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Abstract: Composite materials are the most variative type of materials employed in almost every
task imaginable. In the present study, a synthesis of a novel perfluoroalkyltriethoxysilane is reported
to be used in creating composites with polyhexafluoropropylene—one of the most indifferent and
adhesion-lacking polymers existing. The mechanism of adhesion of hexafluoropropylene is proved
to be due to chemical structural coherence of perfluoroalkyltriethoxysilane to a link of polyhexaflu-
oropropylene chain. The ability of perfluoroalkyltriethoxysilane to attach to surfaces was studied
by FT-IR spectroscopy of modified glass microspheres. Although the perfluoroalkyltriethoxysilane
surface modifier allowed partial adhesion of polyhexafluoropropylene, some detachment took place;
therefore, the surface nanostructuring was used to increase its specific area by aluminum foil anodiz-
ing. An anodized aluminum surface was studied by scanning electron microscopy. The resulting
composite consisting of anodized aluminum, perfluoroalkyl surface modifier, and polyhexafluoro-
propylene layer was proved to be stable, showed no signs of detachment, and is a promising material
for usage in harsh environments.

Keywords: fluoropolymers; fluorinated ORMOSIL; anodized aluminum; adhesion; surface tuning

1. Introduction

Composite materials of different application gain increasing attention nowadays. Com-
posite materials are employed in various areas, including construction [1–5], aerospace [6],
biomedical [7–11], sensor [12–20], and many other industries. Composite material is a
system consisting of at least two phases with a pronounced interface border. Thus, it is
crucial for composite stability that its constituents must have proper adhesion to each
other [21]. Without proper adhesion of two heterogenous materials a significant decrease
in mechanical strength becomes possible up to rapid destruction of the composite [22–27].

There are several methods for increasing adhesion between polymer matrix and fillers.
Most of these methods are related to surface modification [28,29]. Nanostructuring is a
promising method for increasing specific surface area, chemical structure of the surface and
its roughness, and that leads to better adhesion [30,31]. A chemical surface modification
can be employed to create “anchor” functional groups on different surfaces, which will
allow a polymer to attach to the surface due to chemical structural coherence, and silanes
with various architecture frequently serve this purpose [32,33].

Among many materials used as polymer matrices, fluorinated polymers occupy a
special place. These materials have outstanding properties, such as durability, photoaging
resistance, and chemical inactivity [7,34–39] due to high carbon-fluorine bond energy.
One of the most stable and promising materials is polyhexafluoropropylene (PHFP) [40].
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PHFP is a perfluorinated polymer with the least surface energy and a wide range of
working temperatures. However, fluoropolymers have extremely low adhesion to almost all
materials due to the abovementioned low surface energy, and that makes them challenging
to work with as composite matrices [41,42]. Neither the nanostructuring mentioned above
nor the use of known commercially available silanes make it possible to obtain stable
composites based on PHFP.

In this paper, we report a method for significantly improving the adhesion of perflu-
orinated materials using PHFP as an example. In fact, this work is an extension of the
gecko-tape idea of Nobel laureate Andre Geim [43], but we decided to go down to the
molecular level of coherence. It implies that a structural element of the fluorinated matrix
is used as a part of the specially designed surface modifier. This paper describes the direct
synthesis of a new perfluoroalkyltriethoxysilane with a dimer of hexafluoropropylene
molecular fragment, i.e., with a structural element of PHFP. The modifier could be used
for surfaces that need to be attached to the polymer matrix–whether it is a filler particle
or a substrate surface. We proposed that although van der Waals interactions between
similar structural parts are weak, due to a great number of interactions, the desired effect
of PHFP adhesion could be attained. The modifier allows one to attach the fluorinated
polymer to the glass or metal surface, and a modifier for epoxy resin could be obtained
in case of copolymerization with phenyltriethoxysilane. The well-known aluminum foil
anodizing technique [44–47] was engaged as a method for surface nanostructuring and
further increasing of the fluorinated polymer adhesion to metal surface.

2. Materials and Methods
2.1. Materials

Aluminum foil A5 DPRNM 0.1 × 500 mm State Standard 618-2014 was purchased
from RT-Techpriemka (Rostech, Moscow, Russia), analytical grade acids were purchased
from Chimmed (Moscow, Russia), and auxiliary electrode was purchased from Econics-
Expert (Moscow, Russia). Hexane for syntheses purposes was purchased from Sigma
Aldrich (St. Louis, MO, USA), as well as glass microspheres with particle size 1–40 µm,
trichlorosilane, carbamide, ethanol, toluene, Carsted catalyst, acetone, and calcium chloride
as drying agent. Hexafluorobenzene was provided by P&M Invest (Moscow, Russia).
Polyhexafluoropropylene was kindly provided by Laboratory of Chemical Reactions under
High Pressure of N. D. Zelinsky Institute of Organic Chemistry Russian Academy of
Sciences, Moscow, Russia, the synthesis was reported earlier [48]. 2,2,3,3,4,4,5,5,6,6,6-
Undecafluoro-N-(3-methyldiethoxysilylpropyl)hexanamide surface modifier was kindly
provided by N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy
of Sciences, Moscow, Russia.

2.2. Synthesis of 1,1,1,2,2,3,3-Heptafluoro-4,4-bis(trifluoromethyl)pentyltriethoxysilane

The initial fluorine-containing precursor for this synthesis has been obtained by our
group earlier by a known method [49]. Reaction was carried out in argon atmosphere.
Trichlorosilane was introduced in reaction flask through a septum to the fluorinated precur-
sor, then Carsted catalyst was added. Reaction mixture was intensively mixed for 24 h in
room temperature. Trichlorosilane was then removed from reaction mixture by distillation
at 50 ◦C. Reaction product was then distilled, fraction with boiling point at 94 ◦C was
collected (Figure 1).
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A mixture of carbamide, ethanol, and hexane was added to four-necked round bottom
flask with mechanical stirring in argon atmosphere. The product of previous stage was
introduced to reaction mixture by dropping funnel at low rate and intensive stirring. After
full introduction of the trichlorosilane the reaction was heated to 50 ◦C and was held under
argon atmosphere and intensive stirring for 12 h (Figure 2). The resulting product was
distilled and fraction with boiling point at 120 ◦C.
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2.3. Aluminum Foil Anodizing

The formation of nanopeforations on the aluminum surface was performed on alu-
minum foil samples with a purity of 98.5% by high-voltage anodizing. Before anodizing,
aluminum samples were cleaned with acetone. Amounts of 0.3 M phosphoric acid, 0.3 M
oxalic acid, and 0.3 M sulfuric acid were used as the background electrolyte. Oxygen was
removed from the solution by purging with 99.999% purity nitrogen, while the gas purging
continued during anodization. The auxiliary electrode was a platinum wire with a diameter
of 0.5 mm and a length of 20 cm, which was twisted into a spiral with a coil diameter of
1 cm, at a charge of 10 A and a voltage maintenance accuracy of 0.5 V. An aluminum foil
sample with an uninsulated area of 4 cm2 was placed in a cell equipped with a RITM-01
magnetic stirrer (Econics-Expert, Moscow, Russia), which was a heat resistant glass. The
background electrolyte temperature was maintained constant at 21 ◦C by passing tap water
at the same temperature through the cell jacket. The sample treated for the selected time
and at the selected voltage was washed with bidistilled water, dried in air for 24 h, and then
examined on a Hitachi-SU8200 scanning electron microscope (Hitachi, Tokyo, Japan) in a
low-voltage, low-temperature mode at an accelerating voltage of 20 kV and temperature
of 77 K. Scanning electron microscopy was the main method for determining the number
and size of nanoperforations on the aluminum surface. Anodized aluminum samples
preparation is described in Table 1.

Table 1. Anodized aluminum foil samples preparation.

№ Voltage, V Background Electrolyte Composition Time, Min

1 10 0.3 M sulfuric acid 15
2 60 0.3 M oxalic acid 15
3 60 0.3 M phosphoric acid 15
4 80 0.3 M phosphoric acid 15
5 100 0.3 M phosphoric acid 15
6 120 0.3 M phosphoric acid 15

The Digimizer program Version 5.7.2 (MedCalc Software Ltd., Ostend, Belgium) was
used to process images and calculate average nanoperforation diameters.

2.4. Sample Surface Preparation

Anodized aluminum foil samples were degreased in acetone, air-dried, and then
submerged in NaOH 2.5 M solution for 30 s with a following rinse in distilled water. The
prepared aluminum foils were dried in desiccator over calcium chloride for 24 h.

2.5. Sample Surface Modification

The prepared aluminum foils were submerged in 1% solution of surface modifier in
hexafluorobenzene for 60 s, then these samples were placed in an oven at 150 ◦C for an
hour. Prepared samples were air cooled.
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2.6. Polymer Films Application

A 10% solution of polymer in appropriate solvent was prepared. Hexafluorobenzene
was used for polyhexafluoropropylene, toluene was used for polymethylmethacrylate, and
acetone was used for polytetrafluoroethylene copolymer.

The prepared aluminum foils with surface area of 3 cm2 were coated with 500 µL of
the prepared solution and air dried for 24 h.

2.7. Shear Strength Test Samples Preparation

A 10% solution of polymer in appropriate solvent was prepared. Hexafluorobenzene
was used for polyhexafluoropropylene, toluene was used for polymethylmethacrylate, and
acetone was used for polytetrafluoroethylene copolymer.

The prepared aluminum foils with surface area of 3 cm2 were coated with 500 µL of
the prepared solution, covered with another aluminum foil, and air dried for 24 h.

2.8. Shear Strength Test

Shear strength tests were performed on Instron 5942 (Instron, Norwood, MA, USA).
ASTM D1002 method was employed—a lap shear test which is performed to determine the
shear strength of an adhesive that is applied to two metal plates and pulled to failure.

2.9. Glass Microspheres Modification

Glass microspheres surface was prepared the same way as the aluminum foils. Treated
glass microspheres were submerged in perfluoroalkyltriethoxysilane solution for 10, 30, 60
and 300 s, and then were placed in an oven at 150 ◦C for an hour.

2.10. 1,1,1,2,2,3,3-Heptafluoro-4,4-bis(trifluoromethyl)pentyltriethoxysilane Characterization

NMR studies were carried out on WM-250 spectrometer (Bruker Corporation, Billerica,
MA, USA) in hexafluorobenzene solution.

2.11. Surfaces Characterization
2.11.1. Glass Microspheres Surface Characterization

Fourier Transform Infrared Spectroscopy (FT-IR) method was employed to prove glass
surface modification on Bruker Equinox 55 FT-IR spectrometer (Billerica, MA, USA).

2.11.2. Aluminum Surface Characterization

Water contact angles on treated aluminum foil surfaces were obtained and measured
on Biolin Scientific Theta lite (Gothenburg, Sweden).

3. Results and Discussion
3.1. 1.1,1,2,2,3,3-Heptafluoro-4,4-bis(trifluoromethyl)pentyltriethoxysilane Characterization

NMR spectrum of synthesized modifier is shown in Figure 3.

3.2. Glass Surface Characterization

The synthesized 1,1,1,2,2,3,3-heptafluoro-4,4-bis(trifluoromethyl)pentyltriethoxysilane
can be attached to hydroxyl-containing surfaces in the same way as other organosilanes [50].
The interaction between the modifier and glass and metal surfaces that were previously
treated with sodium hydroxide to create hydroxyl groups was studied. Modifier addi-
tion mechanism is shown in Figure 4. Thus, the surface modification can be referred to
as chemosorption of the modifier to the hydroxyl-containing surface, creating covalent
Si-O-Si bonding.
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The FT-IR spectra of glass microspheres are shown in Figure 5. The adsorption
band of 1,1,1,2,2,3,3-heptafluoro-4,4-bis(trifluoromethyl)pentyltriethoxysilane modifier was
detected at 2928 cm−1 (C–H, stretching).

The kinetics of glass microspheres modification was studied by treating glass micro-
spheres with modifier with varying exposure times (Figure 5). One can see increasing
values of the C–H band peak intensity that corresponds to increasing quantity of propyl
groups of the modifier. The longer modification time is, the more molecules of modifier
absorb on glass surface. The dependence of calculated peak area is well-fitted by the
Langmuir-type equation as seen on the Insertion in Figure 5.

A =
Amaxτ

τ + K
(1)

where A represents peak area, Amax—maximum peak area, τ—modification time, and
K—equilibrium constant of modifier chemosorption reaction. In this case, K represents
time needed for half of the chemosorption sites to react. Numerical fitting for the observed
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reaction yields the values Amax = 0.33 a.u., K = 50.6 s. C–F adsorption band is overlapped
by Si–O adsorption band and cannot be used to estimate the modification success.
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3.3. Anodized Aluminum Characterization

According to earlier studies, it is known that aluminum specific surface area obtained
by anodizing can be manipulated by changing the technological parameters such as voltage,
exposition time, electrolyte composition etc. [51,52]. Anodized aluminum samples 1–6 were
prepared by using certain regimes with nanoperforation diameters of 10, 30, 50, 70, 100, and
150 nm, respectively. Figure 6 shows SEM images of these samples’ surfaces, which show
the grids of the resulting regular patterns of nanoperforations. Sample № 0 is aluminum
that has not been anodized and is shown here for comparison.

3.4. Modified Aluminum Surface Characterization

Data obtained from water contact angle comparison are shown in Figures 7 and 8. It is
clear that the dependence of water contact angles to nanoperforation average diameter in
non-linear with a maximum somewhere in between 40 nm to 60 nm due to the attainment
of maximum specific surface area.
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This step is needed to increase the number of adsorption sites for the polymer after
the surface modification. Further anodization, as it seems, leads to lower values of specific
surface area due to the merging of nanoperforations together and destruction of perforations’
walls with formation of fewer amounts of bigger perforations. Anodized aluminum foils
without surface modification show linear decrease in water contact angles due to hydrophilic
nature of aluminum, that is further strengthened by increased specific surface area.

3.5. Polymer Films

Examples of films of various polymers deposited on untreated and treated aluminum
substrates are shown in Figure 9.
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(3)—polytetrafluoroethylene copolymer film on anodized aluminum; (4)—polyhexafluoropropylene
film on anodized aluminum surface; (5)—polyhexafluoropropylene film on modified and anodized
aluminum surface.

Sample 1 shows that polymethylmethacrylate (PMMA) did not attach to untreated
aluminum surface at all. Sample 2 shows even attachment of PMMA to anodized aluminum
surface. Sample 3 is an unevenly attached layer of PTFE copolymer on anodized aluminum
surface. PTFE has significantly lower surface free-energy and it takes additional effort to
provide proper adhesion on desirable surfaces. Sample 4 is a PHFP layer that has completely
detached from the anodized aluminum surface during the drying process. In contrast, the
PHFP film on the modified and anodized aluminum surface adhered very well without any
sign of detachment (Sample 5). As can be seen from the pictures, polymers do attach better
to nanostructured surfaces than to untreated aluminum due to the lack of adhesion centers
of the latter. However, PHFP film did not stick to anodized surface at all due to its extremely
low surface energy. PHFP film on the modified and anodized aluminum surface attached
completely without any signs of detachment. This is possible due to chemical structural
coherence that was attained by treating the anodized aluminum surface with the modifier
with an element of PHFP structure. Modification of the surface creates large number of
adhesion sites with the PHFP links, acting as crystallization seeds for the polymer. And
the more sites the desirable surface has, the better adhesion will be attained due to larger
numbers of van der Waals interactions between the PHFP chains and modifier’s fluorinated
substituent. To increase the number of these sites we simply increased the specific surface
area on aluminum samples by anodizing, and that manipulation ensured the even adhesion
of the PHFE to the modified surface.

As can be seen from Figure 10, the shear strength of composite material changes dra-
matically when materials have structural coherence. The polymer samples on untreated
aluminum foil proved to be unstable even at the drying stage. Samples with nanostruc-
tured aluminum foils show significant increase in shear strength, although PHFP sample
was still unstable. Samples with anodized aluminum foils with 1,1,1,2,2,3,3-heptafluoro-4,4-
bis(trifluoromethyl)pentyltriethoxysilane modification show much better adhesion for PHFP,
and slight decrease of shear strength for PTFE copolymer. Samples with anodized aluminum
foils and 2,2,3,3,4,4,5,5,6,6,6-Undecafluoro-N-(3-methyldiethoxysilylpropyl)hexanamide mod-
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ification showed almost no adhesion increase for PHFP compared to unmodified an-
odized aluminum surface. These results make it clear that structural coherence between
PHFP and 1,1,1,2,2,3,3-heptafluoro-4,4-bis(trifluoromethyl)pentyltriethoxysilane does in
fact takes place and it is this interaction that plays a key role in the demonstrated method
for improving adhesion.
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with 2,2,3,3,4,4,5,5,6,6,6-Undecafluoro-N-(3-methyldiethoxysilylpropyl)hexanamide modification.

4. Conclusions

The 1,1,1,2,2,3,3-heptafluoro-4,4-bis(trifluoromethyl)pentyltriethoxysilane modifier
was synthesized. The ability of modifier to attach to surfaces containing hydroxyl groups
was studied along with the kinetics of the modification and the results implied that the
modifier successfully attached to the surfaces forming a covalent chemical bond. The
surface modification technique was optimized. The adhesive ability of the modifier to-
wards the PHFP was studied and compared to different polymers adhesion to treated and
untreated aluminum surfaces by a series of shear strength tests. The chemical structural
coherence was proven to take place between the modifier and PHFP film as the shear
strength of the composite increased dramatically. This discovery opens new horizons for
composite materials by showing the possibility of the direct synthesis customized surface
modifiers for low surface free-energy fluorinated materials to be used as a constituent of
different composites.
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