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Abstract: Cucurbitacin E (CuE), a highly oxygenated tetracyclic triterpene from Cucurbitaceae,
has shown to exhibit potent cytotoxic and anti-proliferative properties against several human
cancer cells. However, the underlying effects and mechanisms of CuE regarding hepatocellular
carcinoma (HCC) have not been well understood. In the current study, unbiased RNA-sequencing
(RNA-seq) and bioinformatics analysis was applied to elucidate the underlying molecular mechanism.
CuE could significantly inhibit cell proliferation and migration of Huh7 cells, meanwhile CuE
exhibited potent anti-angiogenic activity. RNA-seq analysis revealed that CuE negatively regulated
241 differentially expressed genes (DEGs) involved in multiple processes including cytoskeleton
formation, angiogenesis and focal adhesion. Further analysis revealed that CuE effectually regulated
diversified pharmacological signaling pathways such as MAPKs and JAK-STAT3. Our findings
demonstrated the role of CuE in inhibiting proliferation and migration, providing an insight into the
regulation of multiple signaling pathways as a new paradigm for anti-cancer treatment strategy.

Keywords: Cucurbitacin E; hepatocellular carcinoma; proliferation; migration; MAPK pathway;
JAK/STAT3 pathway

1. Introduction

Hepatocellular carcinoma (HCC) is reported to be the most common cancer and aggressive
human malignancies worldwide [1–3]. High metastasis and invasion of HCC remains the greatest
challenge in clinical management. However, only less than thirty percent of patients meet the surgical
requirements [4]. Obviously, most of the patient mortality is attributed to high recurrence rate and
extensive metastasis in liver cancer treatment [5].

Cancer development is a multi-step process that arises from a series of genetic and epigenetic
events leading to multiple alterations in signaling pathways, such as the growth factor pathway,
VEGF pathway, MAPK, and JAK/STAT pathway [6,7]. Targeting these signaling pathways has been
considered a promising strategy for cancer therapy. Single target interventions are largely ineffective
and commonly drug resistance for complex cancer therapy [8,9]. Therefore, it is difficult to achieve the
desired therapeutic effect by using single target therapy. For these situations, discovery of molecules
that target multiple proteins or signaling pathways involved in HCC may be a more effective therapeutic
strategy [10–12].

Natural products, the most important chemical library, have long been playing significant roles
in contributing to the discovery and development of new drugs, such as vincristine, cytarabine,
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doxorubicin, paclitaxel, and docetaxel [13,14]. Therefore, it has become a promising cut-in point
to explore new drugs derived from natural products against cancer. Cucurbitacins are a family of
natural products isolated from Cucurbitaceae plants, and possess a wide spectrum of pharmacological
effects including anti-cancer, anti-diabetic, cytoprotective, and anti-inflammatory activities [15–18].
Cucurbitacin E (CuE), a highly oxygenated triterpene of cucurbitacins, is known to have a variety of
pharmacological effects such as hepatoprotective, anti-inflammatory and anti-cancer activities [19–24].
Previous investigations have shown that CuE inhibits cell proliferation, migration, and invasion
through different molecular mechanisms in vitro and in vivo, indicating that CuE exerts prominent
investigation prospect in the treatment of various cancers. However, the function of CuE on HCC
migration and its related molecular mechanism have not yet been investigated.

In this study, we found that CuE could significantly inhibit the proliferation and migration of
Huh7 cells by disrupting cytoskeleton depolymerization and inducing cell cycle arrest. Subsequently
RNA-sequencing (RNA-seq) and bioinformatics analysis revealed multiple processes that are involved
in cell proliferation and migration. Further study revealed that CuE inhibited Huh7 proliferation and
metastasis via simultaneously regulating diversified pharmacological targets, including MAPKs and
JAK/STAT. Taken together, our findings show that CuE is a promising drug candidate for inhibiting
cancer cell proliferation and migration, which suggests a crucial therapeutic strategy by targeting
multiple signaling pathways for HCC.

2. Results

2.1. CuE Inhibited the Proliferation, Migration and Angiogenesis of Huh7 Cells

The anti-proliferative effect of CuE on Huh7 cells was evaluated by an MTT assay. CuE
significantly inhibited cell proliferation in a concentration- and time-dependent manner (Figure 1B).
Next, we detected the effect of CuE on cell migration and invasion. Wound healing assay showed
that CuE could remarkably reduce migratory Huh7 cells (Figure 1C,D). Moreover, we also tested the
effect of CuE on the invasive capability by transwell invasion assays. Results showed that CuE was
capable of blocking Huh7 cell invasion (Figure 1E,F). Furthermore, anti-angiogenic activity of CuE
demonstrated that CuE decreased tube formation in HUVECs and inhibited neovascularization in
CAM assays, respectively (Figure 1G–J). The above findings suggested that CuE exhibited obvious
anti-migrative, anti-invasive, and anti-angiogenesis effects, indicating a potential novel therapeutic
candidate for the treatment of cancer metastasis.
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Figure 1. CuE inhibited migration, invasion and angiogenesis. (A) Chemical structure of CuE. (B) Huh7
cells were treated with various concentrations of CuE for 24 or 48 h and the cell viability was evaluated
by MTT assay. (C) Wound healing assay. HuH7 cells were treated with CuE (0, 10, 20, and 40 nM) for
24 h and 48 h, and the migration of Huh7 cells was quantified by measuring wound areas (bar = 200 µm).
(D) Relative migration was calculated by comparing the cells migrated to the wounded area after CuE
treatment, with those of control cells. Data are mean ± SD of three independent experiments (n = 3).
**: p < 0.01, compared with the control group. (E) The cell invasion was determined by transwell
invasion assay. After incubation at 37 ◦C for 24 and 48 h, the migrated cells were fixed and stained with
crystal violet solution (bar = 400 µm). (F) Relative migration was calculated by comparing the cells
migrated through the chamber membrane after CuE treatment, with those of control cells. Data are
mean ± SD of three independent experiments (n = 3). **: p < 0.01, compared with the control group.
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(G) Inhibitory effect of CuE on the spontaneous tube formation of HUVEC cells. HUVECs were
grown on thin matrigel layers for 6 h in the presence of CuE (0, 10, 20, and 40 nM); images shown are
representative of three independent experiments (bar = 200 µm). (H) Calculations were based on the
length of the tubes measured using ImageJ. Data are mean ± SD of three independent experiments
(n = 3). **: p < 0.01, compared with the control group. (I) The antiangiogenic activity of CuE in
chorioallantoic membranes (CAMs). Coverslips loaded with vehicle or CuE was applied to the CAM
surface for 72 h (bar = 200 mm). (J) Calculations were based on the ration of inhibited eggs relative
to the total of number of live eggs. Data are mean ± SD of three independent experiments (n = 3).
**: p < 0.01, compared with the control group.

2.2. Bioinformatics Analysis for the CuE-Regulated Signaling Networks

We profiled the effects of CuE on gene expression in Huh7 cells after 24 h treatment.
The relationship of detected genes in the two groups was described in a Venn diagram (Figure 2A).
A total of 365 DEGs showed significant alteration at p < 0.05 with a fold change > 2, of which 124 genes
were markedly up-regulated while 241 genes were down-regulated. The volcano plot revealed the
up-regulated and down-regulated genes in each dataset (Figure 2B). To elucidate the potential functions
of these DEGs, we performed GO enrichment analysis, including cellular components (CCs), biological
processes (BPs), and molecular functions (MFs). As shown in Figure 2C, for BPs, GO terms were
significantly enriched in actin cytoskeleton, cell-substrate adherens junction, focal adhesion, and
endoplasmic reticulum lumen. MFs analysis showed that the DEGs were particularly enriched in actin
cytoskeleton organization, wounding healing, angiogenesis, MAPK, and cell cycle arrest. Similarly,
GO terms enriched in actin binding, actin filament binding, and growth factor binding.

To further visualize CuE regulated pharmacological network, the 241 CuE-negatively regulated
genes were examined for enrichment in KEGG pathway database from ClueGO plug-in. The global
pathway network depicting KEGG pathway analysis were mainly involved in focal adhesion, MAPK,
JAK-STAT, and regulation of actin cytoskeleton, which were mapped in Figure 2D–E. Together, these
findings suggested that CuE could effectively regulate multiple processes and cellular signaling
pathways, and thereby exerted its anti-proliferative and anti-metastatic effects.

The cytoskeleton plays an important role in maintaining cell morphology and migration, and thus
we hypothesized that CuE affects migration by affecting cytoskeletal proteins. To evaluate the effect on
cytoskeleton, F-actin was stained with rhodamine-conjugated phalloidin and then observed by confocal
microscopy (Figure 3A). The microfilaments of untreated tumor cells showed intact filaments, while
the microfilaments of the CuE-treated group were broken and aggregated. Therefore, we confirmed
that CuE could significantly inhibit cell migration by destroying cytoskeletal organization.
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Figure 2. RNA-seq analysis for CuE-altered genes. Cells were treated with vehicle, or 40 nM of CuE for
24 h, respectively. (A) Venn diagram showing numerical distribution of differentially expressed genes in
HUh7 cells. (B) The volcano of differentially expressed genes. (C) Genes significantly down-regulated
by CuE were classified into different CCs, BPs, and MFs. (D) Heat map of down-regulated genes
involved in significantly canonical pathways after treatment with CuE in Huh7 cells. (E) KEGG
pathway enrichment analysis for the significantly down-regulated gene predicted the significantly
canonical pathways.
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Figure 3. (A) CuE effected cytoskeletal organization. Huh7 cells grown coverslips were treated with
CuE (0, 10, 20, and 40 nM) for 6 h. Immunocytochemistry was conducted using rhodamine-conjugated
phalloidin to visualize F-actin fibers (bar = 10 µm). (B) Huh7 cells were treated with CuE (0, 10, 20, and
40 nM) for 24 h. The cells were fixed and stained with propidium iodide (PI), and the DNA content
was analyzed by flow cytometry. (C) Huh7 cells were treated with CuE (40 nM) for different time
points (0, 1, 4, 12, and 24 h), and the protein levels of cyclin A, cyclin B1 and CDK1 were detected by
Western blotting. (D) Quantitative analysis for relative protein expression levels of CyclinA, CyclinB1,
and CDK1 was performed by normalizing to GAPDH. Data are mean ± SD of three independent
experiments (n = 3). **: p < 0.01.

To assess the effect of CuE on cell cycle progression, cell cycle distribution analysis of Huh7 cells
was carried out using flow cytometry. As shown in Figure 3B, treatment with different concentrations
of CuE caused a dose-dependent increase of the cell population in the G2/M phase, which may imply
that the Huh7 cells underwent cell cycle arrest. Our results indicate that treatment with CuE increased
the cell populations in the G2/M phase, while simultaneously reducing the number of cells in the
S phase.

Cell cycle progression is tightly regulated through a complex network of positive and negative
cell cycle regulatory molecules, such as cyclin-dependent kinases (CDKs) and cyclins. To elucidate the
specific cell cycle regulatory proteins responsible for the cell cycle arrest mediated by CuE in Huh7 cells,
the effect on cell cycle related proteins involved in G2/M transition including cyclin A, cyclin B1 and
CDK1, was analyzed by Western blot. Consequently, we found that CuE treatment caused a marked
decrease in cyclin A, cyclin B1, and CDK1 protein expression (Figure 3C). These results imply that the
growth inhibition by Huh7 cells may target several components of the cell cycle regulatory apparatus.
The above results suggested that CuE arrested cell cycle at the G2/M phase through regulating cyclin
A, cyclin B1, and CDK1.
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2.3. CuE Inhibited JNK/ERK/p38 MAPK Pathways in Huh7 Cells

The initiation of mitogen-activated protein kinase (MAPK)/ERK pathway is a major pathway
regulating cell survival, proliferation, and metastasis. In an attempt to validate the obtained suggestions,
Western blotting was conducted to detect a number of candidates. To further characterize the mechanism
underlying the inhibition of cell proliferation by CuE, we checked the effect of CuE on representative
key protein expression (JNK, ERK, and p38) of these pathways. As shown in Figure 4A–D, while
CuE suppressed the phosphorylation of ERK and p38, it increased JNK expression compared with the
vehicle control, which suggested that CuE suppressed Huh7 cell migration and invasion by positive
regulation JNK pathway and negative regulating ERK/p38 pathway. The above results suggested that
CuE inhibited Huh7 cells proliferation, migration and invasion. Such effects might be related to the
regulation of the MAPK pathway.

Figure 4. CuE regulated JNK, ERK, and p38 MAPKs in Huh7 cells. Cells were treated with CuE
(40 nM) for various time (0, 1, 4, 12, and 24 h). (A) Phosphorylations of JNK, ERK, and p38 protein were
determined by Western blot assay. (B–D) Quantitative analysis for relative phosphorylation levels of
JNK (B), ERK (C), and p38 MAPK (D) was performed by normalizing to the control group. Data are
mean ± SD of three independent experiments (n = 3). **: p < 0.01, compared with the control group.

2.4. CuE Inhibited JAK3/STAT3 Signaling

The JAK/STAT-mediated signaling cascade represents essential roles for proliferation or
differentiation, and development. Recent studies showed that persistently activated JAK/STAT
signaling correlates with tumorigenesis and cancer progression through its intimate connection to
growth factor signaling and observed high frequency in human cancers. As shown in Figure 5A,
CuE induced a time-dependent decrease in the level of p-JAK3 and p-STAT3. No detectable changes
in the JAK3 and STAT3 were seen. Figure 5B,C also show densitometric analysis of Western blot
bands. There was a gradual decrease in p-JAK3/JAK3 and p-STAT3/STAT3 ratios with increasing the
concentration of CuE. Immunofluorescent analysis was also conducted to evaluate the effect of CuE
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on nuclear translocation of p-STAT3. As shown in Figure 5B, CuE attenuated the phosphorylation
of STAT3. Consistently, CuE effectively blocked constitutive STAT3 phosphorylation as well as its
nuclear translocation (Figure 5C,D). The decrease in cell viability can be attributable to the significant
increase in apoptotic cell death and the occurrence of cell cycle arrest after inhibition of the JAK/STAT3
signaling pathway.

Figure 5. CuE restrained the activation of JAK3 and STAT3 in Huh7 cells. Cells were treated with
CuE (40 nM) for various hours. (A) Phosphorylations of JAK3 and STAT3 protein were determined by
Western blotting. (B-C) Quantitative analysis for relative phosphorylation levels of JAK3 (B) and STAT3
(C) was performed by normalizing to the control group. Data are mean ± SD of three independent
experiments (n = 3). *: p < 0.05, **: p < 0.01, compared with the control group. (D) Effect of CuE
on nuclear translocation of p-STAT3 in Huh7 cells. Immunofluorescent analysis was conducted with
antibody of p-STAT3 and secondary antibody conjugated to rabbit Dylight-594. Images were captured
using a confocal laser scanning microscope.
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3. Discussion

Despite numerous advances in cancer treatments, distant metastasis remains the most challenging
leading to death in patients with HCC. Cancer metastasis is known to be a complex process that involves
multiple steps including migration, invasion and adhesion. Metastasis and invasion of cancer cells
and lack of effective treatment have promoted a great amount of novel anti-cancer drugs derived from
natural products. CuE, a critical member of cucurbitacin family, exhibits a cytotoxicity effect in several
cancers, such as cervical cancer, osteosarcoma, nasopharyngeal carcinoma, and lung cancer. However,
little research has been focused on proliferation and metastasis of HCC to delineate underlying effects
of CuE. Thus, a comprehensive understanding of the mechanisms of CuE is critical for developing
novel treatment strategies for HCC. In this study, we found CuE could significantly inhibit Huh7 cell
viability. Further investigation demonstrated that CuE could significantly inhibit Huh7 metastasis and
invasion, and drastically suppress neovascularization and tube formation. Further studies into possible
mechanisms revealed that CuE inhibited Huh7 migration and invasion via suppressing MAPKs and
JAK/STAT3 signaling pathway, together with the regulation of cell cycle arrest and cytoskeleton.

RNA-seq is a powerful approach for investigating drug-related gene expression alterations [25,26].
RNA-seq can determine global transcriptional effects of drugs and significantly accelerate the efficiency
and success rate of drug discovery. So far, RNA-seq has been successfully applied to target identification,
pharmacological mechanisms, and drug resistance studies for numerous bioactive molecules such as
polyphenone, schisandrin B, and oldenlandia diffusa [27,28]. Since CuE exhibited potent inhibitory
effect on the proliferation, migration, invasion, and anti-angiogenic activity, RNA-seq was used to
investigate its underlying molecular mechanism. Bioinformatics analysis results revealed that several
critical signaling pathways were dramatically suppressed, especially on the regulation of the actin
cytoskeleton involved in multiple complicated CCs, BPs, and MFs. Actin microfilaments (F-actin) are
crucial components of the cytoskeleton, which is responsible for the cell morphology and movement of
eukaryotic cells [29,30]. During the movement of cells, the polymerization of actin monomers into
polarized F-actin plays a pivotal role, and regulation of this step is a promising strategy in anti-tumor
treatment [31,32]. F-actin staining assays clearly demonstrated the aberrant bundling and accumulation
of F-actin, which can be attributed to inhibiting its depolymerisation effect by CuE.

The MAPK pathway is an important signaling pathway involved in cell proliferation,
differentiation, migration, and apoptosis [33–35]. In mammalians, MAPK contain three individual
molecules JNK, ERK, and p38 kinase. Hyper-activation of MAPK signaling pathway has been known
to frequently occur in many human cancers. In the present study, CuE inhibited Huh7 proliferation
and migration by increasing JNK activation and inhibiting ERK activation in a time-dependent manner,
which was consistent with its effect on triple-negative breast cancer cells. Besides, our results revealed
that p38 phosphorylation was also suppressed by CuE treatment. Therefore, we speculated that
CuE exerted its anti-migratory effect by increasing JNK activation as well as suppressing ERK and
p38 activation.

STAT3 is one of the most important members of the STAT family and is closely associated with
cell proliferation and angiogenesis. Importantly, STAT3 activation has been documented in several
tumor types and is associated with tumorigenesis. Moreover, it is considered to be an oncogene and
a promising target for HCC. Therefore, aberrant signaling of the JAK/STAT3 activation represents a
potential therapeutic strategy for HCC [36,37]. In our investigation, we found that CuE significantly
suppressed JAK2 and STAT3 phosphorylations as well as STAT3 nuclear translocation. CuE could
significantly inhibit the JAK2/STAT3 pathway, which makes it a desirable lead compound.

4. Materials and Methods

4.1. Chemicals and Reagents

CuE (C32H44O8) was purchased from Baoji Herbest Bio-Tech Co., Ltd. (Baoji, Shanxi, China)
and the purity was determined to be 99.07% based on HPLC. Fetal bovine serum (FBS) was from
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PAN-Biothech (Logan, UT, USA). Antibiotics and trypsin were from Macgene (Beijing, China). Matrigel
was bought from BD Bioscience (Bedford, MA, USA). Antibodies against p-JNK, JNK, p-ERK, ERK,
p-p38 MAPK, p38 MAPK, p-JAK3, JAK3, p-STAT3, STAT3, Cyclin A, Cyclin B1, CDK1 and GAPDH
were purchased from Cell Signaling Technology (Beverly, MA, USA). Rhodamine-conjugated phalloidin
was obtained from Thermo Fisher Scientific (Waltham, MA, USA). De-ionized water was obtained
from Milli-Q system (Millipore, MA, USA).

4.2. Cell lines and Culture

Human hepatoma Huh7 and HUVEC cells were obtained from Peking Union Medical College,
Cell Bank (Beijing, China). Cells were routinely maintained in high glucose DMEM supplemented with
10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C in a 5% CO2 humidified incubator.

4.3. Wound Healing Assay

The inhibition effect of CuE on cell migration was assessed by wound healing assay. Huh7 cells
were seeded into 6-well plates (1 × 106 cells/well) and cultured until confluent. The monolayer cells
were scratched with the end of 200 µL pipette tip and the plates were washed with PBS to remove the
floating cells. Cells were treated with indicated concentrations of CuE for 24 and 48 h, and observed
under a phase-contrast microscope. The wound area was measured by ImageJ software (ver. 1.48)
and then was calculated according to the following equation: migration rate (%) = [test wound area
(treated with CuE)/control area (treated with DMSO)] × 100%.

4.4. Transwell Migration Assay

Cell invasion was performed by transwell chambers with 8 µm pore size (Corning, Tewksbury,
MA, USA). Briefly, 5 × 104 cells in serum-free medium (200 µL) were seeded into upper chambers with
various concentrations of CuE (0, 10, 20, and 40 nM). Then, the lower chamber was supplemented
with 500 µL of DMEM medium containing 10% FBS as a chemoattractant. After incubation at 37 ◦C
for 24 and 48 h, cotton swab was applied to remove the non-migrating cells on the upper side of the
membrane and migrated cells were fixed with 90% ethanol for 30 min. Finally, cells were stained
with crystal violet solution and observed under microscope and photographed. Cell numbers in three
random fields were counted to evaluate transwell migration across the membrane.

4.5. Tube Formation Assay

HUVEC cells were seeded at a density of 5 × 103 cells/well onto 96-well plates pre-coated with
100 µL of matrigel (10 mg/mL). After incubation for 6 h with or without CuE, the number of formed
tubes was counted and quantified in three non-overlapping fields under a phase-contrast microscope.
Tube lengths were measured in the captured images using ImageJ (ver. 1.48).

4.6. Chorioallantoic Membranes Assay (CAM)

Fertilized chicken eggs were incubated in a humidified atmosphere at 37 ◦C for five days. Then,
a window (1 cm2) was opened aseptically on each egg shell to expose CAM. Further, coverslips
containing CuE (0, 10, 20, and 40 nM) was put on CAM. After treatment for 72 h, the coverslips were
removed and CAM vasculatures were photographed. Angiogenic response was evaluated by counting
vessel density using ImageJ (ver. 1.48).

4.7. Cell Cycle Distribution Analysis

Cells were plated into 6-cell plates at a density of 2 × 105 cells/well and treated with CuE (40 nM)
for indicated hours. Then, cells were fixed in ice-cold ethanol (70%) at 4 ◦C overnight and suspended
in PBS containing 0.1% Triton X-100 and 100 µg/mL RNase A. After that, cells were incubated in 5 µL
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of PI solution for 30 min and analyzed by flow cytometer FACS Verse (BD Biosciences, San Jose, CA,
USA). Data were analyzed using Flow Jo Software (BD Biosciences, San Jose, CA, USA).

4.8. Rhodamine-Phalloidin Staining and Fluorescence Microscopy

Cells were seeded onto glass coverslips at a density of 1 × 105 cells/well in 24-well plates.
Subsequently, cells were treated with CuE (0, 10, 20, and 40 nM) for 6 h, and fixed in 4%
paraformaldehyde for 30 min. After washing with PBS for 3 times, cells were permeabilized with
0.1% Triton X-100 for 30 min, blocked with 5% BSA for 30 min at room temperature, and stained with
rhodamine phalloidin staining. Then, cells were counterstained with DAPI for 30 min and examined
using TCS SP8 MP FLIM confocal laser scanning microscope (Leica, Wetzlar, Germany).

4.9. Immunofluorescent Analysis

Cells were seeded onto glass coverslips and then treated with CuE as indicated concentrations
for 6 h, fixed in 4% paraformaldehyde for 30 min, and then permeabilized with 0.1% Triton X-100
for 30 min. After washing with PBS, cells were blocked with 5% BSA for 1 h at room temperature
and probed with primary antibodies overnight at 4 ◦C. Cells were incubated with secondary antibody
conjugated to rabbit Dylight-594 for 2 h at room temperature. Images were captured (594/618 nm for
rabbit Dylight-594) using a confocal laser scanning microscope (TCS SP8 MP FLIM, Leica, Germany).

4.10. Western Blot Analysis

After treatment with indicated concentrations of CuE, cells were collected and homogenized in
RIPA buffer (1×) for 30 min to provide the whole cell proteins. Protein concentrations were measured
by BCA Protein Assay Kit. After 8–12% SDS-PAGE gels separation, proteins were transferred onto the
PVDF membrane. Membranes were incubated with primary antibodies (1:1000) at 4 ◦C overnight after
being blocked by 5% skimmed milk solution. Subsequently, after incubating with HRP-conjugated
anti-rabbit or anti-mouse IgG secondary antibody, protein bands were developed with enhanced
chemiluminescence (ECL) substrate and visualized by Tanon 5200 Imaging Analysis System (Tanon,
Shanghai, China). Relative protein levels were performed by densitometry analysis using ImageJ
(ver. 1.48).

4.11. RNA Sequencing Assay

Differentially Expressed Genes (DEGs) Library Construction and Sequencing

The mRNA-seq assay was conducted by Novogene (Beijing, China) with three biological replicates.
DEG library was constructed for sequencing according to Illumina protocols. Briefly, total RNAs from
Huh7 cells with or without 40 nM CuE were extracted by TRIzol reagent (Invitrogen, Waltham, MA,
USA) and then purified using poly-T oligo-attached magnetic beads according to the standard protocol.
Double-stranded complementary DNAs were synthesized by Superscript II reverse transcriptase
(Invitrogen). The cDNA fragments of preferentially 150–200 bp were selected by the AMPure XP
system (Beckman Coulter, Beverly, KY, USA). Clustering and sequencing were performed on a cBot
Cluster Generaton System (Illumina) and Hiseq 2000 platform, respectively.

Functional Classification of DEGs

Differential expression analysis of two groups was performed using the DESeq R package (1.18.0).
Genes with an adjusted p-value < 0.05 and log2 (foldchange) > 1 were assigned as differentially
expressed.

Gene Ontology (GO) enrichment of DEGs was performed by Database for Annotation, Visualization
and Integrated Discovery (DAVID), including CC, molecular function, and BP. Signaling pathway
enrichment analysis was performed using Kyoto Encyclopedia of Genes and Genomes (KEGG) from
ClueGO program, a plug-in Cytoscape software (v.3.5.1, University of California, San Diego, CA, USA).
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Statistical Analysis

All experiments were performed at least three times with triplicate. Data were expressed as
mean ± SD. Statistical comparisons were performed using GraphPad Prism 6.0 software (GraphPad
Software, San Diego, CA, USA). Mean values were compared by one-way analysis of variance (ANOVA).
Values of p < 0.05 were considered as statistically significant.

5. Conclusions

In summary, our studies demonstrate that CuE has anti-HCC effects in Huh7 cells by regulating
multiple pharmacological targets including MAPKs and JAK/STAT3. Our findings strongly suggest
that CuE is a multi-targeting and multi-functional anti-cancer candidate for HCC therapeutics in the
clinical setting.
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modulates the activity of encephalitogenic cells. J. Agric. Food Chem. 2016, 64, 4900–4907. [CrossRef]
[PubMed]

23. Qiao, J.; Xu, L.H.; He, J.; Ouyang, D.Y.; He, X.H. Cucurbitacin E exhibits anti-inflammatory effect in RAW
264.7 cells via suppression of NF-kappaB nuclear translocation. Inflamm. Res. 2013, 62, 461–469. [CrossRef]
[PubMed]

24. Wang, Y.; Xu, S.; Wu, Y.; Zhang, J. Cucurbitacin E inhibits osteosarcoma cells proliferation and invasion
through attenuation of PI3K/AKT/mTOR signalling pathway. Biosci. Rep. 2016, 36, e00405. [CrossRef]

25. Maind, A.; Raut, S. Mining conditions specific hub genes from RNA-Seq gene-expression data via biclustering
and their application to drug discovery. IET Syst. Biol. 2019, 13, 194–203. [CrossRef]

26. Zhao, B.; Shen, C.; Zheng, Z.; Wang, X.; Zhao, W.; Chen, X.; Peng, F.; Xue, L.; Shu, M.; Hou, X.; et al. Peiminine
inhibits glioblastoma in vitro and in vivo through cell cycle arrest and autophagic flux blocking. Cell Physiol.
Biochem. 2018, 51, 1566–1583. [CrossRef]

27. Yang, B.; Wang, N.; Wang, S.; Li, X.; Zheng, Y.; Li, M.; Song, J.; Zhang, F.; Mei, W.; Lin, Y.; et al.
Network-pharmacology-based identification of caveolin-1 as a key target of Oldenlandia diffusa to suppress
breast cancer metastasis. Biomed. Pharmacother. 2019, 112, 108607. [CrossRef]

28. Zhang, H.; Chen, Q.; Dahan, A.; Xue, J.; Wei, L.; Tan, W.; Zhang, G. Transcriptomic analyses reveal the
molecular mechanisms of schisandrin B alleviates CCl4-induced liver fibrosis in rats by RNA-sequencing.
Chem. Biol. Interact. 2019, 309, 108675. [CrossRef]

29. Galustian, C.; Dye, J.; Leach, L.; Clark, P.; Firth, J.A. Actin cytoskeletal isoforms in human endothelial cells
in vitro: Alteration with cell passage. Vitro Cell. Dev. Biol. Anim. 1995, 31, 796–802. [CrossRef]

30. Mark, D.D.; Michael, C.A.; Edward, A.S. Cucurbitacin E induced disruption of the actin and vimentin
cytoskeleton in prostate carcinoma cells. Biochem. Pharmacol. 1996, 52, 1553–1560.

31. Statsuk, A.V.; Bai, R.; Baryza, J.L.; Verma, V.A.; Hamel, E.; Wender, P.A.; Kozmin, S.A. Actin is the primary
cellular receptor of bistramide A. Nat. Chem. Biol. 2005, 1, 383–388. [CrossRef] [PubMed]

32. Hong, K.O.; Ahn, C.H.; Yang, I.H.; Han, J.M.; Shin, J.A.; Cho, S.D.; Hong, S.D. Norcanthardin suppresses
YD-15 cell invasion through inhibition of FAK/paxillin and F-actin reorganization. Molecules 2019, 24, 1928.
[CrossRef] [PubMed]

33. Zhou, G.; Yang, J.; Song, P. Correlation of ERK/MAPK signaling pathway with proliferation and apoptosis of
colon cancer cells. Oncol. Lett. 2019, 17, 2266–2270. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fphar.2017.00244
http://www.ncbi.nlm.nih.gov/pubmed/28522974
http://dx.doi.org/10.3389/fphar.2019.01287
http://dx.doi.org/10.1124/jpet.103.063693
http://dx.doi.org/10.1038/cddiscovery.2017.14
http://dx.doi.org/10.1038/cddis.2014.151
http://dx.doi.org/10.3390/ijms140817147
http://www.ncbi.nlm.nih.gov/pubmed/23965977
http://dx.doi.org/10.1021/acs.jafc.6b00951
http://www.ncbi.nlm.nih.gov/pubmed/27225664
http://dx.doi.org/10.1007/s00011-013-0598-z
http://www.ncbi.nlm.nih.gov/pubmed/23360962
http://dx.doi.org/10.1042/BSR20160165
http://dx.doi.org/10.1049/iet-syb.2018.5058
http://dx.doi.org/10.1159/000495646
http://dx.doi.org/10.1016/j.biopha.2019.108607
http://dx.doi.org/10.1016/j.cbi.2019.05.041
http://dx.doi.org/10.1007/BF02634122
http://dx.doi.org/10.1038/nchembio748
http://www.ncbi.nlm.nih.gov/pubmed/16372404
http://dx.doi.org/10.3390/molecules24101928
http://www.ncbi.nlm.nih.gov/pubmed/31109130
http://dx.doi.org/10.3892/ol.2018.9857
http://www.ncbi.nlm.nih.gov/pubmed/30675292


Molecules 2020, 25, 560 14 of 14

34. Lake, D.; Corrêa, S.A.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life
Sci. 2016, 73, 4397–4413. [CrossRef] [PubMed]

35. Liu, F.; Yang, X.; Geng, M.; Huang, M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer
therapy. Acta Pharm. Sin. B 2018, 8, 552–562. [CrossRef]

36. Chen, D.; Ma, Y.; Li, P.; Liu, M.; Fang, Y.; Zhang, J.; Zhang, B.; Hui, Y.; Yin, Y. Piperlongumine induces
apoptosis and synergizes with doxorubicin by inhibiting the JAK2/STAT3 pathway in triple-negative breast
cancer. Molecules 2019, 24, 2238. [CrossRef]

37. Khandelwal, R.; Chauhan, A.P.S.; Bilawat, S.; Gandhe, A.; Hussain, T.; Hood, E.A.; Nayarisseri, A.; Singh, S.K.
Strcture-based virtual screening for the identification of high-affinity small molecule towards STAT3 for the
clinical treatment of Osteosarcoma. Curr. Top. Med. Chem. 2018, 18, 2511–2526. [CrossRef]

Sample Availability: Samples of the compound CuE is available from the authors.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00018-016-2297-8
http://www.ncbi.nlm.nih.gov/pubmed/27342992
http://dx.doi.org/10.1016/j.apsb.2018.01.008
http://dx.doi.org/10.3390/molecules24122338
http://dx.doi.org/10.2174/1568026618666181115092001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	CuE Inhibited the Proliferation, Migration and Angiogenesis of Huh7 Cells 
	Bioinformatics Analysis for the CuE-Regulated Signaling Networks 
	CuE Inhibited JNK/ERK/p38 MAPK Pathways in Huh7 Cells 
	CuE Inhibited JAK3/STAT3 Signaling 

	Discussion 
	Materials and Methods 
	Chemicals and Reagents 
	Cell lines and Culture 
	Wound Healing Assay 
	Transwell Migration Assay 
	Tube Formation Assay 
	Chorioallantoic Membranes Assay (CAM) 
	Cell Cycle Distribution Analysis 
	Rhodamine-Phalloidin Staining and Fluorescence Microscopy 
	Immunofluorescent Analysis 
	Western Blot Analysis 
	RNA Sequencing Assay 

	Conclusions 
	References

