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Abstract

The presence of earthworm species in crop fields is as old as agriculture itself. The earth-

worms Pontoscolex corethrurus (invasive) and Balanteodrilus pearsei (native) are associ-

ated with the emergence of agriculture and sedentism in the region Amazon and Maya,

respectively. Both species have shifted their preference from their natural habitat to the

cropland niche. They contrast in terms of intensification of agricultural land use (anthropic

impact to the symbiotic soil microbiome). P. corethrurus inhabits conventional agroecosys-

tems, while B. pearsei thrives in traditional agroecosystems, i.e., P. corethrurus has not yet

been recorded in soils where B. pearsei dwells. The demographic behavior of these two

earthworm species was assessed in the laboratory over 100 days, according to their origin

(OE; P. corethrurus and B. pearsei) food quality (FQ; soil only, maize stubble, Mucuna prur-

iens), and soil moisture (SM; 25, 33, 42%). The results showed that OE, FQ, SM, and the

OE x FQ interaction were highly significant for the survival, growth, and reproduction of

earthworms. P. corethrurus showed a lower survival rate (>mortality). P. corethrurus survi-

vors fed a diet of low-to-intermediate nutritional quality (soil and stubble maize, respectively)

showed a greater capacity to grow and reproduce; however, it was surpassed by the native

earthworm when fed a high-quality diet (M. pruriens). Besides, P. corethrurus displayed a

low cocoon hatching (emergence of juveniles). These results suggest that the presence of

the invasive species was associated with a negative interaction with the soil microbiota

where the native species dwells, and with the absence of natural mutualistic bacteria (gut,

nephridia, and cocoons). These results are consistent with the absence of P. corethrurus in

milpa and pasture-type agricultural niches managed by peasants (agroecologists) to grow

food regularly through biological soil management. Results reported here suggest that P.

corethrurus is an invasive species that is neither wild nor domesticated, that is, its eco-evolu-

tionary phylogeny needs to be derived based on its symbionts.
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Introduction

Although humans have produced novel niches prior to the advent of agriculture, the innova-

tion of domestication led to changes in the life cycle of one or a few species, and the local

microenvironments were manipulated, especially soil biota [1–4]. The artificial landscapes that

resulted from these practices (anthropocentric ecology) were exported as agricultural packages

from the centers of origin [1, 2, 4]. Thus, over a relatively short period in the history of man-

kind, the expansion of agriculture has brought about the remodeling of biodiversity as one of

the most significant anthropogenic impacts on terrestrial ecosystems [1, 2, 5].

Agriculture has given rise to uniform and predictable disturbed ecological niches (invasible

habitats), which have proven highly beneficial for non-domesticated species or weeds [1, 2, 6],

and some earthworm species. Blakemore [7] has suggested that the origins of cosmopolitan

(invasive) earthworms at family level are associated with domestication centers of plants and

animals; that is, the presence of earthworms in crop fields is as old as agriculture itself [7–9].

The terms of the Millennium Ecosystem Assessment highlight the catalytic role of earthworms

regarding two environmental services [10], namely the formation of soil and biogeochemical

cycles, both of which are prerequisites for other environmental services [10–11].

Most of the studies focused on earthworms have used species adapted to crops, and most of

them are currently considered as invasive [11]. It has been documented that 3% of the diversity

of earthworms are invasive species [12]. As an example, European earthworms are frequently

mentioned as the main cause of an irreversible change in the diversity and functioning of eco-

systems in North America (Wisconsin glaciation areas) that were previously free from earth-

worms 12 thousand years ago [13–15]. However, there is a deeply rooted positive attitude

toward earthworms in human populations in North America, acknowledging their beneficial

effects on agricultural soils and urban gardens [10, 16].

Among the invasive tropical earthworms, the endogeic species Pontoscolex corethrurus was

collected and described in crop fields in Blumenau, Brazil 160 years ago [17–18]; it has a broad

distribution range and is the most studied tropical species [19–20]. Native species also move

across a region in a similar way to invasive species, in addition to natural displacements [5, 7,

21]. The native endogeic earthworm Balanteodrilus pearsei was first collected and described

from Gongora cave in Okcutzcab, Yucatan 81 years ago [22]; it is distributed in the east and

southeast of Mexico and Belize [19]; it dwells in natural and agricultural environments and is

the most studied species native to Mexico. Most studies conducted with both species point to a

positive influence of their biological activity on soil [20, 23], i.e., they do not meet the defini-

tion of pest [24]. For this reason, we use the term invasive with reference to the biogeographi-

cal status of the species, regardless of its impact on soil [24–25].

Similar to weeds [6, 8, 9, 26], it can be suggested that P. corethrurus and B. pearsei have

shifted their preference from their natural habitat to agricultural environments, spreading geo-

graphically beyond their place of origin, and are currently key elements of agricultural envi-

ronments. The presence of P. corethrurus and B. pearsei is associated with the development of

pre-Columbian cultivation techniques in the Amazon [2, 27, 28, 29] and Maya [2, 30, 31]

regions, respectively. For example, it is believed that P. corethrurus facilitated the formation of

fertile soils in the Amazon area named "Terra Preta do Indo" [32, 33, 34, 35, 36, 37]. Both spe-

cies have adapted to niches that emerged from agriculture [38], but contrast regarding the

intensification of agricultural land use and/or the diversion of each from natural habitats

(anthropic manipulation of soil). P. corethrurus is commonly found in conventional agrecosys-

tems (use of fertilizers, herbicides, pesticides, and tillage), as well as in industrial (polluted with

heavy metals, petroleum hydrocarbons, and others) and urban areas [20, 39, 40, 41]. B. pearsei
inhabits soils managed under an agroecological approach (little human impact of the soil
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microbiome), such as traditional agroecosystems (no use of industrial inputs) and in natural

ecosystems [40, 42, 43]. P. corethrurus has been found coexisting with native species in some

agroecosystems [41, 44, 45], but there are no records of its coexistence with B. pearsei so far

[40, 42, 43].

A previous study of coexistence under controlled conditions showed no competitive inter-

action between P. corethrurus and B. pearsei, i.e., both can coexist [23]. However, the question

to address is, why P. corethrurus has not invaded the agroecological niche of B. pearsei? There-

fore, this work compared the demographic behavior of P. corethrurus vs. B. pearsei assuming

that the survival rate of the invasive species decreases in soil populated by the native species.

Materials and methods

Ethics statement

No permits were required for the collection and laboratory trials. Soil and earthworms were

provided by farmers with free of charge. The experimental procedure used in this study is

detailed elsewhere [23].

Soil

Soil was collected from a maize field (MM) rotated with the tropical legume velvet bean

(Mucuna prurien var. utilis) located near the village Tamulté de las Sabanas (18˚08´N, 92˚47

´W), 30 km east of Villahermosa, Tabasco, Mexico. The silty clay loam soil (41.5% sand; 26.8%

clay; 31.6% silt) was air-dried in the shade at room temperature and sieved through a 2 mm

mesh. The main chemical characteristics of this soil were: 2.7% organic matter; 0.14% total N;

11.4 C/N; pH (H2O) of 6.3.

Earthworms

Two tropical endogeic earthworm species were used in this study: B. pearsei (native) and P.

corethrurus (invasive). B. pearsei was collected from the MM field, whereas P. corethrurus was

collected from pastures at Huimanguillo (79 km southwest Villahermosa, 17˚48´N, 93˚28´W),

given its absence in the former site. All earthworms (120 for each species) were collected two

weeks prior to the beginning of the experiment.

Food quality

The effects of foof quality were assessed by using two different types of plant litter of contrast-

ing nutritional quality: M. pruriens (52.4% C, 2.25% N, 23.3 C/N, and 9.67% ash) and maize

stubble (52% C, 0.84% N, 61.9% C/N, and 10.3% ash). Both materials were obtained from the

MM field, oven-dried at 60˚C for 48 h, and sieved (1 mm).

Experiment

Growth, sexual maturity, reproduction (cocoons and juveniles), and mortality of B. pearsei
and P. corethrurus were investigated during 100 days using a factorial design with three factors:

origin of earthworms (OE), soil moisture (SM), and food quality (FQ). SM involved 3 levels,

corresponding to the permanent wilt point (25%), field capacity (42%), and an intermediate

level (33%). FQ included three levels: 300 g soil only (S), 294 g soil + 6 g maize stubble (MS),

and 294 g soil + 6g M. pruriens (MP); the amounts added correspond to those commonly

found in both maize monocultures and cultures rotating maize and M. pruriens. The earth-

worm species used belong to two different classes based on origin: Native (B. pearsei) and

Invasive (P. corethrurus).

Homeless invasive tropical earthworm
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The combination of the three factors and three levels produced nine treatments with five

replicates per treatment. Each replicate consisted of a plastic container (12×12×8 cm) contain-

ing 300 g dried soil of the corresponding food-soil mixture and soil moisture; two individuals

of B. pearsei and two of P. corethrurus were transferred to each container (Table 1).

Earthworms were washed, dried on paper towels, weighed, and assigned randomly to each

treatment. The baseline weight of the 45 replicates from the nine treatments was statistically

similar in B. pearsei and P. corethrurus (76.06 ± 26.1 mg, n = 90 and 66.04 ± 31.1 mg, n = 90,

respectively). Containers were incubated at 26 ± 1 ºC. Body weight, mortality, clitellum

appearance (sexual maturity), and number and biomass of cocoons and juveniles of B. pearsei
and P. corethrurus were recorded at 10-day intervals, and soil was replaced. Before use, fresh

soil (including the corresponding food-soil mixture and moisture) was preincubated for 8

days at 26˚C in order to trigger litter substrate decomposition. Each cocoon produced was

incubated in a petri dish at 26˚C; incubation time as well as number and weight of all juveniles

hatched were recorded.

Statistical analysis

Cocoon and juvenile weight, and growth were evaluated through Analysis of Varienace

(ANOVA). Mortality, sexual maturity, number of cocoons, and number of juveniles were ana-

lyzed using generalized linear models, specifically the Poisson distribution wich is widely used

for modelling count data. Differences between means were evaluated with Tukey’s HSD. All

statistical analyses were perfomed using the Statistica software.

Results

At 100 days of culture, significant effects were observed between the origin of earthworms

(OE), food quality (FQ) and soil moisture (SM), and the interaction between these three fac-

tors on sexual maturity, number of cocoons, and number and biomass of juveniles (Table 1).

Mortality

At the end of the culture, the invasive earthworm (P. corethrurus) had a 21.1% mortality rate in

the soil treatment (33% and 25% SM), while that of the native earthworm (B. pearsei) had only

a 1.1% mortality rate in the soil treatment (only 42% SM). In the M. pruriens and maize stubble

treatments (25%, 33% and 42% SM) no mortality was observed in both earthworm species.

Table 1. F-values and significance levels (ANOVA) of the interaction of three factors on growth and reproduction of the tropical endogeic earthworm Pontoscolex
corethrurus and Balanteodrilus pearsei at 100 days of culture in soil with low anthropic impact.

Independent variable Biomass adult Sexual maturity Cocoon Juveniles

Number Biomass Number Biomass

F P F P F P F P F P F P
Origen Earthworm (OE) 29.7 0.0000 22.3 0.0000 4.4 0.0390 2238.8 0.0000 25.1 0.0000 836.9 0.0000

Soil Moisture (SM) 20.4 0.0000 9.2 0.0002 22.2 0.0000 31.7 0.0000 14.8 0.0000 35.2 0.0000

Food quality (FQ) 191.7 0.0000 299.4 0.0000 109.0 0.0000 12.5 0.0004 67.0 0.0000 11.6 0.0006

OE×SM 0.03 0.9739 4.2 0.0164 4.4 0.0161 9.3 0.0000 5.0 0.0095 13.5 0.0000

OE×FQ 5.2 0.0068 3.2 0.0438 11.6 0.0000 3.5 0.0609 25.2 0.0000 10.8 0.0010

FQ×SM 7.3 0.0000 2.1 0.0897 13.4 0.0000 5.9 0.0029 11.4 0.0000 21.7 0.0000

OE×FQ×SM 1.1 0.3626 2.5 0.0442 6.4 0.0002 2.5 0.0859 6.2 0.0002 15.3 0.0000

https://doi.org/10.1371/journal.pone.0222337.t001
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Growth

Growth of the endogeic earthworms clearly varied in response to EO, FQ, SM, and the

EO�CF and SM�CF interactions (Table 1). At 100 days of culture, the growth of the invasive

and native species (P. corethrurus and B. pearsei, respectively) was higher when food quality

increased (Fig 1). In the three FQ levels (soil, maize stubble, and M. pruriens) the exotic species

showed a faster growth (1.6, 9.4, and 12.3 mg/day, respectively) relative to the native species

(0.34, 4.8, and 10.4 mg/day).

Reproduction

Sexual maturity (clitellum). When fed M. pruriens, the onset of sexual maturity in P. cor-
ethrurus and B. pearsei occurred at 30 days; when fed maize stubble, sexual maturity was

obseved at 30 and 70 days in P. corethrurus and B. pearsei, respectively.

At 100 days of culture, OE, FQ, SM, and the OE� CF� SM interaction significantly

affected clitellum development (Table 1). The invasive and native earthworms reached sexual

maturity in the treatments with M. pruriens (100% and 86.6%) and maize stubble (96.7% and

70.0%), respectively (Fig 2). No individuals reached sexual maturity after 100 days in the soil

treatments; however, in the soil treatment with 33% SM, one earthworm of P. corethrurus
(6.7%) reached sexual maturity at 80 days.

Cocoon production. B. pearsei and P. corethrurus displayed biparental and uniparental

sexual reproduction, respectively. On M. pruriens treatments (25%, 33% and 42% SM), cocoon

production started when B. pearsei and P. corethrurus reached a mean biomass of 773.5 ±
146.8 mg and 644.7 ± 71.1 mg (average of 25%, 33% and 42% SM), respectively. On maize

stubble treatments, it started when B. pearsei and P. corethrurus reached a mean body weight

of 593.0 ± 80.9 mg and 598.5 ± 95.2 mg (average of 25%, 33% and 42% SM), respectively.

Cocoon production in P. corethrurus was observed in soil (6.7%), maize stubble (53.3%), and

M. pruriens (86.7%) treatments, but in B. pearsei it was observed only in maize stubble (33.3%)

and M. pruriens (86.7%) treatments.

Fig 1. Biomass of the tropical endogeic earthworms Pontoscolex corethrurus (invasive) and Balanteodrilus pearsei
(native) at 100 days of culture using three diets of different nutritional quality in soil with low anthropic impact.

Vertical lines represent standard error.

https://doi.org/10.1371/journal.pone.0222337.g001
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Mean cocoon production was significantly influenced by EO, CF, SM, and the interaction

between these three factors (Table 1). After 100 days of culture, peak mean cocoon production

in B. pearsei and P. corethrurus was observed in M. pruriens treatments, with 59.7 ± 40.8 and

35.5 ± 21.5 cocoons (average of 25%, 33% and 42% SM treatments), respectively (Fig 3). When

fed maize stubble, B. pearsei and P. corethrhrus produced 7.9 ± 3.2 and 14.4 ± 9.2 cocoons

Fig 2. Sexual maturity (formation of the clitellum) in the tropical endogeic earthworms Pontoscolex corethrurus
(invasive) and Balanteodrilus pearsei (native) at 100 days of culture under the interaction of three diets of

different nutritional quality and three moisture content levels in soil with low anthropic impact. Vertical lines

represent standard error.

https://doi.org/10.1371/journal.pone.0222337.g002

Fig 3. Number of cocoons produced by the tropical endogeic earthworms Pontoscolex corethrurus (invasive) and

Balanteodrilus pearsei (native) at 100 days of culture under the interaction of three diets of different nutritional

quality and three moisture content levels in soil with low anthropic impact. Vertical lines represent standard error.

https://doi.org/10.1371/journal.pone.0222337.g003
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(average of 25%, 33% and 42% SM treatments), respectivelly. Finally, when fed soil only (33%

SM), P. corethrurus (448 mg body weight) produced only two cocoons.

Cocoon biomass varied significantly in response to EO, FQ, SM and the OE x SM and FQ x

SM interactions (Table 1). Average cocoon biomass produced by B. pearsei and P. corethrurus
with SM treatments (25%, 33% and 42%) was 10.2 ± 1.4 mg and 27.7 ± 3.7 mg, respectively.

Juvenile production. The mean cocoon incubation time was similar among treatments

(P> 0.05). In general, mean cocoon incubation time was 20.4 ± 5.2 days (B. perasei) and

30.3 ± 2.2 days (P. corethrhrus), with one individual hatching per cocoon in all cases. Of the

total number of cocoons produced by B. pearsei and P. corethrurus in M. pruriens and corn

stubble treatments, the average number of hatched juveniles was 64.7 ± 16.6% and 29.5 ± 7.0%

(average of 25%, 33% and 42% SM treatments) and 59.5 ± 24.7 and 24.0 ± 10.6 (average of

25%, 33% and 42% SM treatments), respectively.

The number of hatched juveniles of B. pearsei and P. corethrurus varied significantly with

OE, CF, SM, and the interaction between these three factors (Table 1; Fig 4). The mean num-

ber of hatched juveniles of B. pearsei and P. corethrurus increased in adults fed M. pruriens, as

well as with increasing soil moisture (mean 59.7±40.8 and 35.5±21.5 individuals, respectively),

and corn stubble (mean 7.9 ± 3.3 and 14.6 ± 9.2 individuals).

At hatching, in the M. pruriens and corn stubble treatments, mean biomass of P. corethrurus
juveniles (21.2 ± 1.0 and 18.6 ± 7.4 mg, respectively) was higher vs. B. pearsei juveniles

(8.5 ± 0.7 and 8.5 ± 1.3 mg, respectively).

Discussion

Domesticated, wild populations respond to changing selective pressures, which are reflected in

their adaptation to agricultural niches [2, 46]. From an ecological perspective, the endogeic

earthworm P. corethrurus resembles non-domesticated species or weeds given its strong profile

(invading species) regarding growth rate, fertility, plasticity, interspecific competition, and

Fig 4. Number of juveniles hatched from cocoons produced by the tropical endogeic earthworms Pontoscolex
corethrurus (invasive) and Balanteodrilus pearsei (native) at 100 days of culture under the interaction of three

diets of different nutritional quality and three moisture content levels in soil with low anthropic impact. Vertical

lines represent standard error.

https://doi.org/10.1371/journal.pone.0222337.g004
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environmental tolerance [7, 8, 9, 26, ]. This suggests that the four P. corethrurus ecotypes

described by Taheri et al. [47] are likely the result of the selective forces imposed by cultivation,

agricultural practices, and industrial and urban activities [20]. In the present study, soil in the

habitat for B. pearsei was observed to restrain the presence of P. corethrurus.
The conversion of the Amazon forest to pastures led to the homogenization of soil biota [3,

48]. The potential resistance of soil (i.e., predators, low species richness, etc.) to earthworms

has been documented [15, 49, 50]. For instance, the endogeic tropical earthworm Millsonia
anomala from the savannah was unable to prosper in forest soil [49], similar findings have

been reported with P. corethrurus from fallow (slash-and-burn) to mature forest [35]. Also, the

shift in vegetation from grass to woody plants decreaced in the density and biomass of P. core-
thrurus [51]. Our results showed that the survival of P. corethrurus was lower in the environ-

ment where B. pearsei thrives, maybe due to a negative interaction with a more diverse

edaphic microbiome [49, 50, 52], because it has been suggested that P. corethrhrus has a high

ability to utilize soil organic resources as an energy source [39].

Earthworms harbor symbiotic microbiomes that are essential for their life history in the

nephridia (excretory organs), and cocoons in tropical species such as P. corethrurus is poorly

studied [53–58]. The microbiome is known to improve the nutritional status of low-quality

diets [57–58]. For example, Topoliantz and Ponge [35] observed that the behaviour of two

populations of P. corethrurus separated along the Maroni river (French Guiana, South Amer-

ica) differed significantly: fallow populations produced more cast on charcoal in the presence

of forest soil, while the casting activity of the forest population was higher on soil regardless of

the soil origin. Our findings show that P. corethrurus and B. pearsei differ in their diet prefer-

ence (M. pruriens, corn stubble, and control), i.e., the invasive species displayed faster growth

than the native species when nutritional quality improved. This suggests that P. corethrurus
consumes and degrades a greater variety of organic materials given its greater ability (effi-

ciency), evidenced by: a) producing endogenous cellulases [59–62]; b) its association with the

gut microbiota [63–66]; c) gene expression (transcriptome) that contribute to the adaptation

of its digestive system [65]; d) improving its digestion efficiency according to the type of

cecum [59, 67]; and e) its association with nephridial bacteria [50, 68, 69].

It is known that in diets of low nutritional quality, mutualistic bacteria residing in earth-

worm nephridia (in 19 of 23 species studied) provide vitamins to its host, stimulate earlier sex-

ual maturity, and contribute to pesticide detoxification [56, 57, 58, 60, 70, 71]. The results

reported here showed that the invasive species of smaller size (biomass) fed on a lower nutri-

tional diet (M. pruriens> corn stubble > soil) reached sexual maturity earlier than the native

earthworm. This suggests that the nephridial symbionts of P. corethrurus are generalists, while

those of B. pearsei are specialists.

Earthworms produce external cocoons that are colonized by bacteria from parents and soil

[vertical and horizontal transmission, respectively 53, 58] and coul be used as biovectors for

the introduction of benefical bateria [55]. In a new habitat, cocoons of invasive earthworms

may be affected by the native microbiota, but they can survive if they carry a parental microbial

inoculum. Our results show that P. corethrurus produced cocoons when fed either of the three

diets, while B. pearsei fed the control diet (only soil) failed to produce cocoons. In contrast,

cocoons of P. corethrurus had a low hatching rate (births), which was lower (diet with M. prur-
iens) compared to B. pearsei. These results suggest the absence and/or loss of parental symbi-

onts bacteria, i.e., the loss of a parental care strategy to control predators, detoxify nitrogenous

wastes, conserve nitrogen, and supply vitamins and essential cofactors to the offspring [55, 56,

57, 68, 69, 70, 72]. Thus, the likely symbiotic evolution of P. corethrurus with the microbiome

(gut, nephridia and cocoons) should be explored as a source of biogeography and phylogenetic
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information [11, 57, 68, 70, 71, 73, 74]. That is, we could “. . .explain why P. corethrurus is rare

or absent in undisturbed lands” [39].

The human-mediated translocation of species dates back to the Late Pleistocene [2, 5, 75].

Invasive plant species are usually divided in two groups according their residence time: archae-

ophytes were found from 1500 AD, and neophytes are found after this date [76]. This approach

can contribute to elucidate the history of the invasion of P. corethrurus in Mexico. Until now,

only two ecotypes have been recorded [47] and the criptic linage used in this study corre-

sponds to L1 (the most widespread). The origin of P. corethrurus may be related to anthropo-

genic soil formation (“terras mulatas” and “terras pretas”). The domestication of manioc

(bitter and sweet) and peach palm staple food that facilitated sedentary lifestyles in the Amazon

region [5, 27, 28, 29, 32] has evolved to the point that we cannot recognize the predecessors of

P. corethrurus, as evidenced by the recent designation of the P. corethrurus neotype from an

anthropogenic environment [18] and temperate climate [77], and by the ambiguity used for

assigning its place of origin [12, 78].

Based on the results reported here, we conclude that the invasive tropical earthworm P. cor-
ethrurus had lower survival and cocoons hatching rates (offspring) in the agro-ecological niche

of the native endogeic earthworm, i.e., a finding consistent with the absence of P. corethrurus
in parcels where maize- and M. pruriens crop rotation is practiced, as well as in pastures and

other traditional tropical agroecosystems [40, 41, 42, 43, 44, 45]. This suggests that P. core-
thrurus is an invasive species that thrives far from its natural status, i.e., has no wild ancestry in

the study area. Therefore, it is important to determine the preference of the four P. corethrurus
ecotypes [47] in terms of soil type, cultivation, response to stressors and climate change.
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ers and Diana Pérez-Staples for valuable comments and careful revision of the manuscript.

Author Contributions

Conceptualization: Angel I. Ortı́z-Ceballos.

Formal analysis: Angel I. Ortı́z-Ceballos, Diana Ortiz-Gamino, Antonio Andrade-Torres,
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