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ABSTRACT

Functional annotation of metagenomic and metatran-
scriptomic data sets relies on similarity searches
based on e-value thresholds resulting in an un-
known number of false positive and negative
matches. To overcome these limitations, we intro-
duce ROCker, aimed at identifying position-specific,
most-discriminant thresholds in sliding windows
along the sequence of a target protein, accounting for
non-discriminative domains shared by unrelated pro-
teins. ROCker employs the receiver operating char-
acteristic (ROC) curve to minimize false discovery
rate (FDR) and calculate the best thresholds based
on how simulated shotgun metagenomic reads of
known composition map onto well-curated reference
protein sequences and thus, differs from HMM pro-
files and related methods. We showcase ROCker us-
ing ammonia monooxygenase (amoA) and nitrous
oxide reductase (nos2) genes, mediating oxidation
of ammonia and the reduction of the potent green-
house gas, N,O, to inert N,, respectively. ROCker
typically showed 60-fold lower FDR when compared
to the common practice of using fixed e-values. Pre-
viously uncounted ‘atypical’ nosZ genes were found
to be two times more abundant, on average, than
their typical counterparts in most soil metagenomes
and the abundance of bacterial amoA was quanti-
fied against the highly-related particulate methane
monooxygenase (pmoA). Therefore, ROCker can re-
liably detect and quantify target genes in short-read
metagenomes.

INTRODUCTION

Omics approaches are commonly applied to the study of
microbial communities in a variety of clinical and envi-
ronmental settings, but numerous technical challenges re-
main for accurately analyzing short gene sequences recov-
ered from metagenomes or metatranscriptomes (1). Most
importantly, several standard bioinformatic tasks rely on
widely used similarity search algorithms (e.g. BLAST) that,
through the comparison of nucleic or protein sequences
to reference databases, allow for the identification of ho-
mologous genetic features among millions of unrelated se-
quences. However, in short-read metagenomes or metatran-
scriptomes representing diverse microbial communities (e.g.
those of soils, oceans or the human gut), the rate of false
positive (i.e. incorrectly identified, FP) or false negative (i.c.
incorrectly rejected, FN) matches obtained from similar-
ity searches are rarely addressed or quantified. An impor-
tant underlying cause for FP and FN matches is the use of
thresholds for a match based on a fixed e-value, a statisti-
cal parameter that reflects the number of expected matches
by chance but not necessarily true homology. Although the
use of e-values represents an efficient strategy for selecting
matches, it can result in a substantial number of false posi-
tives, especially for protein sequences that share functional
domains or motifs. Only lately, these limitations have re-
ceived adequate attention but mostly for taxonomic assign-
ment purposes (2,3).

Recently, we employed the receiver operating character-
istic curve (ROC) approach to refine the results of similarity
searches and calculate a reliable, fixed bitscore value across
the sequence of the target gene that maximizes the sensi-
tivity (true positive rate) and specificity (true negative rate)
for detecting short-gene fragments encoding nitrous oxide
reductase (nosZ) in soil metagenomes (4). This approach
was clearly advantageous compared to the use of an ar-
bitrary e-value threshold by decreasing both the false dis-
covery rate [FDR = FP/(TP + FP)] to ~1% and the false
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negative rate [FNR = FN/(TP+FN)] to ~2%. Accordingly,
our approach resulted in a small fraction of false positive
metagenomic reads recruited by (or annotated as) reference
nosZ sequences, i.e. metagenomic reads encoding non-nosZ
gene fragments but showing a significant score due to the
presence of shared domains and/or motifs with nosZ. Un-
like nosZ, other genes sharing highly conserved domains
and motifs such as metal binding or ATP-hydrolyzing do-
mains can retrieve a higher fraction of false positive matches
when analyzing short-read sequences, therefore, represent-
ing more challenging cases. Such genes require compara-
tively higher thresholds in similarity searches in order to
achieve a low rate of false positives matches. However, the
latter typically comes at the expense of increased frequency
of false negatives. Therefore, a variable bitscore threshold
across the sequence of the target gene, which would be strin-
gent in highly conserved, non-discriminative regions in or-
der to minimize false positives but can be lowered in less
conserved regions in order to avoid false negatives, should
be advantageous compared to the common practice of using
arbitrary fixed e-value thresholds. To the best of our knowl-
edge, the idea of a variable threshold across the sequence of
a target protein/gene has not yet been implemented in an
automated bioinformatic tool.

Here, we introduce an automated bioinformatic pipeline,
called ROCker, which uses the ROC curve to estimate the
most-discriminating bitscore thresholds in sliding windows
across the sequences of a protein family of interest and
evaluates non-discriminative domains shared with unre-
lated proteins. The pipeline takes as input a list of iden-
tifiers for proteins of interest (e.g. beta subunit of RNA
polymerase, RpoB) and generates a simulated shotgun data
set using sequenced microbial genomes encoding these pro-
teins (i.e. simulated reads from genomes that encode the
reference proteins together with reads from non-target re-
gions of the genome). This data set of known composition
is then used as a training data set for generating a ROCker
profile of most discriminating, position-specific, bitscore
values across the target protein alignment, which maxi-
mize the recovery of true positive and minimize false posi-
tive matches. Therefore, a ROCker profile essentially repre-
sents an adaptable filter for minimizing FDR and FNR in
similarity search results to accurately detect metagenomic
reads related to a single function of interest. We further
tested the effectiveness of ROCker with available short-read
metagenomes and assessed the diversity of nitrogen cycle
genes in terrestrial soils and marine sediments.

MATERIALS AND METHODS
Implementation

ROCker is implemented in the Ruby programming lan-
guage and its workflow consists of five tasks. (i) Build: Reads
a user-provided list of UniProt (Universal Protein Re-
source) protein identifiers and downloads the correspond-
ing whole genome sequences encoding these proteins for
generating data sets that simulate shotgun, short-read, Il-
lumina metagenomes using GRINDER (5). A second list
of known negative references, i.e. closely related proteins
that should not be considered as true matches can also be
given at this step in order to increase the performance of
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ROCKker (see amoA example below). The training reference
sequences are downloaded and annotated using the Euro-
pean Bioinformatics Institute REST API (6) and aligned
using Clustal2 (7). Subsequently, ROCker queries the refer-
ence protein sequences provided against the simulated shot-
gun data sets using BLASTx (8) or DIAMOND (9). (ii)
Compile: Translates search results to alignment columns,
and identifies the most discriminant bitscore per alignment
in a 20 amino acid window (or another, user-defined length)
in a set of sequences using pROC (10). The latter algo-
rithm calculates sensitivity and specificity using the num-
ber of true and false positive matches in each window. The
bitscore thresholds are calculated as the value in the ROC
curve that maximizes the distance to the identity line (i.e.
the non-discriminatory diagonal line in the ROC curve) ac-
cording to the Youden method. Windows are iteratively re-
fined to reduce low-accuracy regions (<95% estimated ac-
curacy), for all windows with sufficient data (>5 amino acid
positions and >3 true positives available). Thresholds in re-
gions with insufficient data are inferred by linear interpo-
lation of surrounding windows. (iii) Filter: Uses the calcu-
lated set of bitscore thresholds (as estimated by the compile
task) to filter the result of a preexisting search. (iv) Search:
Executes a search of metagenomic sequences against tar-
get protein sequences (i.e. single protein function) using
BLASTx or DIAMOND, and filters the output according
to the most-discriminating bitscores calculated in the Com-
pile step. (v) Plot: Generates a graphical representation of
the alignment, the thresholds and the matches obtained, to-
gether with summary statistics (See Supplementary Figure
S1).

Target gene sequences

Protein sequences for nitrogen cycle reference genes were
obtained from the National Center for Biotechnology
Information (NCBI) (downloaded in March 2014) and
Uniprot (downloaded in June 2015). In order to avoid mis-
annotated references, all protein sequences were aligned and
visually inspected for the presence of characteristic amino
acids or protein motifs and their phylogenetic relationships.
Having a list of well-curated reference sequences is key for
accurate ROCker results. All reference protein sequences
used in the analysis for NirK (n = 147), NosZ (n = 173),
PmoA (n = 9), archaecal AmoA (n = 5), bacterial AmoA
(n = 7) and RpoB (n = 757) are available through http:
/lenve-omics.gatech.edu.

Simulated data sets and benchmark analyses

Generation of simulated shotgun data sets. Simulated
data sets were constructed using the ‘Build’ function in
ROCker based on an input list of UniProt identifiers for
each protein sequence (-P option). GRINDER’s param-
eters differed from their default options as follows: se-
quencing depth of 3 (for NosZ and NirK, 10 for bac-
terial and archaca AmoA simulated data sets), remove
~*NnKkMmRrYySsWwBbVvHhDdXx’ characters, se-
quencing error ‘uniform 0.1, mutation ratio ‘95 5” and read
length distribution ‘L uniform 5°, where L is the average
read length of the simulated data set. Simulated data sets


http://enve-omics.gatech.edu

PAGE 3 OF 11

ranged from 1 to 43 million reads in size (Supplementary
Table S1). The CPU time (cput) in hours required for gen-
erating simulated data sets can be approximated by using
a power law regression as follows: cput = 3.0672*D!0% (12
= 0.948), where D is the number of protein reference se-
quences used. Calculated ROCker profiles can be re-used in
following similarity searches. The processing of a similarity
search output (i.e. ROCker-based filtering) typically takes
from a few seconds to a couple of minutes on a personal
computer, depending on the number of matching sequences.

Similarity  search analysis. The simulated shotgun
data sets were used as query sequences for BLASTx
(BLAST+2.2.8) and DIAMOND (v0.7.9.58) searches
against the reference protein sequences that corresponded
to the input UniProt IDs. Default settings were used
for BLASTx except that e-value was set to 0.01. For
DIAMOND, the settings used were ‘min score’ of 20
and ‘sensitive’. These settings were used to make DIA-
MOND comparable to BLASTx in terms of sensitivity,
albeit at the expense of speed; users that want faster
DIAMOND searches should opt for the default settings
instead. In all cases, only best matches were considered
by using the script BlastTab.best hit_sorted.pl from the
enveomics collection (11). The BLASTxX searches were
used for generating ROCker profiles for NosZ, NirK
and RpoB protein references (profiles available through
http://enve-omics.ce.gatech.edu/rocker). Hidden Markov
models for each set of proteins were built using full-length
alignments with HMMer (12). For hidden Markov model
(HMM)-based searches, the read sequences were first
translated to amino acids using FragGeneScan (13), and
subsequently used as query sequences in the hmmsearch
algorithm implemented in HMMer (12) (Supplementary
Table S2).

Ten-fold cross-validation calculations

Both NosZ and NirK ROCker profiles were further eval-
uated by performing a tenfold cross-validation test. To en-
sure that multi-copy references encoded in the same genome
were grouped together in cross-validation sets, we randomly
separated the genomes into ten subsets (rather than us-
ing protein UniProt identifiers). For each subset, a sim-
ulated data set was generated as a query (Test) to chal-
lenge a ROCker profile built with the remaining nine sub-
sets (Model). Similarity searches were performed using
BLASTx with the parameters described above. FNR and
FDR were calculated for each subset and for 100, 150, 200,
250 and 300 bp read length simulated data sets. All gen-
erated data sets are available through http://enve-omics.ce.
gatech.edu/data/rocker.

Shotgun metagenomes

Publicly available shotgun metagenomes were downloaded
from the Sequence Read Archive, Metagenomics RAST or
other web resources (see Supplementary Table S3 for de-
tails). The data sets included two representative Midwest
USA agricultural sites (Havana and Urbana, Illinois, USA)
(4), two prairie soils that underwent infrared heating for 10
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years (warming and control; Oklahoma, USA) (14), tropi-
cal (Misiones, Argentina) and boreal forests (Alaska, USA)
(15), Alaskan permafrost active layer (Alaska, USA) (16),
two beach sands (17) and a deep marine sediment (18) re-
lated to the Deepwater Horizon oil spill (Florida, USA), hu-
man stool (19) and a waste water enrichment sample (20).

Sequence processing of shot-gun metagenomes

SolexaQA (21) was used for quality trimming of raw Illu-
mina metagenomic reads to extract the longest continuous
segment with a Phred score > 20. All paired-end or single
reads (when only one read was available) longer than 50 bp
were used for further analysis.

Fraction of genomes encoding nitrogen cycle genes

RpoB (RNA polymerase beta subunit) sequences were ob-
tained from reviewed proteins in UniProt/Swiss-Prot. A to-
tal of 757 sequences were visually inspected for conservation
of functional domains and complete alignment and were
used to construct a simulated data set and ROCker profile
(similar options as above for nitrogen cycle genes but us-
ing the ‘“—per-genus’ option in the building step in order to
reduce redundancy caused by sampling individual species
with many representative sequences). Short-reads from soil
metagenomes were used as query sequences for indepen-
dent BLASTx searches (same settings as above) against
the NosZ, NirK, AmoA or RpoB protein references. The
ROCker-filtered or e-value-filtered counts were normalized
by the median length of the sequences of each protein ref-
erence. The fraction of microbial genomes encoding either
nosZ, nirK or amoA (i.e. genome equivalent) was calculated
as the ratio of nirK, nosZ or amoA read counts to rpoB read
counts using ROCker profiles or e-values.

Phylogenetic placement of amoA and nosZ reads

Protein reference sequences for NosZ or Amoa/PmoA were
aligned using Clustal2 (7) with default parameters. The
alignment was used to build a phylogenetic tree in RAXML
(22) v8.0.19 (LG model). nosZ- or amoA-reads were ex-
tracted from soil metagenomes using ROCker (BLASTx
option), and their protein-coding sequences were predicted
using FragGeneScan. The latter sequences were added
to the NosZ or Amoa/PmoA protein alignment using
MAFFT (‘addfragments’) (23) and were placed in the cor-
responding phylogenetic tree using RAXML EPA (24) (-f
v option). An in house script (‘JPlace.to_iToL.rb’ available
through http://enve-omics.gatech.edu) was used to prepare
the visualization of the generated jplace file (25) in iTOL
(26).

Availability and dependencies of ROCker

The ROCker package, documentation and pre-computed
profiles are available through http://enve-omics.ce.gatech.
edu/rocker. ROCker is distributed both as a packaged Ruby
gem (https://rubygems.org/gems/bio-rocker) and source
code (https://github.com/Imrodriguezr/rocker) under the
terms of the Artistic License 2.0. Complete ROCker exe-
cution requires the rest-client and json Ruby gems, as well
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Figure 1. ROCker workflow for generating simulated shotgun data sets and calculating position-specific and most-discriminant bitscores. (Upper panel)
ROCker can be used to perform five independent tasks: (i) Build: Using a user-provided list of unique UniProt protein identifiers for a target protein
of interest, ROCker downloads the reference sequences, their corresponding whole genomes and annotation from the European Bioinformatics Institute
(EBI) using the REST API. The protein references are aligned and the whole genomes used for the simulation of short-read Illumina metagenomes and
then are searched against the protein reference sequences. The outputs of these searches are then provided to the (ii) Compile function, where the results
are translated to alignment windows where it identifies the most discriminant bitscore that minimizes false positives but maximizes true positive matches.
These results are compiled in ‘ROCker profiles’ that essentially represent an adaptable and reusable filter for the output of similarity searches increasing
the accuracy of finding a true match compared to the most common practice of using fixed e-value thresholds. (Lower panel) (iii) Search: Short-read
metagenomes are used as query in a similarity search using the target protein sequences as database (iv) Filter: This tool filters similarity searches using
pre-calculated ROCker profiles. Finally, (v) Plot generates a graphical representation of the ROCker profiles along with the reference sequence alignments
and summary statistics (see Supplementary Figure S1 for an extract of this feature).

as R (including the pROC package), NCBI-BLAST+ or
DIAMOND, GRINDER and Clustal2 or MUSCLE (27).
In addition, ROCker models can be built online through
http://enve-omics.ce.gatech.edu/rocker-build/.

RESULTS
ROCker benchmark

We applied ROCker to identify short-reads in simulated
data sets of known composition encoding two denitrifica-
tion genes, namely nitrite reductase (nirK) and nitrous oxide
reductase (nosZ ), and compared the results to other strate-
gies for filtering the output of similarity searches. For this,
two manually verified lists of NirK and NosZ protein iden-
tifiers were provided to ROCker (as positive references) to
generate simulated data sets of known composition resem-
bling short-read metagenomes of different lengths (see Fig-
ure 1 and Supplementary Table S1). The data sets were sub-
sequently searched against NirK and NosZ reference se-
quences to provide the similarity search outputs for com-
parisons. The coupling of BLASTx with ROCker yielded
substantially better performance compared to using fixed e-
values, e.g. ~3 and 15 fold-decrease in FDR when compared
to the use of a low stringency e-value of 10~ for NosZ and
NirK, respectively (100 bp simulated data sets; see Figure 2
and Supplementary Table S2). However, the use of high e-
values (i.e. low stringency) provided similar FNR results to
ROCKker. In fact, for NirK simulated data sets of longer read

lengths, the FNR was slightly lower by ~0.6% to 1.3% when
an e-value of 107 was used compared to ROCker (Fig-
ure 2). Nevertheless, the high FDR observed for the same
searches (at least 24 times higher, on average, compared to
ROCker) makes the use of fixed e-values a less accurate ap-
proach. In other words, even though using lower e-values
(higher stringency, e.g. 10719) decreased FDR values, this
was at the expense of much higher FNR values. In contrast,
ROCker’s FDR and FNR values were consistently low for
all evaluated data sets (Figure 2).

In all searches, the recently developed DIAMOND algo-
rithm (using sensitive settings) showed low FNR and FDR
when coupled with ROCker, similar to BLASTx (Supple-
mentary Table and Supplementary Figure S2), and was up
to ~13-fold faster than BLASTX, consistent with the re-
sults reported previously (9). Nonetheless, in every simula-
tion, DIAMOND required more RAM than BLASTx (e.g.
9.6 Gb compared to 0.45 Gb for the 80 bp NirK simu-
lated data set, respectively). Therefore, the choice of DIA-
MOND or BLASTx coupled with ROCker would depend
on the number of sequences analyzed (e.g. size of metage-
nomic data sets) and the computational resources avail-
able. We also evaluated HMM as implemented in HMMer
(12). Searches of both NirK and NosZ simulated data sets
showed higher FNR values (about 5-fold higher, on aver-
age) compared to ROCker when the same simulated shot-
gun data sets and reference sequences were used. A bet-
ter FDR was obtained in HMMer searches compared to
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Figure 2. Comparison of false negative and false positive rates for simulated shotgun data sets of different read lengths using ROCker profiles and e-value
thresholds. Simulated shotgun data sets of 80, 100, 150, 200 and 250 bp read length (figure legend) were generated using ROCker and searched against
reference NirK and NosZ protein sequences using BLASTx. The outputs were filtered using the calculated ROCker profiles (circles in blue) and fixed
e-value thresholds (circles in orange to purple gradient). Results from hidden Markov models search of the references NirK and NosZ sequences against

the simulated reads are also shown (circles in green).

the use of a fixed e-value threshold in BLASTX searches,
but not as low as those obtained with ROCker (Figure 2).
Moreover, HMMer required the least amount of memory
and was ~860 and 5700-fold faster, on average, compared
to DIAMOND and BLASTZX, respectively, consistent with
previous results (12). Finally, we compared the results of
BLASTX to those of other high-speed protein classification
tools such as UproC (28) or GRASP (29), which showed
similar FDR but much higher FNR values (Supplementary
Table S4). Accordingly, the latter tools were not pursued
further.

The evaluation of the performance of ROCker in 10-
fold cross-validation tests showed low FDR values for both
NosZ and NirK ROCker profiles (0.48% and 1.62%, on av-
erage, respectively) in 100, 150, 200, 250 and 300 bp simu-
lated data sets (Supplementary Figure S3). However, higher
FNR values (5.33% and 17.33%, on average, for NosZ and
NirK, respectively) were observed compared to when all ref-
erences were used for generating ROCker profiles. These re-
sults showed that the more reference sequences used when
building a ROCker profile and/or the higher the diversity
of the reference sequences represented, a better recovery of
reads encoding the target gene can be expected. Compared
to the use of fixed e-values, ROCker showed lower FDR
values in all simulations, consistent with the result reported
above. For instance, up to 48- and 35-fold decrease in FDR
were observed when compared to the use of low (10~°) and
high (10~ 1%) stringency e-values for the NirK simulated data
sets, respectively.

Targeting a specific group of proteins using negative refer-
ences

It is important to realize that ROCker attempts to optimize
the number of matching (simulated) sequences originating
from a target gene (true positives) against those originat-
ing from the remaining, non-target genes encoded in the
same genomes (false positives). If a closely related, yet dis-
tinct, protein is encoded by other genomes than those cor-
responding to the input, simulated sequences from the for-
mer genes will not be included in ROCker analyses. To ac-
count for such cases and further improve the robustness of
the calculated ROCker profile, a second list of non-target,
negative references can also be provided to ROCker in or-
der to obtain a filter that can exclude sequences originating
from the provided non-target genes, in addition to the other
non-target genes encoded in the genomes that correspond
to the input. Under this configuration, ROCker simulates
data sets generated from both positive (target) and negative
references (non-target), and uses them as queries for simi-
larity searches against positive (target) references. However,
only matches derived from positive references are consid-
ered for determining the position-specific thresholds of the
ROCker profile. Using this setup, ROCker was applied to
analyze two highly-similar proteins, the bacterial and ar-
chaeal ammonia monooxygenase (amoA) and the particu-
late methane monooxygenase (pnoA), which are not typ-
ically encoded on the same genome and are often chal-
lenging to distinguish from each other based on sequence
similarity searches. Archacal AmoA ROCker profiles us-
ing bacterial AmoA and PmoA sequences as negative ref-
erences (Supplementary Table S1), showed a moderate de-
crease of 23-fold and 5-fold in FNR and FDR compared
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Figure 3. Effect of including negative references in AmoA ROCker profiles for simulated shotgun data sets of different read lengths. Simulated shotgun
data sets of 80, 100, 150, 200 and 250 bp read length were searched against (target) AmoA reference sequences using BLASTx. Panel A shows the results
of using ROCker archaeal AmoA profiles, including bacterial AmoA and PmoA as negative references, and e-values for filtering the simulated data sets.
Panel B shows the results of using ROCker bacterial AmoA profiles, including archaeal AmoA and PmoA as negative references, and e-values.

to the use of 107> and 1070 e-values, respectively (Fig-
ure 3A). Only low score matches from negative references
(considered as false positives) were observed in the simi-
larity search output (Supplementary Figure S4), consistent
with the higher divergence of archaeal amoA from bacte-
rial amoA or pmoA relative to the divergence between bac-
terial amoA or pmoA. In contrast, the performance of the
bacterial AmoA ROCKker profile using archaeal AmoA and
PmoA as negative references was decreased by 66- and 59-
fold, on average, for FDR compared to the use of fixed e-
values of 107> and 10~'°, respectively (Figure 3B). Slightly
higher FNR values were observed for bacterial AmoA
ROCker profile compared to the archacal AmoA profile
(Figure 3B), as expected based on the high sequence similar-
ity between bacterial amoA4 and pmoA. The increased FNR
values obtained in all searches were attributed to the higher
bitscore values calculated for each ROCker profile in or-
der to efficiently discard high-scoring matches derived from
negative references (Supplementary Figure S4). Therefore,
bacterial AmoA ROCker profiles including negative refer-
ences showed low FDR at the cost of a slightly higher FNR.
In summary, having a well-curated set of positive, and, if
necessary, negative references is an essential prerequisite for
achieving low FDR and FDR values with ROCker.

Using ROCker on shotgun metagenomes from marine and
soil habitats

nosZ gene abundance in soil metagenomes. In order to as-
sess the abundance and diversity of nosZ genes in different
habitats, we analyzed the phylogenetic classification of nosZ
gene fragments detected by ROCker (BLASTx search) in 10
short-read metagenomes representing agricultural, forest,
permafrost and marine sediments (no planktonic samples
were analyzed). A maximum likelihood method for the phy-
logenetic placement of these short reads into a NosZ tree
revealed a consistent placement of the recovered fragments
according to their habitat of origin (Supplementary Figure
S5), further supporting that the reads identified by ROCker
are indeed NosZ-encoding reads. For instance, the marine
genera Rhodothermus, Maribacter and Caldilinea, indepen-
dently recruited ~11- to 320-fold more nosZ reads from ma-
rine (beach and marine sediments) than terrestrial environ-
ments. On the other hand, the Anaeromyxobacter, Opitu-
tus and Gemmatimonas genera, all commonly found in ter-
restrial soils, recruited between ~2- and 33-fold more nosZ
reads from terrestrial than marine environments. The anal-
ysis also revealed that atypical or clade II NosZ (4,30,31)
reads were 2 times more abundant, on average, than the typ-
ical or clade I counterparts, which was consistent with our
previous analysis using a fixed bitscore threshold across the
sequence of NosZ and a smaller set of samples from Mid-
western agricultural soils (4). However, typical nosZ gene
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Figure 4. Abundance for nirK and nosZ genes in short-read metagenomes calculated using ROCker or fixed e-value thresholds. Panel A shows the abun-
dance, calculated as the fraction of the microbial community encoding nirK or nosZ, based on searching short-read metagenomes against NirK (a) and
NosZ (b) reference protein sequences. BLASTx searches were filtered using the calculated ROCker profiles or fixed e-values (10~° and 10~10). Panel B

shows the log?2 ratio of nirK/nosZ gene abundances using ROCker.

fragments were relatively more abundant in marine sedi-
ments than soils, since marine sequences comprised almost
80% of the total typical gene fragments found in all samples.

Quantifying nirK /nosZ ratio in terrestrial and marine habi-
tats. The abundance of nirK and nosZ genes in publicly
available short-read metagenomes was quantified based on
position-specific bitscore thresholds calculated by ROCker
(Figure 4A). The use of fixed e-value thresholds (e.g. 1073
or 1071%) generally provided higher abundance estimates
compared to those of ROCker, consistent with our expec-
tations from the FDR results reported for simulated data
sets. For instance, when a 10~ e-value was used to estimate
nirK genome equivalents (using universal RpoB protein to
normalize abundances), these values exceeded four times,
on average, the estimations of ROCker. A similar trend was
observed for nosZ, albeit ROCker and e-value-based es-
timates for genome equivalents were closer to each other
compared to those calculated for nirK, reflecting the less
problematic conserved functional domains of NosZ. Fur-
ther, a higher ratio of nirK/nosZ was observed for most ter-
restrial soil metagenomes compared to metagenomes from
sand beaches and sediments when ROCker values were used
(Figure 4B).

Recovering amoA gene fragments from soil metagenomes.
We tested the performance of ROCker for extracting
bacterial amoA reads from soil and sediment shotgun
metagenomes (Havana and Urbana soils, and Florida ma-
rine sediments) and assessed their phylogenetic placement.
Even though more than 30-fold amoA reads were extracted
when a ROCker profile not including negative references

was used (Figure 5, inset), only ~10% of these reads were
placed in the correct (target) bacterial AmoA clade; the ma-
jority of the remaining reads were likely related to PmoA
or represented deep-branching members of the membrane-
bound monooxygenase (CuMMO) protein family (Figure
5B). Conversely, when a bacterial AmoA ROCker profile in-
cluding negative references (i.c. archaeal AmoA and PmoA)
was used to filter the similarity searches, 81% of the amoA
reads were placed in the expected nodes and branches con-
taining AmoA references (Figure 5A).

Comparison of ROCKer to alternative approaches

While several approaches have been recently developed to
functionally annotate metagenomic reads (e.g. functional
profilers), these tools are based on competitive matches
against a large database of functions (28) or they attempt
to reconstruct gene variants present in the metagenomes
(29,32), and thus, have different objectives and underlying
ideas than ROCker. However, ROCker can be used comple-
mentary with these approaches, especially in low sequenc-
ing depth metagenomes or with tools that are prone to
detect or assemble non-target references (false positives).
For instance, in simulated data sets with low sequencing
depth for NosZ and NirK (e.g. 1 and 5X), ROCker showed
less than 3.33% and 6.6% FNR, respectively, whereas Xan-
der (32) failed to detect and reconstruct more than half of
the target sequences (Supplementary Table S5). While Xan-
der’s performance was better with target sequences show-
ing 10X coverage (e.g. 70-90% of target sequences recon-
structed), consistent with results of the earlier study (32),
it was still missing target sequences recovered by ROCker
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Figure 5. Placement of amoA reads recovered from terrestrial and marine metagenomes in an AmoA and PmoA phylogenetic tree. A total of 27 bacterial
AmoA and PmoA sequences available in the public databases were used to build a reference phylogenetic tree. ROCker bacterial AmoA profiles including
(left panel) and not including negative bacterial PmoA references (right panel) were used to identify amoA reads from three metagenomes (see figure key).
Reads were placed in the phylogenetic tree using RAXML EPA. The radii of the pie charts represent the abundance for each node (calculated as genome
equivalents). Note that most reads in the left tree were placed in the betaproteobacterial AmoA clade. However, the reads in the right tree were placed
in more deep-branching nodes of the tree or PmoA clades. The inset shows the distribution of the evolutionary distances of the reads from the (target)
betaproteobacterial AmoA node (orange arrow), obtained when a ROCker profile including (red bars) and not including (blue bars) negative references

was used.

(Supplementary Tables S5 and S6). Furthermore, in cases
where the target references showed high identity to non-
related references and also have a different biological role
(e.g. AmoA versus PmoA), ROCker effectively recovered
bacterial amoA-encoding reads instead of pnmoA ones (max-
imum of 3.45% FDR), at the cost of a slightly higher
FNR (>9.7%, Supplementary Table S6). In contrast, Xan-
der showed increased values of FDR (above 30.1%) and
FNR (above 10%) due the assembly of false positive non-
target references (Supplementary Tables S5 and S6). How-
ever, when the reads identified by ROCker were provided as
input to Xander, there were no false positive sequences re-
constructed by Xander, and Xander’s processing time de-
creased by several orders of magnitude due to the lower
sequence complexity of the input. Hence, ROCker can be
used complementary to assemblers of target sequences such
as Xander in order to increase the accuracy of the recon-
structed targets.

DISCUSSION

The results presented here using ROCker underscore the ad-
vantages of using calculated position-specific versus fixed
thresholds when analyzing short-read metagenomes. E-
values depend on the size of the database used and the
length of the query sequences, making the determination
of the optimal e-value threshold to use a challenging task
for short-length queries against different databases. For in-
stance, a closer agreement between ROCker and fixed e-
value approaches was observed for NirK abundances in
metagenomes when a more stringent 10~'? e-value was used
(Figure 2), but it remains challenging to decide what opti-

mal e-value should be used for other references. In addition,
our simulations showed that even considering the bitscore
values from the 10% of the best matching reads as thresh-
olds, it is not as robust as ROCKer, since such bitscores can
represent false positive matches instead. Further, the esti-
mated abundance of proteins with several conserved func-
tional domains such as NirK was frequently overestimated,
by at least 2- to 3-fold, when using fixed e-values (Figure
4). Notably, ROCker overcomes these limitations, providing
consistent results, independent of the frequency of shared
functional domains in the reference of interest.

Two denitrification proteins were chosen to showcase
ROCker because they encode a different number of con-
served domains, which can increase FDR in similarity
searches by recruiting reads encoding similar motifs but
originating from non-target (and not related) proteins.
NirK is a copper nitrite reductase that contains type-1 and
-2 copper centers, commonly found in multicopper oxidases
(33). Even though NosZ contains two copper centers, Cuy
and Cup, short-reads of 100 bp or longer have sufficient
length in this case to prevent false positive matches from
non-nosZ-containing reads. Consistent with these charac-
teristics, a 3- to ~5-fold increase in FDR was observed for
NirK versus NosZ when the e-value strategy (10~°) and dif-
ferent read lengths were used. In contrast, ROCker showed
less than 1.5-fold increase in FDR and FNR for NirK ver-
sus NosZ, for the same data sets (Figure 2), consistent with
ROCker’s ability to robustly deal with genes containing dif-
ferent numbers of conserved domains and/or domains with
different degrees of conservation and phylogenetic distribu-
tion. Even though low FDR were observed in a 10-fold cross
validation test, the slightly higher FNR observed was at-
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tributable to the reduced sequence diversity in the reference
subsets used to generate the ROCker profiles. These find-
ings revealed that users should try to maximize the num-
ber of (trusted) reference sequences for building ROCker
profiles, and especially the phylogenetic/sequence diversity
encompassed by these references for more accurate results.
The results presented here for NirK and NosZ illustrate a
useful guide for building ROCker profiles and analyzing ad-
ditional proteins, depending mostly on the number of con-
served domains and motifs encoded by the target protein of
interest and their degree of sequence conservation.

It is also important to note that a ROCker profile, while
computationally demanding to create (e.g. building in silico
data sets) and labor intensive (e.g. manual checking of ref-
erence sequences) at the building step (but not for filtering
a similarity search output), needs to be built only once and
can be subsequently used multiple times, such as in similar-
ity searches for different metagenomic data sets.

We also evaluated popular, alternative algorithms to
BLASTXx for the similarity search step, including the re-
cently described DIAMOND (9), and HMM as imple-
mented in HMMer (12). ROCker results using DIAMOND
(Supplementary Figure S2) were faster and comparable in
terms of FDR and FNR with BLASTx and thus, the former
configuration is recommended for studies with limited com-
putational time available without compromising sensitivity
(Supplementary Table S2).

ROCKker is intended to accurately detect short metage-
nomic fragments related to a single gene function rather
than performing a complete gene functional profile or
reconstructing full target sequences from metagenomes.
Nonetheless, ROCker can be used complementary to the
latter approaches and thus, leads to more accurate analyses
of abundance and diversity of target genes in metagenomes.
For instance, ROCker showed to be advantageous com-
pared to tools for reconstructing target sequences such as
Xander, especially when the target gene sequences had low
sequencing depth (e.g. below 5X), or they were prone to be
mistakenly identified as their highly-related but function-
ally distinct (non-target) gene families (e.g. AmoA versus
PmoA; see Supplementary Table S5). Having full-length se-
quences reconstructed from metagenomes enables down-
stream analyses of the naturally occurring diversity (e.g. di-
versity surveys, design improved PCR primers); hence, an
approach that combines ROCker with tools like Xander
could strengthen future studies.

Copper-containing membrane-bound monooxygenase
(CuMMO) enzymes catalyze the oxidation of ammonia
(AMO), methane (pMMO) and other hydrocarbons, and
are encoded in the genomes of methanotrophs and nitrifiers
(34-38). Subunit ‘A’ is typically used as a diagnostic marker
of the specific substrate of the enzyme (39). Even though
PCR primers can effectively distinguish between bacterial
and archaeal amoA (40,41), differences in sensitivity and
performance have been identified for primers intended to
discriminate between pmoA and amoA genes (42). These
difficulties are mostly due to the high similarity at the nu-
cleotide level because of their recognized evolutionary relat-
edness (43). To deal with such cases of high sequence iden-
tity between target versus non-target genes, especially when
the latter are encoded by different genomes than those en-
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coding the former, we implemented the use of negative ref-
erences for generating ROCker profiles. Remarkably, bacte-
rial AmoA ROCKker profiles including PmoA sequences as
negative references showed 60-fold improvement in FDR
compared to the use of a fixed e-value (e.g. 107°) (Figure
3B), and almost all reads identified were placed in the tar-
get bacterial AmoA tree clade, unlike reads extracted us-
ing a ROCker profile without negative references (Figure
SA versus B panels). The use of negative references is also
recommended when discrimination between different vari-
ants or clades of the same gene family is intended. However,
it is important to point out that the decrease in FDR when
including negative references was at the expense of a slightly
increased FNR, by about 8%, on average, according to our
simulated AmoA data sets of different read lengths. There-
fore, unless discrimination between closely related protein
sequences encoded by the same or different genomes is re-
quired, the use of negative sequences should be avoided in
order to maximize the number of reads detected that encode
the target gene (true positives).

Interestingly, the analysis of soil metagenomes showed a
higher ratio of nirK/nosZ for terrestrial samples relative to
marine sediments (Figure 4B), in agreement with previous
results based on quantitative real-time PCR (44,45). These
findings are consistent with the hypothesis that in some en-
vironments a high fraction of denitrifiers does not possess
the genetic potential to reduce N,O, a potent greenhouse
gas. Assuming that gene abundance can be used as a proxy
for gene activity (46), these results imply that microbial-
mediated reduction of N,O might be higher (and hence,
emissions might be lower) in marine sediments than on
land, which remains to be experimentally verified.

Recent studies have shown that previous efforts to de-
termine the abundance of nosZ genes have missed a group
of divergent sequences, the so-called atypical sequences or
clade II, which are functional as N,O reductases and are
frequently more abundant than their more studied, typi-
cal counterparts (4,30,31). Consistently, ROCker identified
twice as many reads, on average, encoding atypical versus
typical nosZ gene fragments in ten short-read metagenomes
representing terrestrial and marine environments. Phyloge-
netic placement of these short-reads into a NosZ tree re-
vealed that typical nosZ reads were mostly derived from
marine sediments (Supplementary Figure S5), probably re-
flecting differences in nitrogen cycle pathways and/or reg-
ulation between these environments. For instance, typical
nosZ genes are frequently associated with complete deni-
trifiers (30), which might account for the higher N,O re-
duction potential detected in marine sediments compared
to soils. Many atypical nosZ reads found in the terrestrial
metagenomes were affiliated with the Anaeromyxobacter,
Opitutus and Gemmatimonas genera, and accordingly nosZ
sequences assigned to these taxa have been frequently recov-
ered from soils based on PCR and/or cloning approaches
(30,47,48). The high consistency observed between the re-
sults of the phylogenetic placement of nosZ reads and the
habitats of origin of the reads are also in agreement with
previous literature and further corroborates the robustness
of ROCker.

The only input required to generate simulated data
sets and calculate position-specific, most-discriminant
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bitscores, is a list of UniProt protein sequence identifier
numbers for the protein of interest. It should be pointed
out, however, that these reference sequences should be care-
fully selected to represent the protein family of interest
(target), as opposed to closely-related homologs of dis-
tinct function (when available), in order to obtain accurate
ROCKker results. Sequences of related, yet distinct, protein
families (negative sequences), which could provide false-
positives during similarity searches, can be also given to
ROCker in order to increase the performance of the pro-
files during the ‘build’ stage. Therefore, careful, manual cu-
ration of the reference sequences is typically the most time-
consuming step of ROCker, and the only step that is not
currently fully automated. In our experience, using pro-
tein families generated automatically or unsupervised com-
monly brings error/noise to the generated ROCker mod-
els, and thus, is not recommended. A few manually cu-
rated repositories such as the Functional Gene Pipeline and
Repository (FUNGENE) (49) have started to become avail-
able, although they are still limited in the number of protein
families they encompass.

Finally, finding reads distantly related to the target ref-
erences might be challenging for ROCker (as is the case
for any similarity search-based approach) since ROCker’s
thresholds (bitscores) are often high, reflecting close simi-
larity to the reference set (particularly in conserved domains
present in reference sequences). Using high e-value cutoffs
might be advantageous for the latter purpose, albeit at the
cost of an unknown (and probably high) number of false
positive matches.

In summary, ROCker expands the molecular toolbox for
clinical and environmental surveys in the prokaryotic and
eukaryotic domain, providing a pipeline to efficiently detect
and quantify the abundance of gene fragments of interest
in short-read metagenomes. The idea underlying ROCker
can also be extended beyond metagenomics to (full-length)
protein-protein searches and have broad applications in
bioinformatic sequence analysis.
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Supplementary Data are available at NAR Online.
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