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ABSTRACT

Hypercholesterolemia contributes to the chronic inflammatory response during the 
progression of atherosclerosis, in part by favoring cholesterol loading in macrophages and 
other immune cells. However, macrophages encounter a substantial amount of other lipids 
and nutrients after ingesting atherogenic lipoprotein particles or clearing apoptotic cells, 
increasing their metabolic load and impacting their behavior during atherosclerosis plaque 
progression. This review examines whether and how fatty acids and glucose shape the 
cellular metabolic reprogramming of macrophages in atherosclerosis to modulate the onset 
phase of inflammation and the later resolution stage, in which the balance is tipped toward 
tissue repair.
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INTRODUCTION

Atherosclerosis is the predominant cause of cardiovascular disease (CVD), which is the top 
cause of death in developed countries. The build-up of fat and cholesterol on the inner walls 
of arteries is strongly associated with their narrowing or blockage, a scenario that can be 
induced by a high-cholesterol diet in animals.1 Macrophages present within atherosclerotic 
plaques play a central role in the initiation, development, and complications of arterial 
plaques and rely on tightly integrated metabolic rewiring to maintain vessel wall integrity 
and continuously clear neighboring cells.2,3 In particular, when macrophages ingest 
atherogenic lipoprotein particles or clear apoptotic cells, their metabolic load is increased, 
promoting their metabolic rewiring.4 Thus, it is not surprising that an excess of cellular 
cholesterol or cholesterol crystals trigger macrophage expansion, foam cell formation, and 
impaired effector functions, all of which contribute to disease progression.5-7 However, 
despite the benefits of statins for lowering plasma cholesterol,8,9 the number of individuals 
at risk of developing CVD is still growing and there is a crucial need to identify residual risk 
factors.10 A Western lifestyle, especially a high-fat diet, was recently shown to induce meta-
inflammation in mice, highlighting the need for a better understanding of the interplay 
between fatty acids, inflammation, and atherosclerosis.11 In humans, dyslipidemia, which 
is characterized by higher levels of proatherogenic triglyceride-rich lipoproteins and lower 
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levels of antiatherogenic high-density lipoprotein (HDL), and hyperglycemia have been 
identified as independent cardiovascular risk factors. In this review, we will explore the nodes 
linking metabolism and inflammation, a new emerging field termed ‘immunometabolism,’ 
in cardiovascular atherosclerotic disease.

IMMUNOMETABOLIC REGULATION OF MACROPHAGES 
IN ATHEROSCLEROSIS
1. Up-to-date knowledge on macrophage cholesterol metabolism
The atherogenic low-density lipoprotein (LDL), also known as “bad cholesterol,” travels 
through the bloodstream and delivers cholesterol to the artery wall, promoting a local 
inflammatory response that is a major culprit of atherosclerosis development. Cholesterol 
plays a central role in macrophage biology and can be generated by cellular cholesterol 
biosynthesis or be internalized by receptor-mediated cholesterol endocytosis. The interplay 
between these pathways is extremely well balanced under homeostatic conditions by several 
regulatory systems.5-7 Although macrophage foam cell formation could activate the synthesis 
of endogenous sterol derivatives that are liver X receptor ligands to suppress inflammation, 
the presence of additional extrinsic pro-inflammatory signals, such as modified LDL or 
cholesterol crystals, is thought to amplify inflammatory toll-like receptor signaling and 
the NLRP3 inflammasome. In a pioneer work, transplantation of wild-type bone marrow 
(BM) into hypercholesterolemic apolipoprotein (ApoE)-deficient mice was sufficient to 
prevent atherosclerosis, highlighting the crucial role of the immune system in promoting 
inflammation under hypercholesterolemic conditions.12 Conversely, part of the role of LDL-
cholesterol lowering therapy in preventing atherosclerosis progression has been attributed 
to anti-inflammatory properties.13 Nevertheless, a recent single-cell RNA sequencing 
analysis revealed that non-foamy macrophages are proinflammatory in vivo in atherosclerotic 
plaques of experimental models.14 Moreover, a similar approach in human atherosclerotic 
plaques also confirmed the presence of heterogeneous populations of macrophages within 
asymptomatic atherosclerotic plaques. Of interest, one of the macrophage subsets with a 
foam cell appearance showed pro-inflammatory properties.15 These findings highlight the 
need of a better understanding of macrophage biology in their native tissue environment. 
In that context, the retention of LDL in the intima of arteries can become atherogenic after 
various modifications such as oxidation.16 The aggregation and retention of cholesterol 
in specific depots can initiate the formation of cholesterol crystals, which are also pro-
inflammatory in nature.4,17

2. Fatty acid metabolism and macrophage effector functions
Despite the success of statins, significant cardiovascular risk remains.8,9 In particular, 
dyslipidemia, which is characterized by higher levels of triglyceride-rich lipoproteins and 
lower levels of HDL, has been identified as a residual cardiovascular risk.13 In addition 
to cholesterol, fatty acid metabolism is a central regulator of macrophage function. Two 
major sources of fatty acids have been described: 1) lipolysis of circulating triglyceride-rich 
lipoproteins during the postprandial phase following the ingestion of a meal and 2) release 
of free fatty acids from stored lipids through intrinsic lipolysis (i.e., lipophagy) or peripheral 
adipose tissue lipolysis in the fasting state (Fig. 1). Additionally, these pathways can be 
exquisitely balanced through feedback inflammatory pathways, as illustrated by the key role 
of interleukin (IL)-18 production via the NLRP1 inflammasome in controlling lipolysis.18 
Two recent studies elegantly showed that while dietary intake of lipids regulates the pool of 
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circulating inflammatory monocytes that infiltrate tissues,19 a lipase-independent pathway of 
lipid release from adipose tissue via lipid-filled vesicles has an impact on local macrophage 
behavior.20 These findings raise the question how different fatty acid delivery routes influence 
macrophage effector functions.

The lipolysis of triglyceride-rich proteins in the postprandial phase, is mediated by 
various lipases, including sn-1 lipases such as lipoprotein lipase (LPL), hepatic lipase, 
and endothelial lipase; the role of these enzymes in accelerating atherosclerosis has been 
extensively described elsewhere.21 However, a link to innate immunity has only emerged 
with the generation of myeloid cell-specific LPL deficiency. Seminal works have revealed that 
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Fig. 1. Schematic representation of immunometabolic pathways in macrophages linking glucose and fatty acid metabolism to pro- and anti- inflammatory 
responses. Pro-inflammatory macrophages are more glycolytic, reflecting their need to rapidly meet the energy requirements of acute inflammation in the form 
of ATP. Upon aerobic glycolysis, a large amount of glucose is converted to lactate, which serves as an intermediate for anabolic reactions that have been linked 
to a pro-inflammatory response. Pro-inflammatory macrophages also produce eicosanoid inflammatory mediators by the oxidation of AA. By contrast, anti-
inflammatory macrophages utilize fatty acid OXPHOS to slowly but efficiently generate ATP to support the resolution of inflammation. Fatty acids originate from 
1) circulating NEFAs, which are generated during peripheral lipolysis or intracellular lipophagy; 2) hydrolysis of triglyceride-rich lipoproteins and extracellular 
uptake; 3) lysosomal hydrolysis; or 4) endogenous synthesis. In this context, SPMs are produced. 
AA, arachidonic acid; ACC, acetyl-CoA carboxylase; AcCoA, acetyl-coenzyme A; ACL, ATP citrate lyase; AGPAT, acylglycerolphosphate acyltransferase; ATGL, 
adipose triglyceride lipase; ATP, adenosine triphosphate; BPA, bempedoic acid; COX, cyclooxygenase; DAG, diacylglycerol; DGAT, diacylglycerol acyltransferase; 
DHA, docosahexaenoic acid; ELOVL, elongation of very long chain fatty acids protein; EPA, eicosapentaenoic acid; FA, fatty acid; FABP, fatty acid binding 
protein; FADS, fatty acid desaturase; FAS, fatty acid synthase; FATP, fatty acid transport protein; GPAT, glycerol-3-phosphate acyltransferase; LIPA, lysosomal 
acid lipase; LOX, lipoxygenase; LPA, lysophosphatidic acid; LTB4, leukotriene B4; Mar1, maresin 1; MUFA, monounsaturated fatty acid; NEFA, non-esterified fatty 
acid; OXPHOS, oxidation and subsequent oxidative phosphorylation; PA, palmitic acid; PD1, protectin D1; PGE1, prostaglandin E1; PGI1, prostaglandin I2; PPAP, 
phosphatidic acid phosphatase; PUFA, polyunsaturated fatty acid; RvD, D-series resolvins; RvE, E-series resolvins; SCD, stearoyl-CoA desaturase; SFA, saturated 
fatty acid; SPM, specialized pro-resolving mediator; TG, triglyceride; TXA2, thromboxane A2; VLDL, very low-density lipoprotein.



transplantation of LPL-knockout BM into atherosclerotic Ldlr−/− mice and the generation 
of myeloid-specific LPL deficiency in ApoE−/− mice prevented foam cell formation and 
atherosclerosis.22,23 Additionally, LPL-deficient mice exhibited a reduction in the level of 
circulating myeloid cells (i.e., neutrophils and monocytes) but these effects are probably 
not cell-intrinsic.24,25 Several inhibitors have been developed as alternative targets for 
dyslipidemia, including a microsomal triglyceride transfer protein inhibitor (lomitapide) 
used in patients with familial hypercholesterolemia, human monoclonal antibodies against 
ANGPTL3 (evinacumab) or ANGPTL4 (REGN1001), an antisense oligonucleotide (ANGPTL3-
LRx), and an antisense oligonucleotide against APOC3 (volanesorsen), as previously 
summarized elsewhere.13 The role of these inhibitors in modulating macrophage effector 
functions have not yet been investigated.

The hydrolysis of stored adipose tissue triglycerides to non-esterified fatty acids (NEFAs) 
and glycerol occurs in the fasting state. Adipose triglyceride lipase (ATGL), hormone-
sensitive lipase (HSL), and monoglyceride lipase are sequentially required in adipocytes. 
Deficiency of ATGL, the rate-limiting enzyme that regulates the mobilization of NEFAs by 
hydrolyzing triglyceride species at the sn-2 and sn-1 positions, promotes massive ectopic 
lipid accumulation in various tissues, including adipose tissue, liver, smooth muscle, and 
heart.26 However, ATGL-deficient mice exhibit reduced adipose tissue and liver immune 
cell infiltration27 most likely due to limited recruitment signals released upon acute lipolytic 
stimulation28 and potentially meta-inflammation.29-31 Indeed, inflamed adipose tissue 
secretes more NEFAs during expansion.32 In part, this results from local insulin resistance 
and the elevated generation and release of inflammatory molecules such as IL-6, and this is 
associated with cardiometabolic complications.33 Chronic pharmacological ATGL inhibition 
with atglistatin consistently prevented adipose tissue inflammation and cardiometabolic 
complications upon high-fat feeding without inducing ectopic lipid deposition.34 At 
least 3 cofactors have been identified as regulators of ATGL activity. Comparative gene 
identification-58 (CGI-58) binds and activates ATGL activity.35 In contrast, the interactions 
of ATGL with G0/G1 switch gene 2 (G0S2) and hypoxia-inducible lipid droplet-associated 
protein (HILPDA) inhibit its activity.36-38 Although adipose tissue-specific overexpression 
of G0S2 or CGI-58 and HILPDA deficiency recapitulated most of the phenotype of ATGL-
deficient mice, their relevance to meta-inflammation and cardiometabolic diseases is still 
poorly understood.39-41

3. Macrophage fatty acid metabolism
At the cellular level, fatty acids can be translocated across the membrane by the fatty 
acid translocase CD36 receptor or fatty acid transport proteins (FATPs) such as FATP1 
(SLC27A1). Intriguingly, CD36-deficient and FATP1-deficient macrophages exhibited opposite 
inflammatory phenotypes and were associated with protecting against or exacerbating 
atherosclerosis plaque development, respectively.42,43 Although fatty acid uptake by CD36 
can be coupled to mitochondrial oxidative phosphorylation to promote alternatively 
activated macrophage polarization,44,45 recent evidence has suggested that in the context 
of atherosclerosis, the uptake of pro-atherogenic oxidized LDL by CD36 could induce an 
unexpected metabolic shift towards glycolysis, which is pro-inflammatory in nature.46 
Intriguingly, a lack of fatty acid uptake by FATP1-deficient macrophages was also associated 
with enhanced glycolytic activity and modulation of eicosanoid synthesis.47 Nevertheless, 
knockdown of the 2 major fatty acid binding proteins (FABPs) that control intracellular fatty 
acid trafficking to the nucleus in macrophages—namely, FABP4 (aP2) and FABP5 (Mal1)—
prevented atherosclerosis.48-50 These FABPs could promote macrophage inflammation by 
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inducing foam cell formation and by modulating fatty acid-sensitive nuclear receptors such 
as peroxisome proliferator-activated receptors (PPARs), endoplasmic reticulum stress, and 
toll like receptor-dependent nuclear factor kappa B activity, as discussed elsewhere.51 Thus, 
limiting the uptake and trafficking of specific fatty acids in macrophages may have beneficial 
impacts in limiting atherosclerosis development.

The intrinsic degradation of triglycerides from macrophage lipid droplets has also 
emerged as a central regulator of macrophage effector functions. Indeed, ATGL-deficient 
macrophages showed defective PPAR-β/δ and small Rho GTPase activation, associated 
with impaired motility and efferocytosis.52,53 In contrast, these cells manifested signs of 
increased alternative polarization, with increased expression of canonical markers such 
as mannose receptor 1 and arginase 1 and enhanced secretion of the anti-inflammatory 
cytokines IL-10 and transforming growth factor-β.53 Atherogenic Ldlr−/− mice transplanted 
with ATGL−/− BM exhibited less systemic inflammation and tissue monocyte infiltration, 
attenuating the development of atherosclerotic lesions.54 These findings contrast with 
HSL-deficient macrophages, which exhibit a pro-inflammatory phenotype with increased 
proteolytic activity55 and accelerated atherosclerosis.56 Currently, we lack a unifying 
hypothesis reconciliating these observations. One possibility would be the redundancy of 
several hydrolases in macrophages that play a dual role in hydrolyzing both cholesterol and 
triglycerides, as has been shown for HSL.57,58 Lysosomal acid lipase (LIPA) also plays a dual 
role in hydrolyzing both triglycerides and cholesterol, and has been found by the Pearce 
laboratory to oppose the effect of ATGL on macrophage alternative polarization (Fig. 1). 
Indeed, fatty acid generation by LIPA supports the metabolic requirements of macrophage 
alternative polarization.44 This process involves C36 receptor-mediated endocytosis or fusion 
of lipid droplets with lysosomes (i.e., lipophagy).59-61 Additionally, while enhanced LIPA 
activity limited atherogenic lipid loading-induced inflammatory and apoptotic responses,60 
LIPA deficiency promoted cholesterol accumulation, lysosomal inflammation, and defective 
clearance of apoptotic cells.62-64 An additional role of LIPA is its involvement in the generation 
of anti-inflammatory lipid mediators.65 These findings have to been linked to pioneering 
research on LIPA-deficient mice, which are characterized by exacerbated myelopoiesis, liver 
abnormalities, and accelerated atherosclerosis.66 These complications are rescued by myeloid 
cell-specific re-expression of LIPA.67

4. Macrophage specialized pro-resolving mediator (SPMs) metabolism
Multiple mechanisms have been proposed to link fatty acid and inflammatory signaling 
pathways, including the modulation of plasma and organelle membrane fluidity, formation 
of crystalline structure, and histone acetylation, among others that have been reviewed 
elsewhere.3,6 In this section, we will focus on growing evidence regarding the role of SPMs68 
which could have an impact on inflammation and the resolution of atherosclerosis.69,70 Briefly, 
in response to an inflammatory stimulus, polyunsaturated fatty acids (PUFAs) including 
arachidonic acid, the essential fatty acid eicosapentaenoic acid, docosahexaenoic acid, and 
docosapentaenoic acid are hydrolyzed by phospholipases, and following the action of several 
lipoxygenases, lipid mediators of inflammation and resolution can be produced (Fig. 1).71 
Leukotrienes are a family of eicosanoid inflammatory mediators produced by the oxidation 
of arachidonic acid and eicosapentaenoic acid in leukocytes. Leukotriene production is 
accompanied by the production of prostaglandins, which are crucial inflammatory mediators. 
These proinflammatory mediators act on G protein-coupled receptors (GPCRs) to promote the 
secretion of inflammatory cytokines.69,70 SPMs can also activate their cognate GPCRs to facilitate 
resolution of inflammation.71 Two recent studies have shown an imbalance between SPMs 
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and leukotrienes in advanced atherosclerosis in human and murine plaques.72,73 Interestingly, 
myeloid cell-specific deficiency of fatty acid synthesis upstream of PUFA generation, including 
long-chain-fatty-acid-CoA ligase 1,74 fatty-acid synthase,75 fatty acid desaturase 176 or fatty acid 
elongase 6,77 led to reduced atherosclerosis development, along with the modulation of several 
SPM and leukotriene mediators. Thus, novel fatty acid synthesis inhibitors that are being 
currently tested in different diseases, such as bempedoic acid, an inhibitor of ATP citrate lyase, 
C75 or cerulenin, fatty synthase inhibitors, and diacylglycerol acyltransferase inhibitors, may 
provide novel anti-inflammatory therapeutic opportunities. Genetic evidence of a role of SPMs 
in atherosclerosis has also been extensively described elsewhere, with noteworthy findings 
regarding 5-lipoxygenase, 12/15-lipoxygenase, and SPM GPCRs such as N-formyl peptide 
receptor 2, leukotriene B4 receptor 1, and resolvin E1 receptor.69

5. Macrophage glucose metabolism
18F-fluorodeoxyglucose positron emission tomography imaging has revealed enhanced 
incorporation of the glucose analogue in inflamed atherosclerotic plaques,78-81 which was 
strongly correlated with its incorporation in peripheral hematopoietic tissues.82-84 These 
findings highlight the link between high hematopoietic metabolic activity and CVD, most 
likely reflecting systemic inflammation and extramedullary hematopoiesis.85 However, direct 
evidence for the role of hyperglycemia or enhanced glucose flux in CVD risk has long been 
lacking. It is only recently that randomized clinical trials have shown that reduced glycemia 
and hemoglobin A1c levels are key drivers of CVD risk reduction.86 Genome-wide association 
studies have also identified single nucleotide polymorphisms linking plasma glucose levels 
to CVD events.87,88 In a mouse model of atherosclerosis, we confirmed that disruption of the 
main glucose transporter in hematopoietic cells reduced the number of circulating monocytes 
and the development of atherosclerosis.89 These findings highlight the causal role of enhanced 
hematopoietic glycolytic activity in CVD. However, 2 recent studies have raised concerns 
that blocking macrophage-specific glycolytic activity may have local adverse effects on 
atherosclerotic plaque complexity because it limits the energy requirements of efferocytosis.90,91 
Thus, there is a need to identify downstream glycolytic shunts that may prevent inflammation 
without impacting efferocytosis, such as downstream steps of lactate production (Fig. 1).90 
Interestingly, we and others have found that targeting 2 independent targets of the pentose 
phosphate pathway—namely, carbohydrate-responsive element-binding protein and 
sedoheptulose kinase—promoted macrophage inflammation92 and atherosclerosis.93

CONCLUSION

Exploiting the metabolic plasticity of macrophages to limit chronic inflammation and 
improve inflammation resolution in atherosclerosis has emerged as a topic of major interest 
in the scientific community. Identifying links between currently known metabolic CVD 
risks and inflammation, beyond hypercholesterolemia, may provide novel therapeutic 
opportunities to improve the management of CVD.
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