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ABSTRACT Salmonella enterica serovar Enteritidis is a Gram-negative bacterium and
one of the most common foodborne pathogens. Biocontrol using bacteriophage in
food products or animals is one possible means by which pathogenic salmonellosis
infection could be inhibited. Here, we report the complete genome sequence of the
T4-like Salmonella Enteritidis myophage Mooltan.

Foodborne Salmonella enterica serovar Enteritidis infection is a regular and perpetual
problem in the United States (1–3). As rising antibiotic resistance continues to

represent a growing health care problem throughout the world, it is necessary to
explore alternative means, including phage therapy, to control this bacterium (3, 4).

Phage Mooltan was isolated from mixed municipal wastewater collected in Brazos
County, TX, in 2015 by using S. Enteritidis as a host. Host bacteria were cultured on
tryptic soy broth or agar (Difco) at 37°C with aeration. Phage were cultured and
propagated by the soft agar overlay method (5). Phage genomic DNA was prepared
using a modified Promega Wizard DNA cleanup kit protocol, as described previously (6).
Pooled indexed DNA libraries were prepared using the Illumina TruSeq Nano LT kit, and
sequences were obtained from the Illumina MiSeq platform using the MiSeq v2
500-cycle reagent kit, following the manufacturer’s instructions, producing 697,877
reads for the index containing the phage genome. FastQC (http://www.bioinformatics
.babraham.ac.uk/projects/fastqc/) was used for quality control of the reads. The reads
were trimmed with FastX-Toolkit 0.11.6 (http://hannonlab.cshl.edu/fastx_toolkit/) be-
fore being assembled into a single contig at 42.6-fold coverage using SPAdes 3.5.0 (7).
Contig completion was confirmed by PCR using primers (5=-GTTCCGTGAACAAGTG
CTGA-3= and 5=-ATTAGGTTGTGCTGGCGATT-3=) facing off the ends of the assembled
contig and Sanger sequencing of the resulting product, with the contig sequence
manually corrected to match the resulting Sanger sequencing read. GLIMMER 3.0 (8)
and MetaGeneAnnotator 1.0 (9) were used to predict protein-coding genes, with
manual correction for appropriate gene starts, and tRNA genes were predicted with
ARAGORN 2.36 (10). Rho-independent termination sites were identified via TransTerm
(http://transterm.cbcb.umd.edu/). Sequence similarity searches by BLASTp 2.2.28 (11)
and conserved domain searches with InterProScan 5.15-54.0 (12) were used to predict
protein function. All analyses were conducted using default settings via the CPT Galaxy
(13) and WebApollo (14) interfaces (cpt.tamu.edu).

Mooltan has a 156,937-bp genome with a coding density of 92% and a GC content
of 44.9%. Essential genes related to replication and recombination, as well as phage
morphogenesis, were identified. Two tail spikes were identified, one of which is P22
gp19 like, suggesting use of the lipopolysaccharide O antigen as a binding receptor
(15). An endolysin was identified that is predicted to contain an N-terminal peptidogly-
can binding domain and is soluble due to the absence of an N-terminal signal anchor
release (SAR) domain (16). Holin and spanin complexes, however, could not be reliably
identified. Two selfish genetic elements were identified in the genome, an intein in the
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large terminase subunit and a GIY-YIG homing endonuclease. The terminase is pre-
dicted to utilize headful packaging by homology of the terminase large subunit (TerL)
with other characterized headful terminases. The tail tape measure protein was not
identified.

Many characteristic T4 genes were identified in the Mooltan genome, and this
genome was found to be syntenic (have the same gene order) with phage T4, with rIIA
as the first gene of the genome. Additionally, Mooltan carries a P22 gp17-like super-
infection exclusion protein. In P22, gp17 is necessary to counteract the Fels-2 prophage
superinfection exclusion system (17).

Data availability. The genome sequence of phage Mooltan was submitted to

GenBank under accession number MH688040. The associated BioProject, SRA, and
BioSample accession numbers are PRJNA222858, SRR8556780, and SAMN10904482,
respectively.
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