear assumption makes it
unsuitable for highly complex
datasets

(96) K- Nearest Neighbour Classifies new instances based on their
calculated distance from the k-nearest
neighbours in the memorised training set.

Instance-based model
– no training period

Does not scale well to large
datasets

Sensitive to noise, outliers and
feature scale

(96) Decision Tree Hierarchical model structure resembling a tree
where instances are partitioned at nodes
based on feature threshold values until a final
classification is made at the leaf nodes

Highly interpretable – ‘white
box’ classification method

Non-parametric model
- makes limited assumptions
about training data

Insensitive to feature scale

Prone to overfitting
Small changes in training data
can cause large changes to
tree structure, leading to model
instability.

(97,
98)

Ensemble-Based Methods
(Random Forest, Stacked
Generalisation,
Bootstrapping
Aggregation, etc.)

Aggregates predictions from multiple trained
classifiers and combines them into a single
predictive model

Can combine several weak
classifiers into a single strong
classifier

Reduces prediction model bias

Very limited model interpretability
Depending on the base classifiers

used, extensive
hyperparameter tuning may be
required.

Deep
Learning

(99) Convolutional Neural
Network

Repeated application of convolution
operations to an input vector/image to learn
salient feature maps for the desired
classification task.

Capable of performing end-to-
end feature extraction and
predictive modelling

Highly versatile
Automatically learns important

image features without the
need for hand-crafted feature
engineering

Potentially limitless number of
possible architectures with
limited a priori knowledge of
which is best suited to the task

Typically require large datasets to
be generalisable

Large training time
Severely limited model

interpretability

(82,
100)

Transfer Learning Extracting layers in deep networks that have
been pre-trained on large datasets to be used
as feature extractors for your specific task

Useful for small dataset
problems where there are
insufficient samples to train a
full deep network

Can decrease training time
significantly

Can fail if the outcome of the pre-
trained network differs
significantly from that of the
target outcome.

Severely limited model
interpretability
November 2
Exemplar papers using each of these in mPCa radiomics studies are provided.
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individualised patient therapeutic decision making. These results
are in good agreement with those achieved by Zhang and
colleagues (95) who developed a combined radiomics and
Frontiers in Oncology | www.frontiersin.org 8
clinicopathologic variable (total PSA) nomogram for assessing
the risk of bone metastases in newly diagnosed PCa patients
from features extracted from T2w, DCE T1w and diffusion-
weighted imaging (DWI) scans. LASSO regression was used to
perform feature selection and generate the radiomics score,
where each feature was weighted by its regression coefficient,
and then combined with the total PSA clinical variable in a
multivariable logistic regression analysis. The final nomogram
achieved good predictive performance in an internal validation
cohort (n = 35) in the prediction of developing bone metastases
with an AUC = 0.93 (95% CI, 0.86 – 0.99).

PET imaging features can be highly effective in the detection
of PCa metastases. Cysouw et al. (97) conducted a study on a
cohort of 76 intermediate- to high-risk primary PCa patients
who were scheduled to undergo radical prostatectomy, where
radiomics features were extracted from the delineated
intraprostatic tumour volume to develop a diagnostic model
for detecting the presence of either lymph node metastases or any
distant metastases in [18F]DCFPyL PET scans. Intensity, shape-
based and texture features were extracted from the delineated
intraprostatic primary PCa lesion and subject to ML analysis.
The resulting random forest algorithm trained on a subset of
features chosen via three different feature selection methods
(PCA, recursive feature elimination with random forest, and
univariate analysis of variance) and utilising 5-fold cross
validation achieved good discriminatory performance in the
detection of LNI (AUC = 0.86 ± 0.15, p < 0.01), and any
distant metastasis (AUC = 0.86 ± 0.14, p < 0.01). Feature
importance analysis of the random forest ML algorithm
FIGURE 2 | PRISMA flow diagram showing the study inclusion and exclusion
process.
TABLE 2 | Details of RQS items and associated points awarded/deducted at each step.

RQS Item RQS Item Name Item Description (points awarded/subtracted)

1 Image protocol quality Well documented image protocols (+1)
Public protocol used (+1)

2 Multiple Segmentations Feature robustness testing to segmentation variabilities, e.g. different algorithms or physicians (+1)
3 Phantom study on all scanners Feature robustness testing to scanner parameters (+1)
4 Multiple time points Feature robustness testing to temporal variabilities e.g. organ movement/shrinkage (+1)
5 Feature reduction Perform feature reduction or adjust for multiple testing (+3); otherwise (-3)
6 Non-radiomics feature inclusion Model includes non-radiomic variables/features (+1)
7 Detect biological correlates Detect and discuss biological correlates (+1)
8 Cut-off analysis Determine risk groups by either the median, a previously published cut-off value or present a continuous risk variable (+1)
9 Discrimination statistics Report a discrimination statistic and its statistical significance (+1)

A resampling method is also applied (+1)
10 Calibration statistics Report a calibration statistic and its statistical significance (+1)

A resampling method is also applied (+1)
11 Prospective study Prospective methodology to validate a radiomics signature (+7)
12 Validation No validation (-5)

Internal validation (+2)
External validation from one institute (+3)
External validation from two institutes (+4)
Validating a previously published radiomics signature (+4)
External validation from three or more institutes (+5)

13 Gold standard comparison Assess model agreement/superiority to current ‘gold standard’ (+2)
14 Clinical utility Quantify model applicability in clinical setting e.g. decision curve analysis (+2)
15 Cost-effectiveness assessment Assess cost-effectiveness of radiomics signature (+2)
16 Open science and data Scans are open source (+1)

Region of interest segmentations are open source (+1)
Code is open source (+1)
Features are calculated on an open-source set of representative features (+1)
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determined that two intensity-based features, difference volume
at intensity fraction and volume at intensity fraction 10, were the
most important in detecting LNI and distant metastases (both
had importance coefficients of 0.11). The clinical relevance of the
ML model is that it can non-invasively aid in the determination
of low-risk patients that can be spared extended pelvic lymph
node dissection and its associated complications (120).

A similar study was conducted by Zamboglou et al. (117),
who enrolled both a prospective (n=20) and a retrospective
(n=40) validation cohort of patients with intermediate- to
high-risk PCa who underwent 68Ga-PSMA PET/CT imaging
prior to RP. Intraprostatic lesions in the PSMA PET image in the
prospective cohort were segmented in three ways; (i) by
Frontiers in Oncology | www.frontiersin.org 9
histopathologic analysis and ex-vivo CT scanning of the RP
specimen, which was subsequently transferred to the in-vivo
CT scan before being transformed into the PSMA PET
coordinates; (ii) manually by two nuclear medicine physicians,
and; (iii) semi-automatically by the application of local 40%
thresholds in the intraprostatic volume. The retrospective
validation cohort was segmented only manually. In the
prospective cohort, the QSZHGE (quantised short zones high-
gray level emphasis), which was robust to different scanner
parameters (determined in a phantom study) and to the three
segmentation methods, was able to discriminate well between
patients with and without LNI (AUC = 0.87 for the expert
manual segmentation, and AUC = 0.85 for the histopathologic
TABLE 3 | Prominent characteristics of identified mPCa studies using traditional radiomics methods with PET and/or CT modalities.

First
Author

Year Imaging
Series

Analysed

Design Patient
sample
size

Patient Cohort Radiomics
Software

Outcome
Measures

Clinical
Covariates
Included

External
Validation

Results Synopsis RQS
(%)

Acar E (96) 2019 CT R 75 PCa patients with
metastatic bone
disease

LifeX Sclerotic
Bone Lesion
Response

N N Acc = 73.5%,
AUC = 76.0%
Sens = 73.5%,
Spec = 73.7%

0

Alongi P
(112)

2021 18F-
Choline
PET

R 94 High Risk PCa LifeX LNI, Distant
Metastasis

Y N LNI
AUC = 69.87 (95% CI
51.34 - 88.39)
Distant Metastasis
AUC = 74.72 (95% CI
56.36 - 93.09)

27.78

Cysouw
M.C.F (97)

2020 18F-
DCFPyL
PET

P 76 Intermediate- to
high-risk primary
PCa

RaCaT LNI, Distant
Metastasis

N N LNI
AUC = 0.86 ± 0.15,
p < 0.01
Distant Metastasis
AUC = 0.86 ± 0.14,
p < 0.01

47.22

Hayakawa
T (113)

2020 CT R 69 PCa patients with
pelvic bone
metastases

3D Slicer OS, CSS Y N Maximum 2D Diameter and
Least Axis were risk factors
for OS (HR = 1.007 & HR =
1.013, respectively)
No features were risk
factors of CSS.

0

Khurshid Z
(103)

2018 68Ga-
PSMA
PET

R 70 mCRPC patients
planned to
undergo 177Lu-
PSMA therapy

NS Correlation
with
treatment
response

N N Entropy and Homogeneity
correlated with response
(r = -0.327 & r = 0.315,
respectively)

8.33

Lin C (89) 2019 18F-NaF
PET

P 14 mCRPC patients
undergoing
androgen therapy.

NS R/R N N Skewness, Kurtosis and
diagonal moment exhibited
greater R/R than SUVmax

5.56

Moazemi S
(114)

2020 68Ga-
PSMA
PET/CT

R 72 Histologically
confirmed PCa

InterView
FUSION
Software

Hotspot
classification

N N AUC = 0.98, Sens = 0.94
Spec = 0.89

5.56

Moazemi S
(115)

2021 68Ga-
PSMA
PET/CT

R 83 Advanced PCa
undergoing 177Lu-
PSMA therapy.

NS OS Y N PET Kurtosis & SUVmin

significantly correlated with
OS

0

Peeken J
(116)

2020 CT R 80 Recurrent PCa PyRadiomics LNI N Y AUC = 0.95 (95% CI 0.88 –

0.99)
47.22

Perk T (98) 2018 18F-NaF
PET/CT

R 37 mCRPC patients NS Bone Lesion
Classification

Y N AUC = 0.95 (95% CI 0.93 –

0.96)
25

Zamboglou
C (117)

2019 68Ga-
PSMA
PET

Both P (n=20)
R (n=40)

Histopathologically
proven primary
adenocarcinoma

In-house
MATLAB
software

LNI N N Prospective Cohort
AUC = 0.87
Retrospective Cohort
AUC = 0.85

52.78
November
 2021 | Volume 11 | Article 7
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segmentation, both p < 0.01). This performance was validated in
the retrospective cohort (AUC = 0.85, p < 0.01). Alongi et al.
(112) analysed 94 high-risk PCa patients who underwent 18F-
Choline PET/CT restaging imaging to determine features
predictive of disease progression. Follow up data was recorded
for the patients for a median of 26 months (range 13-52) and
subsequent TNM staging performed. Discriminant analysis on
the radiomics features extracted yielded a machine learning (ML)
model capable of achieving moderate predictive power in the
development of nodal (AUC = 69.87, 95% CI 51.34–88.39) or
distant metastases (AUC = 74.72, 95% CI 56.36–93.09). HISTO
entropy log10 and HISTO entropy log2 were the two salient
features chosen for the discrimination of distant metastases,
while GLSZM SZLGE and HISTO energy uniformity were the
chosen features to predict nodal metastases.

Studies have also shown the great potential of radiomics
features extracted from mpMRI modalities in the detection and
prediction of metastases. Damascelli et al. (93) developed a
radiomics model for the prediction of LNI on 62 patient
mpMRI scans, where features were extracted from T2w images
and apparent diffusion coefficient (ADC) maps. Each patient,
who had biopsy proven PCa and underwent RP, had their
intraprostatic index lesions segmented on each modality by
two independent radiologists. Features not robust to the two
segmentations (Friedman test p value > 0.01) were excluded, and
Frontiers in Oncology | www.frontiersin.org 10
the covariance matrix analysed to remove redundant features.
Support vector machine classifiers were built using features from
each modality both separately and in combination, and were able
to predict lymph node metastasis presence with good accuracy
(ADC alone, Acc = 0.86 ± 0.05; T2w alone, Acc = 0.84 ± 0.05;
ADC + T2w features, Acc = 0.9 ± 0.04). Their results
demonstrate the promise of utilising radiomics signatures
derived from mpMRI scans to predict LNI and the potential of
utilising features extracted from multiple modalities in radiomics
predictive modelling to capture complementary information
about lesions and improve overall model performance. Li et al.
(118) performed a comparable analysis and developed a
prognostic radiomics nomogram for the pre-operative
prediction of lymph node metastases also in PCa patients who
underwent RP. A total of 200 radiomic features were extracted
from the intraprostatic index lesion delineated in both the T2w
image and the ADC maps, where non-repeatable features were
excluded by performing a test-retest analysis on an openly
available test-retest mpMRI dataset (121), and the remaining
features were selected using a 5-fold 10-run cross validation of a
minimum redundancy maximum relevance algorithm for Cox-
proportional hazards model building. This model was combined
with clinicopathologic patient data (PSA and GS) to generate the
final prognostic nomogram, which was externally validated on a
multi-institutional dataset. Validation set performance in the
TABLE 4 | Prominent characteristics of identified mPCa studies using traditional radiomics methods with MRI modalities.

First
Author

Year Imaging
Series

Analysed

Design Patient
sample
size

Patient
Cohort

Radiomics
Software

Outcome
Measures

Clinical
Covariates
Included

External
Validation

Results Synopsis RQS
(%)

Damascelli
A (93)

2021 T2w,
ADC

R 62 Biopsy
confirmed
PCa who
underwent RP

3D Slicer LNI N N Acc = 0.9 ± 0.04
Sens = 0.9 ± 0.01
Spec = 0.9 ± 0.01

25

Hou Y (82) 2021 T2w,
DWI,
ADC

R 401 Biopsy
confirmed
PCa patients
who
underwent RP
& ePLND

PyRadiomics Pelvic
Lymph
Node
Metastases

Y Y AUC = 0.76 (95% CI, 0.62-0.87) 33.33

Li L (118) 2021 T2w,
ADC

R 198 PCa patients
who
underwent RP

NS LNI Y Y AUC = 0.77 (95% CI, 0.67-0.86) 50

Reischauer
C (119)

2018 ADC P 12 Treatment-
naïve
advanced PCa
with
scintigram
confirmed
metastases

In-house
MATLAB
software

Change in
response
to ADT
therapy

N N Numerous first- and second-order
statistical features showed
promise in monitoring treatment
response and correlation to
changes in serum PSA levels over
time.

0

Wang Y
(94)

2019 T2w,
DCE T1w

R 176 Histologically
confirmed
PCa without
evidence of
distant
metastasis

IBEX Prediction
of Bone
Metastasis

Y N AUC = 0.895 (95% CI 0.836 -
0.939)

25

Zhang W
(95)

2020 T2w,
DCE
T1w, DWI

R 116 Biopsy
confirmed
PCa

AK Software Bone
Metastases

Y N AUC = 0.93 (95% CI, 0.86 – 0.99) 38.89
Nov
ember 2021 | Volume 11 | Article 7
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prediction of LNI was AUC = 0.77 (95% CI, 0.67-0.86), and this
result compared favourably to other prognostic tools used for the
prediction of post-treatment adverse pathology such as the
Prostate Cancer Risk Assessment score (AUC = 0.74; 95% CI,
0.62-0.85) and the Decipher risk score (AUC = 0.73; 95% CI,
0.59-0.87). The multi-institutional validation and superior
performance of this nomogram compared to other prognostic
tools is strong evidence for the potential of utilising radiomics
features for the pre-operative risk stratification of patients.

Hou et al. (82) in a recent study explored how traditional
radiomics features can be supplemented with deep learning
machine learnt features in the prediction of pelvic lymph node
metastases (PLNMs). A relatively large sample size of 401
patients (including a 50-patient external validation set) with
biopsy confirmed PCa were analysed, where 2553 radiomics
features were extracted in total from the index intraprostatic
lesion on mpMRI modalities (T2w, DWI with b = 1500s/mm2

and ADC maps) to generate a radiomics signature. In parallel,
five pre-trained deep neural networks trained on ImageNet data
were utilised in a transfer learning framework which leverages
the high-level salient feature extraction ability of the pre-trained
networks and applies them to the present problem. Random
forest algorithms were used to output a final risk score reflecting
the probability of the patient developing pelvic lymph node
metastatic disease for both the radiomics and the deep learning
signatures combined and individually. The final risk model
yielded an AUC = 0.76 (95% CI, 0.62-0.87) on the external
hold-out set. Furthermore, the authors compared their risk
model with established prognostic tools such as the Memorial
Sloan Kettering Cancer Center (MSKCC)2 nomogram and the
Briganti score (122), determining that an optimal threshold of
8% on their risk model is superior to both in terms of sparing
unnecessary pelvic lymph node dissections and missing fewer
true positive PLNMs.

5.1.2 Lesion Classification
Radiomics features have also been used successfully to classify
the malignancy of segmented lesions, for example, Peeken et al.
(116) developed and externally validated a radiomics signature
extracted from contrast-enhanced CT images to determine the
malignancy (positive or negative) of segmented lymph nodes. A
total of 149 lymph nodes were segmented from which shape,
first-order, textural, and local binary pattern-based intensity
features were extracted. LASSO regression was used to select
salient features for the final model, which performed well on a
dedicated external validation cohort (n = 33 patients) with an
AUC = 0.95 (95% CI 0.88 – 0.99). Their results demonstrate that
radiomics feature extraction can be extended to ROIs other than
the tumour volume, such as segmented lymph nodes, and still
yield accurate predictive models. Additionally, the authors of this
study also utilised ComBat batch harmonisation to correct for
the difference in scanner parameters between the external
validation cohort and the main training cohort, but found that
the use of this technique did not significantly change the results
of the radiomics model.
2https://www.mskcc.org/nomograms/prostate
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Similar lesion classification analysis has been conducted on
other imaging modalities. Moazemi et al. (114) employed ML
analysis on radiomics features to classify 2419 68Ga-PSMA PET
hotspots (defined as uptake above the background concentration)
in 72 patients as either benign or malignant. A total of 80 features
were extracted from each hotspot (40 from the PET image and 40
from the CT image) and utilised in five different ML algorithms,
with the Extra Trees model achieving exemplary discriminatory
performance in the classification of lesions in the hold-out
validation set (n = 24) with AUC = 0.98 (Sens = 94%, Spec =
89%). Their results also further demonstrate the validity of multi-
modal analysis since features from the CT and PET images used
together in the ML models slightly outperforms using either of
them separately. Perk et al. (98) conducted a similar analysis on
18F-NaF PET/CT images in a cohort of 37 mCRPC subjects. Bone
lesions were delineated by an automated algorithm that
determines the lesion boundaries based on statistically
optimised regional thresholding (SORT) which uses a different
threshold based on the location of the lesion in the patients
skeleton (123), which were subsequently assigned a classification
label by a nuclear medicine physician between 0 and 5 depending
on the likelihood of malignancy (0; background ROI, 1; Definite
Benign, 5; Definite Malignant). Radiomics features were extracted
from both the PET and CT images and used as the input for ML
analysis with nine separate learning methods, where the random
forest model performed the best under 10-fold cross-validation
conditions at discriminating between the 0 + 1 vs. 5 class labels
(AUC = 0.95, 95% CI 0.93 – 0.96).

5.1.3 Treatment Response
PSMA-labelled isotopes are becoming increasingly important in
the imaging and treatment of metastatic PCa. 177Lu-PSMA
therapy, in particular, is gaining prominence as a radioligand
therapeutic intervention for advanced PCa, however, it is known
that a large percentage of interventions will not be successful
(124). Early identification of which patients may benefit from a
particular intervention type can be substantially aided by
radiomics analysis which can yield useful pre-therapeutic
biomarkers. Moazemi et al. (115) extracted radiomics features
from delineated hotspots (n = 2070) in advanced PCa patients
with pre-therapeutic 68Ga-PSMA PET/CT imaging. Following a
LASSO regression feature selection process, they determined that
a radiomics signature containing PET Kurtosis and SUVmin were
significantly correlated with overall survival (r = 0.2765,
p =0.0114). An earlier study by Khurshid et al. (103) performed
a similar retrospective analysis on 70 mCRPC patients scheduled
to undergo 177Lu-PSMA therapy. Metastatic lesions in each
patient (total ROI’s = 328) were segmented, from which
histogram and textural features from the normalised gray-level
co-occurrence matrix (NGLCM) were extracted. Therapeutic
response was defined according to the change in pre- and post-
therapy PSA levels, which is common practice, although, as an
aside, recent evidence has demonstrated the potential for texture
features to be used as biomarkers for therapeutic response
assessment (119). Their analysis showed that two textural
parameters extracted from the NGLCM of bone lesions
correlated with the change in PSA levels following therapy,
November 2021 | Volume 11 | Article 771787
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these being entropy (r = -0.327, p = 0.006) and homogeneity (r =
0.315, p < 0.008). The results therefore indicated that the lesions
which were more heterogeneous in nature responded better to the
177Lu-PSMA therapy. This is an interesting result that can
potentially inform future clinical decision making regarding the
use of 177Lu-PSMA radioligand therapy, pending future
prospective and external validation.

Determining the status of sclerotic metastatic lesions post-
treatment is difficult because even responded lesions that are no
longer metastatic can retain their sclerotic character when pre-
treatment and post-treatment CT images are compared. Acar
et al. (96) sought to utilise radiomics imaging features to
discriminate between sclerotic lesions that were completely
responded or sti l l metastatic fol lowing therapeutic
interventions. Histogram, shape-based, and texture features
were extracted from manually delineated sclerotic bone lesions
in the non-contrast CT scan of each patient. Sclerotic lesions
were categorised as completely responded or metastatic if they
had 68Ga-PSMA PET uptake levels either below or above the
measured liver expression. Multiple ML models were developed,
including a weighted K-nearest neighbour (KNN), support
vector machine, decision tree and ensemble-based methods,
where the weighted KNN achieved the best classification
performance under 10-fold cross-validation conditions
(Accuracy = 73.5%, AUC = 76.0%, Sensitivity = 73.5%,
Specificity = 73.7%). The potential for non-invasive sclerotic
bone lesion response assessment using non-contrast CT imaging
is demonstrated in this study, however, the lack of external
validation, retrospective design, and limited patient sample size
(n = 75) indicate that further studies are necessary.

5.1.4 RQS Assessment
Of the papers identified in this review that used traditional hand-
crafted features, the mean RQS was 23% ± 19.6% (range: 0 –
52.8%). This low score is the continuation of a trend in radiomics
research, where overall low methodological quality has been
identified with respect to the RQS by a number of different
authors across a variety of radiomics use cases (34–38). Only
17.6% of studies conducted an external validation of their results
(3/17) and only four papers were prospective in nature or had at
least a prospective component (4/17, 23.5%). Assessment of
feature reproducibility was in general low. Seven studies (7/17,
41.1%) performed multiple segmentations to assess robustness of
features to each, but only a single paper conducted a phantom
study to assess the robustness of features to the scanner
variabilities (1/17, 5.9%). Other major limitations identified
include: failure to include a calibration statistic and its
statistical significance (15/17, 88.2%); the overwhelming lack of
accordance to open scientific principles (16/17, 94.1%); no
detection of biological correlates (0/17); and no cost-
effectiveness analysis (0/17). The majority of studies did
undertake some form of feature reduction to reduce the
chances of overfitting (12/17, 70.6%), and just under half of
identified papers included non-radiomics features (such as
clinical covariates) into their model building process (8/17,
47.1%). Supplementary Table 1 shows how the studies fared
with respect to each RQS item.
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5.2 Deep Radiomics
Utilising deep learning for automated end-to-end salient feature
learning, extraction and modelling (which we may term ‘Deep
Radiomics’) instead of traditional hand-crafted features is an
area of study that has considerable potential. The rise of the field
has been facilitated by an overall increase in the availability of
computational resources and toolkits3,4,5 that have made the
designing and training of these networks easier than ever before.
The potential of these models to become crucial pieces of the
clinical workflow, supplementing physician decision making and
contributing to individualised patient therapy, is enormous. In
the deep radiomics publications identified in this review, the
detection or classification of patient metastatic lesions is the
overwhelming outcome measure.

With respect to imaging modalities, bone scintigraphy was
the modality that was most commonly analysed (100, 125–131),
and the salient characteristics of these papers are summarised in
Table 5. Papandrianos and colleagues (128) designed a CNN
architecture for bone metastases diagnosis, where patient bone
scintigrams were classified into three classes: no metastasis,
degenerative (defined as the absence of metastasis but the
presence of degenerative lesions), and metastasis present. Of
the 778 patient bone scans examined 15% were reserved solely
for testing and following a thorough exploration of the optimal
CNN hyperparameters to be used, the final architecture achieved
overall classification accuracy of 91.61% ± 2.46% (F1-score =
0.938). This result concords with a very similar study undertaken
by the same authors, except in this instance only performing a
dual-class classification problem (metastasis present vs.
metastasis absent) by excluding any patients with degenerative
lesions where their CNN model achieved a higher overall
accuracy of 97.38% (129). Ntakolia et al. (127) performed the
same three-class classification problem mentioned above also on
778 PCa patients who underwent bone scintigraphy, except this
time deploying a lightweight version of the look-behind FCN
(LB-FCN) (132, 133) and achieved a better overall accuracy of
97.41%. Their results demonstrated that state-of-the-art
classification results can be achieved using a CNN with less
learnable parameters and thus requiring less resources
for training.

Deep learning techniques can also be utilised to classify
individual identified lesions, rather than whole patient images,
in bone scintigrams. Cheng et al. (100) used data from 371 breast
cancer patients to pre-train a YOLO v4 network (134) to classify
identified chest hotspots in bone scintigraphy images as either
metastatic or benign. Employing a transfer learning approach,
the model was then trained on a dataset of 194 PCa patients
under a 10-fold cross-validation scheme which yielded a lesion-
level classification sensitivity of 0.72 ± 0.04 and a precision of
0.9 ± 0.09. Their approach suggests the feasibility of utilising
metastatic lesions in malignancies other than prostate cancer for
pre-training a classification network, thus potentially offering a
way for researchers to generate functioning networks even with
November 2021 | Volume 11 | Article 771787
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limited datasets. A follow-up study (126) using instead the
YOLO v3 network (135) managed to increase the sensitivity
(0.82 ± 0.08) at the expense of precision (0.7 ± 0.11) for chest
hotspot classification.

The remaining identified studies investigated deep learning on
PET and/or CT images with various labelled radiotracers (99, 136–
139). Table 6 shows the important characteristics of these studies.
Lee et al. examined a cohort of 251 PCa patients with suspected
BCR following definitive primary therapy (139). 18F-Fluciclovine
PET images were labelled as either ‘normal’, if no recurrence was
found, or ‘abnormal’, if there was either a recurrence in the
prostatic bed or evidence of pelvic metastasis. Two 2D CNN’s
(ResNet-50) were trained (a slice-based model which predicts
individual patient PET slices, and a case-based model that makes a
prediction for the entire PET image), and one case-based 3D CNN
(ResNet-14) was trained to predict image abnormality. Prediction
results on a dedicated test set at the patient level (AUC = 0.75, p =
0.013; Sens = 85.7%; Spec = 71.4%) were outperformed by the 2D
slice-based CNN (AUC = 0.971, p < 0.001; Sens = 90.7%; Spec =
95.1%), however, both 2D models outperformed the 3D ResNet-
14 (AUC = 0.699, p = 0.053; Sens = 71.4%; Spec = 71.4%). The
authors hypothesise that the reason for the underperformance of
the 3D CNN could be due to the fact that the 3D CNN had a
higher number of learnable parameters and would therefore
require a greater training dataset size to generate a sufficiently
generalisable model.

One can take this analysis further by classifying individual
lesions as benign or malignant. Masoudi et al. (138)
demonstrated how deep learning can be used to classify the
malignancy of individual bone lesions using only a patient
Frontiers in Oncology | www.frontiersin.org 13
staging CT. An expert radiologist identified, annotated, and
segmented 2,880 bone lesions in 114 PCa patients, 41 of which
were histopathologically confirmed to be metastatic. Fifteen
patients were reserved solely for testing purposes. Using a
constructed ensemble model comprised of the 2D ResNet-50
and a 3D ResNet-18 architecture, they achieved high accuracy in
classifying bone lesions in the test set (Acc = 92.2%). The use of
CT to classify the malignancy of patient lesions is not limited
exclusively to bone lesions. Hartenstein et al. (137) trained a
CNN for the binary classification of lymph nodes in contrast-
enhanced CT images of 549 histologically confirmed PCa
patients (2,616 labelled lymph nodes identified on 68Ga-PSMA
PET) and achieved a great accuracy of 89% (AUC = 0.95; Sens =
86%; Spec = 92%). External validation of these results was
lacking, however, and the authors acknowledge that future
studies should utilise histopathology confirmed lymph node
invasion via extended pelvic lymph node dissection, rather
than 68Ga-PSMA PET, as the ground truth reference.

Deep learning can also be applied to perform fully automated
detection of metastatic PCa lesions. Automated detection of
metastases in patients can relieve some of the significant
clinical time burden associated with manual observer analysis
of medical images. Zhao et al. (99) conducted a proof-of-concept
study for the automated detection and segmentation of
metastatic lesions in 68Ga-PSMA PET/CT images of mCRPC
patients. The authors applied a 2.5D U-Net ensemble network
that leveraged information from each anatomical plane
separately to make predictions on the presence or absence of
metastases in individual voxels, with manual delineations by
expert physicians serving as the reference ground truth. Their
TABLE 5 | Prominent characteristics of identified mPCa studies using deep radiomics methodology on bone scintigrams.

First Author Year Design Patient
sample size

Patient Cohort Deep Network
Architecture

Outcome Measures External
Validation

Results Synopsis

Aoki Y (125) 2020 R 139 PCa Fused dual U-Net Bone metastases N Acc = 89.2%
Sens = 91.7%
Spec = 87.3%

Cheng D
(100)

2021 R 194 PCa YOLO v4 Chest hotspot
classification

N Sens = 0.72 ± 0.04
Prec = 0.90 ± 0.04

Cheng D
(126)

2021 R 205 PCa R-CNN & YOLO
v3

Chest & Pelvic hotspot
classification

N Chest Classification
Sens = 0.82 ± 0.08
Prec = 0.70 ± 0.11
Pelvis Classification
Sens = 0.87 ± 0.12
Prec = 0.81 ± 0.11

Ntakolia C
(127)

2020 R 778 PCa LB-FCN light Bone metastasis
diagnosis

N Overall accuracy =
97.41%

Papandrianos
N (128)

2020 R 778 PCa CNN Bone Metastasis
Diagnosis

N Overall accuracy =
91.61% ± 2.46%

Papandrianos
N (129)

2020 R 586 PCa CNN Bone Metastasis
Diagnosis

N Overall accuracy =
97.38%
Sens = 95.8%

Sadik M (130) 2008 R 614 PCa patients with suspected
metastatic disease

ANN Bone Metastasis
Diagnosis

N Sens = 90%
Spec = 89%

Wuestemann
J (131)

2020 R 149 PCa patients with malignant
indication on bone scan

ANN Bone Metastasis
Diagnosis

Y AUC = 0.937, Sens =
87.0%
Spec = 98.6%, PPV =
98.5%
NPV = 87.7%
Novemb
er 2021 | Volu
Acc, Accuracy; AUC, Area Under Curve; NPV, Negative Predictive Value; P, Prospective; PPV, Positive Predictive Value; R, Retrospective; Sens, Sensitivity; Spec, Specificity.
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results, which were restricted only to detecting metastatic disease in
the pelvic area, demonstrated great accuracy in the detection of
bone lesions (Sens = 0.99, Prec = 0.99) and lymph node lesions
(Sens = 0.9, Prec = 0.94), but inferior accuracy in the detection of
local prostate lesions (Sens = 0.61, Prec = 0.79). Although highly
promising, extending this analysis to detect metastases throughout
the body that aren’t restricted to the pelvic area remains a fertile
pathway of future research. On top of the clear clinical benefit of
having lesions detected automatically, there is potentially valuable
prognostic information to be gained from the number of
automatically detected lesions. Borrelli et al. (136) trained and
tested two CNN’s, one that detected important patient organs, and
another that used this output in conjunction with the patient 18F-
Choline PET/CT image to automatically detect lymph node lesions
in 399 biopsy-proven PCa patients. They determined that the
number of automatically detected lymph node metastases was
significantly associated with PCa-specific survival (HR = 1.19,
95% CI 1.05 – 1.33).
6 DISCUSSION AND FUTURE
RECOMMENDATIONS

6.1 Quality of the Reviewed Studies
The RQS assessment of the identified papers reveals some
significant limitations in the current landscape of mPCa
radiomics research. The overall lack of prospective
methodology and external validation of developed models,
along with the other limitations presented above, are crucial
Frontiers in Oncology | www.frontiersin.org 14
contributing factors that are impeding the translation of
radiomics models from being of purely academic interest to
being properly realised clinical models capable of facilitating
truly personalised patient interventions based on the specific
phenotype of their malignancy. These downsides should be
addressed as soon as possible so that the full potential of
radiomics can be realised.

Having said this, it should also be noted that the RQS as a
measure of methodological quality has its own limitations. For
example, it takes insufficient account of the nature of the study
and penalises papers perhaps too harshly in some respects, while
not penalising sufficiently other aspects such as significant
overfitting. For traditional radiomics papers whose purpose is
not to develop a radiomics model, for example, Lin et al. (89) and
their investigation into a potential new metric for response
assessment, overfitting is not a consideration and thus feature
reduction is not necessary. Similarly for studies using machine-
learnt features for extraction and modelling, some aspects of the
RQS might not be applicable. Employing feature cut-off analyses,
for example, is unnecessary for a variety of ML models that are
commonly used in radiomics research and, as has been pointed
out elsewhere (36), might even compromise the interpretability
of the final ML model. Furthermore, once you move to the realm
of deep learning for feature extraction, where the black box
nature of the algorithm makes the features that are extracted
extremely difficult (if not impossible) to interpret, other parts of
the RQS criteria become hard to meet. It is difficult to expect
researchers to analyse the robustness of individual features to
scanner variabilities when the features are deep features that are
TABLE 6 | Prominent characteristics of identified mPCa papers using deep radiomics methodology on PET and/or CT modalities.

First
Author

Year Imaging
Series

Analysed

Design Patient
sample
size

Patient Cohort Deep Network
Architecture

Outcome
Measures

External
Validation

Results Synopsis

Borrelli P
(136)

2020 18F-
Choline
PET/CT

R 399 Biopsy-proven PCa Dual CNN
architecture for
detection &
segmentation

Lymph node
metastases
detection,
association with
survival

N The number of metastatic lymph nodes
detected is associated with PCa-
specific survival (HR = 1.19, 95% CI
1.05 – 1.33).

Lee J (139) 2020 18F-
fluciclovine
PET

R 251 PCa patients with
suspected BCR
following definitive
therapy

ResNet-50 &
ResNet-14

Pelvic recurrence
or metastasis
classification

N Patient-level predictions
AUC = 0.750 (p = 0.013)
Sens = 85.7%
Spec = 71.4%
Slice-level predictions
AUC = 0.971 (p < 0.001)
Sens = 90.7%
Spec = 95.1%

Hartenstein
A (137)

2020 CT R 549 Histologically
confirmed PCa

CNN LNI N AUC = 0.95
Sens = 86%
Acc = 89%
Spec = 92%

Masoudi S
(138)

2021 CT R 114 Metastatic PCa
(41 histologically
confirmed)

2D ResNet-50 &
3D ResNet-18
Ensemble

Bone lesion
classification

N Acc = 92.2%
F1 Score = 92.3%

Zhao Y (99) 2019 68Ga-
PSMA
PET/CT,

R 193 mCRPC 2.5D U-Net
Ensemle

Pelvic area
metastatic lesion
detection

N Precision range 0.79 – 0.99 depending
on the type of lesion detect (bone,
lymph node, or local)
Sensitivity range 0.61 – 0.99
Novemb
Acc, Accuracy; AUC, Area Under Curve; HR, Hazard Ratio; P, Prospective; R, Retrospective; Sens, Sensitivity; Spec, Specificity.
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not precisely mathematically defined and very difficult to extract
individually from a highly complex deep NN or CNN. Assessing
individual feature robustness to segmentation variabilities with
deep features is similarly impractical but could also be irrelevant.
CNN’s, for example, can perform end-to-end feature extraction
and predictive modelling on entire medical images without the
need for segmentations in the first instance, which should be
taken as a significant benefit since it removes what is known to be
a large source of bias in radiomics research (32, 53). It would
perhaps make more sense in these cases to assess robustness at
the model level, rather than the individual feature level, but this is
not what the RQS criteria specifies.

Considering these factors, we did not think it appropriate to
perform RQS assessments on papers that employed deep
learning from end-to-end, since it would make for an unfair
comparison to those papers that utilised traditional hand-crafted
features. However, even without conducting a RQS assessment
of the identified deep radiomics studies, several clear
methodological weaknesses exist among the reviewed studies.
External validation was poor, with only a single study (131)
conducting a validation of the model performance on an external
test set. None of the papers were prospective in nature. The
implicit bias present in retrospective studies, and the near
complete lack of external validation of developed models is a
large hurdle to the translation of these models into actual clinical
practice. Whether using traditional mathematically defined
features, or automatically learnt deep features, if radiomics is
to achieve its full potential, then these downsides will need to be
addressed in future research.

Model validation is a critical point that needs to be
underscored. New predictive, prognostic or diagnostic models
need to be validated in some fashion and performing this
validation exclusively on the same data on which the model
was trained will provide an inflated assessment of model
performance. Internal validation should be performed as a
necessary first step, where cross-validation techniques,
bootstrapping, or a hold-out test set from the original study
sample are used to assess model performance. Models that
perform poorly on an internal validation sample are unlikely
to generalise well to previously unseen populations (140).
Internal validation alone, however, is insufficient. Radiomics
studies should undertake, as a minimum, internal validation,
but ideally external validation should also be conducted where
possible (32, 33). If the purpose is to find robust, informative
biomarkers and models that can be utilised in a cross-
institutional fashion for diagnostic or prognostic purposes then
it is imperative that external validation is also undertaken.
External validation of a developed model or an identified
biomarker, in which the predictive performance is assessed on
a separate data sample, is necessary to understand their capacity
to generalise to data other than that on which they were trained
or acquired. The published literature reviewed in the present
work demonstrate a poor performance when it comes to external
validation, which is directly in line with a myriad of other studies
that have highlighted the overall lack of external validation that is
present in radiomics research pertaining to other malignancies
Frontiers in Oncology | www.frontiersin.org 15
(34, 36, 37). This is an issue that directly impacts the translational
capacity of developed models into proper clinical practice, and
future studies should seek to address this limitation.

6.2 Harmonisation and Standardisation
for Reproducibility
The present review has revealed a relative paucity of studies that
conducted a feature reproducibility analysis with respect to
different segmentation techniques or scanner variabilities.
Retrospective or multi-institutional datasets often do not have
standardised imaging acquisition and reconstruction protocols.
While efforts should be made to obtain a dataset of images with
consistent or identical scanner parameters, this is not always
feasible. Harmonisation techniques have been employed and
validated that limit the influence of heterogeneous imaging
parameters on the resulting radiomics signature, which ensures
that any variability in the developed model is reflective of the
underlying physiology/biology of the imaged lesion instead of
being biased by inconsistent scanner protocols. ComBat is a
commonly used harmonisation technique that employs an
empirical Bayes framework to alter datasets to account for so-
called ‘batch effects’, which refer to confounding experimental
factors that affect the output of data other than the underlying
biological variations that are of clinical interest (141). The
method was originally introduced to reduce the influence of
batch effects in genomic microarray research, but its applicability
is not limited to this field and has since been utilised in radiomics
research. Imaging acquisition protocols and reconstruction
methods are batch effects in radiomics research that can be
minimised by utilising the ComBat method, and evidence exists
supporting its usefulness as a harmonisation technique for
imaging modalities such as PET (142), CT (60, 143, 144), and
MRI (145).

While the current evidence points to the usefulness of the
ComBat harmonisation method, phantom studies confirming
that the method improves feature reproducibility across scanner
parameters in specific use cases should be performed where
feasible. Indeed, it should be noted that there is no guarantee that
the use of ComBat harmonisation, even if the method increases
feature reproducibility across variable scanner parameters, will
lead to a model with increased diagnostic, prognostic, or
predictive power. This is demonstrated in a study by Peeken
et al. (116) where the use of ComBat harmonisation resulted in
an insignificant AUC value change of 0.01 in logistic regression
models used to determine the malignancy status of segmented
lymph nodes. Thus, while ComBat harmonisation can have a
positive effect on the reproducibility of radiomics features,
whether this leads to an improved model will depend on the
particular modelling task and should be the subject of future
research. Current mPCa radiomics research has experimented
minimally with this technique, and future radiomics studies
relating to mPCa should explore this technique further.

Studies reviewed in the present work utilised a myriad of
different radiomics software for feature extraction. This is
problematic for reproducibility, since it is known that even
when extracting the same imaging biomarker, different
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software can yield different results (146). The standardisation of
quantitative imaging biomarker definitions is therefore
important to ensure maximum reproducibility. Standardisation
initiatives such as the image biomarker standardisation initiative
(IBSI) have attempted to address the problem of variable
biomarker definitions, producing a set of standardised
definitions that researchers can use for their quantitative
imaging tasks (54, 147). Open source radiomics feature
extraction software such as PyRadiomics and RaCaT (148,
149), implemented in the popular coding languages Python
and C++, define biomarkers largely in accordance with the
IBSI guidelines and carefully document any deviations, which
can improve study reproducibility. Not specifying the software
used or utilising in-house software that is not provided open
source (and is therefore impossible to verify) should be
minimised in favour of open-source projects such as those
above in future works.

6.3 Deep Learning – The Future of
Radiomics in mPCa?
The reliance on traditional hand-crafted features to characterise
ROIs is a limiting factor in radiomics research that can be
supplemented by using deep learning methods. Automated
feature generation with saliency to the predictive task at hand
is a notable benefit that can streamline the radiomics workflow,
reducing the need for manual or data-driven feature selection
techniques and enable end-to-end predictive modelling with
limited human intervention required. The deep radiomics
papers reviewed in this work demonstrate the ability of these
algorithms to achieve good results in classifying the malignancy
of overall patient scans (127, 139), classifying individual bone
lesions (126), or detecting the anatomical locations of metastatic
lesions throughout the patient body (99). As already discussed,
external validation is overwhelmingly lacking and needs to be
addressed, however, the literature available to date suggest the
significant potential for deep learning to contribute positively to
the clinical management of mPCa. It should be noted, however,
that the overwhelming majority of deep radiomics papers
relating to mPCa developed models with diagnostic
applicability. Only a single study attempted to perform any
analysis that had prognostic value (136), where they associated
the number of automatically detected lymph nodes with PCa-
specific survival (HR = 1.19, 95% CI 1.05 – 1.33). The
heterogeneity of mPCa and plethora of available treatment
options such as hormone therapy, chemotherapy, PSMA-
labelled isotope therapy and others make this disease a prime
target for deep modelling capable of predicting optimal
treatment regimens (150). This remains a relatively unexplored
pathway, and future work should certainly delve into this
rich area.

Deep learning does not need to be utilised for end-to-end
feature extraction and modelling to aid substantively with
specific aspects of the radiomics workflow. ROI segmentation
is one area where deep learning has already made significant
contributions. The recent explosion of fully convolutional
networks (FCNs) has led to the development of numerous
algori thms capable of performing ful ly automated
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segmentation of anatomical structures and patient lesions.
FCNs such as the U-Net and its variants have revolutionised
the field of medical image segmentation through their ability to
output state-of-the-art delineations in seconds (151–153).
Kostyszyn et al. (154), for example, have demonstrated the
possibility of fully automated prostatic gross tumour volume
segmentation on PSMA-PET images in patients with primary
PCa. They found good concordance between the fully automated
segmentation and the expert manual contour on an external
validation cohort, achieving a median dice similarity coefficient
(DSC) of 0.81 (range: 0.32-0.95). Other studies have
demonstrated the possibility of fully automated and accurate
segmentation of the prostate gland and its associated zones with
deep learning across various imaging modalities such as CT
(155–157) and MRI (158–160). Zhao et al. (99) developed a
modified 2.5D U-Net architecture for the automated
segmentation of metastatic prostate lesions in 68Ga-PSMA
PET/CT images in a proof-of-concept study. Their ensemble
model, which leveraged information extracted from the axial,
sagittal and coronal imaging planes simultaneously, was able to
achieve mean DSCs of 0.645 and 0.544 for bone lesions and
lymph node lesions when compared to expert manual
segmentations, respectively, although the analysis was
restricted to metastatic lesions contained in the pelvic area and
fully-body validation has yet to be undertaken. By utilising fully
automated segmentation algorithms reproducible segmentations
can be produced and the issue of inter- and intra-observer
variability is resolved, however, further research in this space is
necessary because the lack of generalisability of these algorithms
to independent datasets remains an impediment to their
widespread clinical adoption (87).

Deep learning techniques can yield great benefits, but they are
not without their downsides. In all cases the interpretability of
the model is compromised relative to the traditional radiomics
pathway. While hand-crafted features can often relate to very
specific and clinically understandable aspects of tumour biology,
deep features are highly abstract and difficult for humans to
interpret. A generalised statement on whether this is an
acceptable downside cannot be made, as it depends primarily
on what the desired outcome of the clinical model is, and
whether clinicians value having a greater intuitive
understanding of the results of a particular model. Also, the
complexity of deep learning models demands greater amounts of
training data to produce acceptable results without overfitting.
Techniques exist to mitigate against overfitting, such as dropout
regularization (161), batch normalization (162) and artificially
increasing the size of the dataset through data augmentation.
Nevertheless it remains true that the vast majority of current
models do not demonstrate generalisability to external datasets,
which is evidenced by the studies reviewed in the present work.
These downsides need to be considered when future radiomics
studies in mPCa are undertaken.

6.4 Hybrid Imaging
There is no inherent limitation on the number of imaging
modalities from which radiomics features can be extracted for
use in predictive modelling. Hybrid imaging techniques capture
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expanded amounts of information that can be complementary in
nature, where each modality characterises different information
about the underlying biology of the tumour (163). 68Ga-PSMA
PET/CT imaging, for example, plays a crucial role in the
detection and subsequent clinical management of metastatic
PCa (11). 68Ga-PSMA PET captures physiological information
within the patient’s body about the distribution of the PSMA
receptor, which is substantially overexpressed in the vast
majority of PCa cases (17), while the CT provides high-
resolution imaging reflecting the underlying density of the
patient anatomy. Radiomics features extracted from each of
these modalities will thus characterise the heterogeneity of the
tumour in different and potentially complementary ways, which
could improve model performance. There is evidence that
utilising this approach in mPCa radiomics modelling can yield
good results, both in the traditional radiomics methodology (93,
95, 98) and deep radiomics (99). Particularly in the field of deep
radiomics, where the analysis of dual modalities can often be as
simple as incorporating an additional channel in the network
architecture, this method of analysis should be thoroughly explored.
CONCLUSION

Radiomics analysis, both using hand-crafted and machine-
crafted features has demonstrated significant diagnostic,
prognostic, and predictive potential in the clinical management
of mPCa. Quality assessment of the identified studies, however,
Frontiers in Oncology | www.frontiersin.org 17
revealed major limitations preventing the implementation of
these models in routine clinical practice. Future work should
conduct multi-centre and prospective validation of developed
radiomics models as a priority to facilitate the clinical translation
of radiomics models, so that the full potential of this field can
be realised.
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