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Abstract
Methods for identifying essential genes currently depend predominantly on biochemical ex-

periments. However, there is demand for improved computational methods for determining

gene essentiality. In this study, we used the Hurst exponent, a characteristic parameter to

describe long-range correlation in DNA, and analyzed its distribution in 33 bacterial ge-

nomes. In most genomes (31 out of 33) the significance levels of the Hurst exponents of the

essential genes were significantly higher than for the corresponding full-gene-set, whereas

the significance levels of the Hurst exponents of the nonessential genes remained un-

changed or increased only slightly. All of the Hurst exponents of essential genes followed a

normal distribution, with one exception. We therefore propose that the distribution feature of

Hurst exponents of essential genes can be used as a classification index for essential gene

prediction in bacteria. For computer-aided design in the field of synthetic biology, this fea-

ture can build a restraint for pre- or post-design checking of bacterial essential genes. More-

over, considering the relationship between gene essentiality and evolution, the Hurst

exponents could be used as a descriptive parameter related to evolutionary level, or be

added to the annotation of each gene.

Introduction
Essential genes are those genes of an organism that are critical for its survival, and their content
are highly determined by the circumstances in which the organism lives [1]. Essential genes are
characterized by lethal mutant phenotypes that block survival or reproduction. Identifying es-
sential genes is important for understanding the minimal requirements for cellular survival,
and this information may have practical applications in the fields of medicine and bioengineer-
ing [2]. Furthermore, this information may provide insight into the complex mechanisms of
cell function and evolution.

The identification of essential genes still relies predominantly on biochemical experiments.
Single-gene-specific mutagenesis, saturation transposon mutagenesis, and antisense RNA
inhibition are employed as traditional approaches [3]. However, these methods are costly,
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time-consuming, and labor-intensive. In addition, experimental approaches are not always
possible as the vast majority of organisms are unculturable. Computational prediction methods
therefore offer a good alternative. Many methods for essential gene prediction have previously
been reported; these include comparative genomic approaches using homology mapping, con-
straint-based methods, machine learning methods based on a partial essential gene list, and sta-
tistical modeling based on transposon mutagenesis data [4]. To increase prediction accuracy,
researchers employed a large range of features, such as amino acid composition, codon bias,
and protein evolution rate [2,4]. However, the accuracy of these methods is not always high
enough for large scale practical application. Moreover, the increase in the number of features
(the dimension of feature space) results in a sharp increase in computational complexity and
computational cost [5], which highlights the necessity for more efficient methods and feature
(s).

Long-range correlation (or self-similarity) has been observed in DNA sequences, in both
coding and non-coding regions [6,7]. The Hurst exponent is used as a characteristic parameter
to describe long-range correlation. Yu et al. proposed a time-series model and a visual repre-
sentation for DNA sequence analysis [8]. The correlation dimension, Hurst exponent, fractal
dimension, and dimension spectrum (multifractal analysis) were considered in their work. Liu
et al. calculated the rescaled range functions; the Hurst exponents of human chromosome 22
and enterobacteria phage lambda DNA sequences; and the transmission coefficients, Landauer
resistances, and Lyapunov coefficients of segments of the corresponding DNA sequences [9].
Stan et al. investigated the characteristics of a series of lengths of coding and non-coding DNA
sequences from certain bacteria and archaea, using the generalized Hurst exponent on the size
of fluctuations, the shape of the singularity spectra, the shape and relative disposition of the
curves of the singular measures scaling exponent, and the values of the associated parameters
[10].

With the rapid development of synthetic biology, especially research on minimal genomes,
the question has arisen as to whether these long-range correlation features change in reduced
DNA sequences. We performed an initial study of the Hurst exponent of nine bacteria from
the DEG 6.5 database (the original database of essential genes) and obtained an initial view of
the distribution feature of the index, that is, a normal distribution exists for the Hurst exponent
[11]. However, the sample size was limited in that study. The updated DEG 10.7 database, re-
leased more recently, contains 33 bacteria, allowing for a more comprehensive study [12].
Here, we investigated the distribution of the Hurst exponent of 33 bacteria from the DEG 10.7
database to analyze the long-range correlation of this feature.

Materials and Methods
The essential gene lists of 33 bacterial objects were downloaded from the DEG 10.7 database,
and their genome files and sequence data were obtained from the NCBI ftp site (ftp://ftp.ncbi.
nih.gov/genomes/Bacteria/). Sequence information is listed in Table 1.

It should be noted that there are actually 33 bacterial object sequences provided in the DEG
database, with six object sequences originating from three bacteria (E. coliMG1655,Mycobac-
terium tuberculosisH37Rv, and S. enterica serovar Typhi) according to different experimental
environments and methods (See S1 and S2 Datasets or http://tubic.tju.edu.cn/deg/organism.
php?db = p). The organism number is therefore actually 29. Moreover, three objects have two
chromosomal sequences (Burkholderia pseudomallei K96243, Burkholderia thailandensis E264,
and V. cholerae N16961).
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Analytical procedures
The data were analyzed according to the following steps:

1. Sequences were digitized.

Nucleotide sequences were transformed into digital sequences by expressing each nucleotide
as a digital number. The four nucleotides, A, G, C, and T, were assigned the digital numbers 0,
1, 2, and 3, respectively (e.g., DNA sequence AGCTTTT would be digitized as 0123333).

2. Hurst exponents were analyzed using the R software.

Table 1. Information of the analyzed objects.

Analysis organisms NCBI RefSeq access
number

Gene number (Full-
gene-set)

Gene number
(Essential)

Gene number
(Nonessential)

Acinetobacter baylyi ADP1 NC_005966 3307 499 2594

Bacillus subtilis 168 NC_000964 4175 271 3904

Bacteroides fragilis 638R NC_016776 4290 547 3743

Bacteroides thetaiotaomicron VPI-5482 NC_004663 4778 325 4453

Burkholderia pseudomallei K96243 NC_006350/006351 3398+2329 505 5222

Burkholderia thailandensis E264 NC_007650/007651 3276+2356 406 5226

Campylobacter jejuni subsp. jejuni NCTC
11168 = ATCC 700819

NC_002163 1576 228 1395

Caulobacter crescentus NC_011916 3885 480 3224

Escherichia coli MG1655 I NC_000913 4140 609 2923

Escherichia coli MG1655 II NC_000913 4140 296 4077

Francisella novicida U112 NC_008601 1719 392 1329

Haemophilus influenzae Rd KW20 NC_000907 1610 642 512

Helicobacter pylori 26695 NC_000915 1469 323 1135

Mycobacterium tuberculosis H37Rv NC_000962 3906 614 2552

Mycobacterium tuberculosis H37Rv II NC_000962 3906 771 3171

Mycobacterium tuberculosis H37Rv III NC_000962 3906 687 3070

Mycoplasma genitalium G37 NC_000908 475 381 94

Mycoplasma pulmonis UAB CTIP NC_002771 782 310 322

Porphyromonas gingivalis ATCC 33277 NC_010729 2089 463 1627

Pseudomonas aeruginosa PAO1 NC_002516 5572 117 5454

Pseudomonas aeruginosa UCBPP-PA14 NC_008463 5892 335 960

Salmonella enterica serovar Typhi NC_004631 4352 353 4005

Salmonella enterica serovar Typhi Ty2 NC_004631 4352 358 3906

Salmonella enterica serovar Typhimurium SL1344 NC_016810 4446 353 4035

Salmonella enterica subsp. enterica serovar
Typhimurium str. 14028S

NC_016856 5315 105 5210

Salmonella typhimurium LT2 NC_003197 4451 230 4228

Shewanella oneidensis MR-1 NC_004347 4065 403 1103

Sphingomonas wittichii RW1 NC_009511 4850 535 4315

Staphylococcus aureus N315 NC_002745 2582 302 2281

Staphylococcus aureus NCTC 8325 NC_007795 2767 351 2541

Streptococcus pneumoniae NC_003098 1813 244 NULLa

Streptococcus sanguinis NC_009009 2270 218 2052

Vibrio cholerae N16961 NC_002505/002506 2534+970 779 2943

a NO nonessential genes information provided in DEG.

doi:10.1371/journal.pone.0129716.t001
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The Hurst exponent describes the degree of self-similarity of a data set. The Hurst exponent
of a data series with long-range dependence is between 0.5 and 1. An increased Hurst exponent
indicates an increase in the degree of self-similarity and long-range dependence [13].

The Hurst exponents of each gene (including the full-gene-set, essential genes, and nones-
sential genes) were calculated using the R software [14]. To compare the feature in various
models, six approaches (nine modes) for Hurst exponents were employed, which are [15]:

i. RoverS, which estimates the Hurst exponent using the rescaled range (R/S) method.

ii. hurstSpec in standard, smoothed, and robinson modes, which estimates the Hurst exponent
via spectral regression.

iii. hurstACVF, which estimates the Hurst exponent by regression of scaled asinh plot of auto
covariance function vs. log(lag).

iv. Detrended fluctuation analysis, which estimates the scaling exponent from the results.

v. FDWhittle, which analyzes the input time series with the spectral density function.

vi. Block in aggvar and higuchi mode, which estimates theHurst exponent in the time domain.

3. Statistical analysis with SPSS.

The distribution properties of the Hurst exponents of the full-gene-set, the essential genes,
and the nonessential genes of the 33 object sequences were analyzed using SPSS (IBM,
Armonk, NY). Two methods in SPSS were used. Q–Q plots present an intuitionistic and graph-
ic result. However, Q–Q plots lack a quantitative description of the data. Therefore, signifi-
cance levels based on the Kolmogorov–Smirnov (K–S) test, were also calculated, which
evaluated whether the datasets were significantly different from an assumed theoretical
distribution.

Results and Discussion
A distribution hypothesis is accepted when it has a significance level of greater than or equal to
0.05, and is rejected when the significance level is less than 0.05. Of the four hypothetical distri-
butions, that is, normal, uniform, Poisson, and exponential distribution, our results showed
that only a normal distribution was satisfied at various levels. The hurstSpec method in
smoothed mode provided the highest significance level among the nine methods, and was
chosen as our optimal analysis method (See S1 and S2 Datasets in supplementary materials for
detail). The results are listed in Table 2.

The significance levels of the Hurst exponents for essential genes were significantly greater
than those of the corresponding full-gene-set, except forMycoplasma genitalium G37, Strepto-
coccus pneumoniae, and Vibrio choleraeN16961. For example, the significance levels of Escher-
ichia coliMG1655 I were<0.001 and 0.807, respectively. Those of Salmonella enterica subsp.
enterica serovar Typhimurium str. 14028S were<0.001 and 0.904, respectively. These results
indicate that a normal distribution exists for the Hurst exponent of the essential genes in these
organisms. Even for the two exceptions, the significance levels ofM. genitalium G37 (0.996,
0.993) and S. pneumoniae (0.220, 0.177) were significantly greater than 0.005, which means
that a normal distribution also exists for the Hurst exponent of these essential genes.

V. cholerae N16961 was different, showing a significance level of<0.001 for the Hurst expo-
nents of essential genes. In fact, V. cholerae strain C6706 was used for analysis and the results
were compared with V. cholerae strain N16961 [16]. Although only 50–250 single nucleotide
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polymorphisms were detected across the two entire genomes, the cause of these differences re-
mains to be determined [17].

From our results, the significance levels of most of the nonessential genes remained un-
changed or increased slightly compared with those of the corresponding full gene set. For ex-
ample, the significance levels of E. coliMG1655 I increased slightly (0.075), whereas those of S.
enterica subsp. enterica serovar Typhimurium str. 14028S remained unchanged (<0.001).
There was one exception, Helicobacter pylori 26695, for which the significance levels of nones-
sential genes were greater than those of both the full gene set and the essential genes. However,
the three values were all significantly greater than 0.005, indicating that the Hurst exponents of
the essential genes still followed a normal distribution.

Table 2. Significance levels of 33 objects in a normal distribution based on the hurstSpecmethod in smoothedmode.

Analysis organisms NCBI RefSeq access
number

Full-gene-
set

Essential
Genes

Nonessential
Genes

Acinetobacter baylyi ADP1 NC_005966 0.052 0.604 0.093

Bacillus subtilis 168 NC_000964 0.004 0.439 0.004

Bacteroides fragilis 638R NC_016776 0.002 0.175 0.015

Bacteroides thetaiotaomicron VPI-5482 NC_004663 0.000 0.688 0.000

Burkholderia pseudomallei K96243 NC_006350/006351 0.000 0.645 0.001

Burkholderia thailandensis E264 NC_007650/007651 0.000 0.408 0.000

Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC
700819

NC_002163 0.018 0.192 0.074

Caulobacter crescentus NC_011916 0.000 0.757 0.000

Escherichia coli MG1655 I NC_000913 0.000 0.807 0.075

Escherichia coli MG1655 II NC_000913 0.000 0.639 0.000

Francisella novicida U112 NC_008601 0.045 0.258 0.089

Haemophilus influenzae Rd KW20 NC_000907 0.037 0.711 0.291

Helicobacter pylori 26695 NC_000915 0.289 0.324 0.394

Mycobacterium tuberculosis H37Rv NC_000962 0.000 0.717 0.009

Mycobacterium tuberculosis H37Rv II NC_000962 0.000 0.431 0.001

Mycobacterium tuberculosis H37Rv III NC_000962 0.000 0.845 0.004

Mycoplasma genitalium G37 NC_000908 0.996 0.993 0.662

Mycoplasma pulmonis UAB CTIP NC_002771 0.131 0.894 0.133

Porphyromonas gingivalis ATCC 33277 NC_010729 0.000 0.343 0.000

Pseudomonas aeruginosa PAO1 NC_002516 0.001 0.978 0.001

Pseudomonas aeruginosa UCBPP-PA14 NC_008463 0.001 0.289 0.181

Salmonella enterica serovar Typhi NC_004631 0.001 0.183 0.002

Salmonella enterica serovar Typhi Ty2 NC_004631 0.001 0.503 0.024

Salmonella enterica serovar Typhimurium SL1344 NC_016810 0.006 0.421 0.015

Salmonella enterica subsp. enterica serovar Typhimurium str.
14028S

NC_016856 0.000 0.904 0.000

Salmonella typhimurium LT2 NC_003197 0.003 0.516 0.004

Shewanella oneidensis MR-1 NC_004347 0.014 0.784 0.212

Sphingomonas wittichii RW1 NC_009511 0.002 0.167 0.005

Staphylococcus aureus N315 NC_002745 0.004 0.437 0.013

Staphylococcus aureus NCTC 8325 NC_007795 0.000 0.124 0.002

Streptococcus pneumoniae NC_003098 0.220 0.177 NULL

Streptococcus sanguinis NC_009009 0.009 0.127 0.020

Vibrio cholerae N16961 NC_002505/002506 0.002 0.000 0.053

doi:10.1371/journal.pone.0129716.t002
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It should be addressed that the genomes ofMycoplasma genitalium G37 andMycoplasma
pulmonis UAB CTIP are already near minimal. Although the other 31 genomes encoded much
more genomic redundancy thanMycoplasma genitalium G37 andMycoplasma pulmonis UAB
CTIP, the Hurst exponents followed the same distribution (normal distribution), which
showed the generality of the Hurst exponents.

Q–Q (quantile–quantile) plots were also generated from our data set. In a Q–Q plot, if the
data investigated follow a normal distribution, a straight line should be produced when they
are plotted against the expected data. Because of the lack of quantitative descriptions, we only
provide the results of two objects in Fig 1, E. coliMG1655 I and S. enterica subsp. enterica sero-
var Typhimurium str. 14028S. The essential gene data clearly departed less from linearity than
the corresponding full gene set, indicating that the essential gene data followed a normal distri-
bution more closely. However, the nonessential genes of most objects were relatively conserved
with the full-gene-set.

Conclusion
There are more than 5000 bacterial genomes currently available in the NCBI sequence data-
base, far more than the number of objects provided in the DEG database. There is a demand
for improved computational prediction methods for determining gene essentiality. The aim of
our study was to identify the shared feature(s) related to gene essentiality and to use these to
aid in silico predictions. We investigated the statistical feature of Hurst exponents in the 33
available genomes. The results showed that in most organisms (31 out of 33) the significance
levels of the Hurst exponents of the essential genes were significantly higher than for the corre-
sponding full-gene-set. In most organisms, the significance levels of the Hurst exponents of the
nonessential genes remained unchanged or increased only slightly. With only one exception,
the Hurst exponents of essential genes followed a normal distribution.

Machine learning methods have previously been employed for predicting gene essentiality.
Various sequence-based and biochemistry-based characteristics have been chosen as descrip-
tive features, including GC content, codon effective number, topology features of protein-pro-
tein interactions, gene expression, cellular localization, and biological process annotation [4].
To increase prediction accuracy, more efficient features should be explored. The final goal of
computational prediction methods is to reduce or even eliminate the dependency on biochemi-
cal experiments. Thus, some of the features used currently should be avoided, such as protein-
protein interactions and gene expression, which cannot be derived from the sequence directly.
Based on our findings, the distribution feature of Hurst exponents show its generality in the es-
sential genes of bacteria, therefore we propose that the distribution feature of Hurst exponents
of essential genes could be used as an effective index for data classifying or clustering in the pre-
diction of essential genes of bacteria. The Hurst exponent has been screened out and adopted
as key feature in our related support vector machine-based prediction method and the results
verified the efficiency of the Hurst exponent (unpublished results).

As essential genes code for fundamental cellular functions required for the viability of an or-
ganism, they tend to be more conserved than nonessential genes across organisms, which
means lower evolutionary rates [18,19]. Furthermore, it has been reported that long-range cor-
relations increase with evolution [20]. This means that the Hurst exponents of essential/nones-
sential genes are a descriptive parameter related to evolutionary level, which could be added to
the annotation of each gene. Quantitative analysis of the relationship between the Hurst expo-
nents of essential genes and the evolution of essential genes will be the subject of our future
work.
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Under different environmental conditions, a gene may gain or lose essentiality. This has
prompted research into conditionally essential genes, which will expand our knowledge of
which genes in an organism are essential and under what conditions they are essential [21,22].
Readers can find the detail of the laboratory condition in DEG (http://tubic.tju.edu.cn/deg/
organism.php?db = p) or S1 and S2 Datasets. It’s a pity that, at present, there are not enough

Fig 1. Q–Q plots of the Hurst exponents. A, B, and C: Escherichia coliMG1655 I; D, E, and F: Salmonella enterica subsp. enterica serovar Typhimurium
str. 14028S. A and D show Q–Q plots of the Hurst exponents of the full-gene-sets of the two objects from respective organisms. B and E show Q–Q plots of
the Hurst exponents of the essential genes of the two objects from respective organisms. C and F show Q–Q plots of the Hurst exponents of the nonessential
genes of the two objects from respective organisms.

doi:10.1371/journal.pone.0129716.g001
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contrasting data of the objects in variant laboratory conditions for classifying or clustering,
highlighting the need for a database of conditionally essential genes.

Experimental confirmation of data derived from computational prediction methods is still
indispensable for the accurate prediction of essential genes. However, the development and im-
provement of specific databases, such as DEG, will help to increase the prediction accuracy of
computational approaches.

Supporting Information
S1 Dataset. Hurst exponents of the essential genes of the 33 bacteria in DEG10.7.
(XLSX)

S2 Dataset. Hurst exponents of the nonessential genes of the 33 bacteria in DEG10.7.
(XLSX)
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