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Abstract

Immunogenic cell death (ICD) plays a major role in providing long lasting protective antitumor 

immunity by the chronic exposure of damage associated molecular patterns (DAMPs) in the tumor 

microenvironment (TME). DAMPs are essential for attracting immunogenic cells to the TME, 

maturation of DCs, and proper presentation of tumor antigens to the T cells so they can kill more 

cancer cells. Thus for the proper release of DAMPs, a controlled mechanism of cell death is 

necessary. Drug induced tumor cell killing occurs by apoptosis, wherein autophagy may act as a 

shield protecting the tumor cells and sometimes providing multi-drug resistance to 

chemotherapeutics. However, autophagy is required for the release of ATP as it remains one of the 

key DAMPs for the induction of ICD. In this review, we discuss the intricate balance between 

autophagy and apoptosis and the various strategies that we can apply to make these 

immunologically silent processes immunogenic. There are several steps of autophagy and 

apoptosis that can be regulated to generate an immune response. The genes involved in the 

processes can be regulated by drugs or inhibitors to amplify the effects of ICD and therefore serve 

as potential therapeutic targets.
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Introduction

Cell Death has long been considered to be an inevitable part of the life cycle of a cell and 

hence, considered a familiar consequence of cellular life. However, accumulating evidences 

regarding regulated cell death (RCD) changed this concept and drew enormous attention to 

this field. RCD is the process by which redundant, irreversibly damaged, or malfunctioning 

cells are removed from the system in an organised homeostatic driven manner. RCD can be 

triggered by either intrinsic and extrinsic processes, depending on the amount of stress or 

damage induced in the cells. RCD occurring from intrinsic physiological conditions is 

termed as programmed cell death (PCD). The effects of RCD are not constricted to an 
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individual cell. Rather, it encompasses the entire system that helps to maintain homeostasis 

[1]. RCD requires the involvement of a tightly regulated signalling cascade. Regulated cell 

death induced by external factors can also be termed as RCD. Chemotherapeutic drug 

induced tumor cell death is mediated by PCD, which includes the process of apoptosis or 

autophagy. However, these mechanisms of cell death are generally not immunogenic. In 

order to invoke an immunogenic form of cell death, which involves tumor associated antigen 

presentation to immune effector cells and immune cell mediated killing of cancer cells, we 

need to induce immunogenic cell death (ICD). In this review we will look at various 

strategies that can be employed to get an immunogenic form of apoptosis and autophagy as 

well as improve the effects of drug induced ICD.

Types of Programmed Cell Death

There are three different types of common PCD: apoptosis, necrosis, and autophagy. 

Apoptosis can be triggered by both intrinsic and extrinsic pathways that involve the 

formation of apoptotic bodies that contain fragmented cellular compartments, including 

DNA, and are eliminated by phagocytosis. In general, apoptosis does not tigger 

inflammation. Necrosis is characterised by disruption in the cell membrane, swelling of 

cytoplasm and mitochondria, and the breakdown of organelles. DNA is degraded randomly 

by extracellular DNAse I or by lysosomal DNase II. During necrosis, the cellular contents 

are released in the extracellular space acting as danger signals, therefore inducing 

inflammation [2]. Autophagy or macroautophagy is a conserved catabolic process by which 

cells try to get rid of unwanted substances by packaging them into autophagosomes and 

degrading those using lysosomal enzymes, thus maintaining homeostasis. Autophagosomes 

containing cargo fuse with lysosomes forming autolysosomes, which leads to degradation of 

the materials present inside and the release of amino acids and fatty acids which are used to 

meet the bioenergetics requirements of the cell. PCD is an immunologically silent 

phenomenon as it is required for the normal functioning of the cell and the maintenance of 

tissue homeostasis. In order to attract immune cells to the tumor microenvironment (TME), 

we need to trigger ICD.

Immunogenic Cell Death: A Peculiar Form of RCD

An important aspect of cancer cell survival involves the various strategies that they employ 

to evade immune response and create an environment that supports their proliferation. In 

order to cope with these measures, our body has various intrinsic mechanisms to deal with 

them. If not sufficient, some external drugs have also been developed that help induce 

immunogenic response against the tumor from signals generated by the tumor cells 

themselves. ICD is one such form of RCD which depends on the chronic exposure of tumor 

associated Damage Associated Molecular Patterns (DAMPs) to the immune system helping 

drive autoimmunity and generate antitumor response in the TME [3]. ICD helps in turning 

dying tumor cells to vaccines, which induce antitumor immunity by DC maturation 

cytotoxic T cell activation [4].

Apoptotic cell death is a very common phenomenon and is regularly happening in our body 

to get rid of defective cells, as well as maintain tissue homeostasis. Because of the vital role 
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of apoptosis for the regular functioning of the body, it is not immunogenic. Therefore, 

cancer cells undergoing apoptosis do not induce an immune response. In addition, 

immunosuppressive compounds, like Transforming Growth Factor-β (TGF-β), released 

during the course of apoptosis also down regulate the immune response. Autophagy is also 

related to cell death or cell defence against stress response. However, its immunological 

characteristic is still not well defined. Autophagy is most commonly used by cancer cells for 

evading an immune response. Therefore, it is clear that these cell death procedures are not 

sufficient to invoke immune cells to actively fight off a tumor. In order to activate the 

immune system, it is first necessary to point out the cancer cell mediated release of 

compounds to be pathogenic and recruit APCs to actively pick up tumor antigens for 

presentation to the cytotoxic T cells.

The commencement of ICD depends largely on the stress developed in the Endoplasmic 

Reticulum (ER) and the increased level of Reactive Oxygen Species (ROS) due to various 

ICD inducers [5]. ER stress is basically generated due to formation of misfolded or unfolded 

proteins in the ER that start aggregating in the ER, inducing ER stress mediated signalling. 

In order to cope with excessive ER stress, cells initiate the Unfolded Protein Response 

(UPR) mechanism which stalls translation, thereby limiting protein synthesis and relieving 

the cell of the ER stress. However, this occurs only when the ER stress is mild enough to 

mitigate the effects by reducing protein synthesis. Further increase in the amount of ER 

stress leads the cell to apoptosis or ICD based on the inducer of ER stress. The ultimate 

outcome of this overstressed environment is the release of DAMPs on the cell surface or in 

the TME which are true danger signals that alert the immune system to take required action, 

as well as alert the cellular community to the induced stress response.

Major Hallmarks of ICD

Taking a closer look at DAMPs, they are intracellular molecules which are expressed on the 

cell surface or released by the cell undergoing stress. They have immune-stimulatory effects 

like DC maturation, Tumor antigen presentation, activation of cytotoxic T cells, and 

chemotactic effects on innate immune cells. DAMPs can be broadly categorised into 3 types 

depending on their stage and localisation/release place: 1) DAMPs appear on the cell surface 

(e.g., CRT, HSP70 (HSPA), HSP90 (HSPC1)); 2) DAMPs appear extracellularly (e.g., 

HMGB1, uric acid and pro-inflammatory cytokines); and 3) DAMPs appear as end-stage 

degradation factors (e.g., ATP, DNA and RNA).

Calreticulin (CRT) has one of the most important roles in promoting ICD induced antitumor 

response and is directly targeted by ER stress related signalling. CRT binds to CD91 

receptors on DCs, enabling phagocytosis of dying cancer cells as well as antigen cross-

presentation to CTLs (Figure 1). CRT-CD91 interaction triggers the NF-κB signalling 

pathway in DCs and helps release a series of proinflammatory cytokines in the extracellular 

matrix, leading to Th17 priming [6]. Heat-Shock proteins (HSP) residing in the ER lumen or 

cytoplasm are translocated to the cell surface during ER stress condition or during exposure 

to chemotherapeutic substances. HSPA, HSPC1, and Gp96 (HSPC4) are involved in ICD. 

Ecto-HSPA and HSPC4 function as DAMPs, as they can interact with the APCs like CD91, 

LOX1, and CD40 [7]. HSPC4 is another type of HSP that is involved in tumor antigen 
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presentation to the MHC class I molecule, activating a CD8+ T cell response [8]. ATP and 

HMGB1 are other important DAMPs which are discussed later. CRT exposure, ATP 

secretion, and HMGB1 release are all indispensable for ICD and the absence of any one is 

likely to render chemotherapy based cytotoxicity to tumor cells as ineffective. We are going 

to discuss in detail the role of ATP in connecting autophagy and ICD.

Role of ATP in Connecting Autophagy and ICD

Pre-mortem autophagy is required for the ICD associated secretion of ATP, implying that 

cancer cells deficient in carrying out the process of autophagy fail to produce therapy 

induced immune response in vivo. However, pharmacological activation of autophagy is not 

sufficient to induce an immunogenic response [9]. The process of autophagy plays an 

important role in the release of ATP, which in turn is a necessary step in the induction of 

ICD. It has been well studied in autophagy-deficient (Atg5KD or Atg7KD) CT26 tumor cells. 

Mass spectrometric analyses were performed to look for immunogenic signals in the 

supernatants from mitoxantrone (MTX)-treated CT26 colorectal carcinoma cells. It was 

found that autophagy deficient tumor cells released lower amounts of ATP compared with 

their autophagy-competent counterparts. Interestingly, autophagy deficient cells as well as 

autophagy-competent cells showed similar exposure of CRT and release of HMGB1 upon 

treatment which establishes a direct link between autophagy and ATP release [10].

The ATP released from dying cells acts as a prominent “find me” signal for immature 

macrophages and DCs upon binding to the P2Y2 receptors of myeloid cells [11,12]. Apart 

from that, the ATP released from dying cells also activates P2RX7 receptors on DCs which 

stimulates the NLRP3 inflammasomes, a caspase-1 activation platform, which further 

stimulates the cleavage of pro–IL-1β and the release of IL-1β, which is most important for 

priming of IFN-γ–producing, tumor antigen–specific CD8+ T cells. Furthermore, it was also 

confirmed experimentally that DCs derived from the bone marrow of Casp1−/− or 

Nlrp3−/−mice, pulsed with dying tumor cells, failed to elicit CTL mediated antitumor effects, 

suggesting that ATP- P2RX7 induced NLRP3 mediated caspase-1 activated IL-1β 
production is crucial for the IFN-γ–producing T cells to produce antitumor effects [13].

Evidences also suggest that P2RX7 receptors present on leukemic cells are activated with 

increasing concentration of extracellular ATP and can lead to cancer cell death by 

mitochondrial membrane damage and caspase-3 activation [14]. Increased release of ATP by 

drug induced ICD in itself is toxic to the cancer cells and induces further apoptosis in a 

caspase dependent manner. Apart from direct effects, extracellular ATP is also involved in 

communicating with other immune cells to regulate tumor growth. Tumor associated 

macrophages are key regulators of the immune response in the TME. Based on their 

polarization, macrophages have different roles in mediating immune response against 

tumors. M1 macrophages are involved in a pro-inflammatory response via the NLRP3 

proinflammatory inflammasome pathway when there is an increase in extracellular ATP 

concentration [15]. Apart from macrophages, Dendritic cells (DCs) are also affected by an 

increase in extracellular ATP concentration. P2X7R and P2Y11R receptors on DCs bind to 

extracellular ATP, promoting chemotaxis and differentiation of immature DCs [16]. DC 

activation by binding to ATP also promotes caspase-1 dependent NLRP3 inflammasome 
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formation and the release of IL-1β [16], which in turn promotes CD8+ T cells [16] and IL-17 

[17] producing-γδ T cell mediated anti-tumor response. Apart from that, IL-1β is also 

involved in the production of IFN-γ from γδ T cells and CTLs, which are responsible for 

the elimination of therapy resistant cancer cells [18]. Purinergic receptors (like P2X7) are 

also found on T cells, which are activated by an increasing concentration of extracellular 

ATP in the TME. Accompanied by an increased influx of Ca2+, activated T cells release IL-2 

which is involved in further activation of CD8+ and CD4+ T cells [19], as well as memory T 

cells. Removal of extracellular ATP or silencing of the P2X7 receptor inhibits Ca2+ entry 

and activation of T cells [20].

Therefore, sufficient release of ATP in the extracellular environment is critical for an 

immunogenic response. There are several therapies targeting the levels of extracellular ATP 

and the purinergic receptors that are important for boosting anti tumor immunity. Several 

defects in the cancer cells might prevent the accumulation of ATP in extracellular spaces, 

which could have an immunosuppressive role on the tumor. One such defect is epigenetic 

changes in the molecular machinery of autophagy, leading to poor efflux of ATP from dying 

tumor cells [21] and another defect being the overexpression of ectonucleoside triphosphate 

diphosphohydrolase 1 (ENTPD1, best known as CD39) or 5'-nucleotidase, ecto (NT5E, best 

known as CD73) which are membrane-bound nucleotidases that degrade extracellular ATP 

[22] to ADP, AMP, adenosine, and inorganic phosphate. Extracellular adenosine acting at the 

A2A receptor may be involved in down-modulating the immune response, as it is found in 

elevated levels in the TME [23]. These factors prevent the generation of an immune response 

in spite of an autophagy induced efflux of ATP.

A favourable means by which this can be prevented is by administration of a broad spectrum 

inhibitor of extracellular nucleotidases, ARL67156. It has been shown that CT26 cells 

engineered to overexpress CD39 and exposed to anthracyclines are unable to prevent 

tumorigenesis in syngeneic tumor models [24]. Co-administration of ARL67156 along with 

anthracyclines helped maintain the ATP pool in the extracellular environment, which is 

required for the activation of the immune response and progression to ICD [10]. Thus, it can 

be said that the use of extracellular nucleotidases inhibitors along with ICD inducers help in 

increasing the efficiency of these drugs and in maintaining the ATP build-up in the 

extracellular space, which is vital for the signalling of DCs and Cytotoxic T cells to launch 

an immune response against the tumor. Another strategy to prevent the degradation of 

extracellular ATP is by using biocompatible and biodegradable nanoparticles loaded with 

ATP, which can provide a controlled release of ATP in the TME and enhance the tumor cell 

cytotoxicity of this nucleotide [25].

P2X7 receptors on immune cells play a major role in their activation and their response to 

tumor cells. Positive allosteric modulators like polymyxin-B, clemastine, and ginsenosides 

can be used to enhance P2X7 mediated cytotoxicity against cancer cells [26–28]. Another 

strategy developed by Igawa and co-workers utilizes the increased extracellular ATP levels 

in TME to induce immunogenic response by means of anti CD137 antibodies. They 

developed anti CD137 switch antibodies (STA551) that elicit its agonistic activity only in 

the presence of high ATP concentration (>100 micromol/L), similar to that present in TME 

in ICD conditions. When synergistically used with anti PD-1, this antibody showed 
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increased CD8+ T cell proliferation and tumor infiltration. This proves that it can be used as 

a potential co-treatment strategy to boost antitumor immune response [29].

We have previously discussed the activation of cytotoxic T cells by an increased 

concentration of extracellular ATP levels in TME. However, recent studies have shown that 

chemotherapeutic drugs inducing an ICD mediated increase of ATP also lead to the 

activation and maturation of Tregs, which has an immunosuppressive effect. Daunorubicin (a 

chemotherapeutic drug) was found to stimulate antitumor T-cell response in solid tumors 

and AML, but the treatment was not curative, indicating that there was a missing link in the 

treatment. It was shown from AML patient sample studies that apart from CTL activation, 

elevated ATP levels also lead to the co-activation of a new set of Tregs that have 

immunosuppressive function. This subset of Tregs also showed higher expression of the 

immune checkpoint inhibitor PD-1 [30]. PD-1 expression on the Tregs is the reason for their 

immunosuppressive activity [31,32]. Anti-PD-1 antibodies like pembrolizumab or 

nivolumab in combination with Daunorubicin can increase the ICD mediated cytotoxicity of 

tumor cells by supressing Treg function, as well as promoting effector T cells activation.

Role of Caspase-3 in ATP Release and Induction of ICD

The previous discussion referred to the importance of autophagy induced ATP secretion for 

the generation of ICD. However, it is well understood that in spite of being important, 

simple induction of autophagy is not enough for eliciting an immune response [33]. 

Moreover, it has also been shown that autophagic cell death is crucial for ATP secretion. 

Autophagy promoting drugs that fail to trigger cell death are unable to induce sufficient ATP 

secretion to generate an immune response. Thus, it can be concluded that autophagy alone is 

not sufficient to elicit an ICD-associated release of ATP. Studies demonstrated that a fine 

regulation between caspase mediated apoptotic cell death and autophagy must take into 

account for sufficient ATP secretion in the course of ICD [34]. A close connection between 

the apoptosis machinery and the autophagic machinery that is being discovered might lead 

to a situation where simultaneous activation of the processes would lead to the observable 

outcome.

Pannexin 1 (PANX1) channels play a crucial role in the release of ATP from apoptotic cells 

and require caspase-3 to cleave at the C-terminal auto-inhibitory domain to produce the 

active form, tPANX1. The role of PANX1 and caspase-3 in the release of ATP from 

apoptotic cells has been confirmed by the pharmacological inhibition of these proteins by 

knockouts and deletions in cell lines [35–37]. It has been shown that MTX treated ATP 

secretion was inhibited when tumor cells were treated with broad spectrum caspase 

inhibitors. Upon cleavage by caspase-3, PANX1 forms channels across the plasma 

membrane which allows for the free diffusion of molecules like ATP. Caspase activation 

pathway is triggered by the ligation of a transmembrane death receptor in response to 

extracellular stimuli or the release of mitochondrial death factors. These events first activate 

initiation caspases, such as caspase-8, −9 and −10, which further cause the downstream 

activation of caspase-3, −6 or −7 [38]. Activation of the extrinsic and/or intrinsic apoptotic 

pathway sensitises the tumor cells to the cytotoxic stimuli. Administration of most 

anticancer drugs like doxorubicin in breast cancer [39], methotrexate in lymphoid leukemias 
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[40], or bleomycin in hepatocellular carcinoma [41], activates the apoptotic caspase cascade. 

However, many of chemotherapeutic drugs are not efficient to trigger ATP release.

It turns out that ATP does not distribute evenly within the cell. Interestingly, in some drug-

treated cells, ATP colocalizes with LAMP1, a lysosome membrane protein and can be co-

stained with lysosomotropic dyes as well [18]. Upon induction of autophagy, ATP is also 

found to co-localize with the MAP1LC3 protein, which is critical for the biogenesis of 

autophagosomes. At a later stage in apoptosis, LAMP1 and phosphatidylserine are expressed 

on the cell surface, confirming the fusion of autolysosomes with the plasma membrane and 

the subsequent release of the cargo, which includes ATP, in the extracellular 

microenvironment. This establishes the link between caspase, PANX1, and autophagy in the 

release of ATP for induction of ICD [18].

As we have seen earlier, caspase-3 plays a major role in PANX1 cleavage and activation of 

the pathway that releases ATP in autophagy induced cells. Hergenrother and colleagues have 

found a compound that catalyses activation of procaspase-3 to caspase-3. The compound is 

called PAC-1 and it is the first procaspase-3 activating compound. It has been widely found 

to induce apoptosis in cancer cells and even promoted tumor growth retardation in mice 

[42]. This can be used as a co-therapy along with ICD inducing drugs to promote ATP 

secretion in the extracellular spaces that will help create an increased immunogenic response 

to tumor cells. However, further experimentation is required to judge its efficacy in the 

human TME. In order to understand the relation between autophagy and apoptosis and the 

role of caspase-3 in this, we need to take a look at the earlier steps where the decision of cell 

death or survival is made. Autophagic cell death machinery is activated in response to an 

inhibition of apoptotic cell death. ATG proteins are important for both cell death and 

survival. Investigation in this matter has shown the importance of ATG5 functioning as a 

switch between autophagic and apoptotic cell death. Cleavage of ATG5 by Calpain induces 

an apoptotic form of cell death using the autophagic machinery. Therefore, activated ATG5 

is necessary for carrying out autophagic cell death. Further investigation has also revealed 

that ATG6 acts as a suitable target of caspase-3 and −6 in order to carry out apoptosis. 

Downregulation of ATG6 sensitises the cells to apoptotic cell death. The function of ATG6 

is regulated by Bcl-2 and PI3K. Bcl-2 not only affects apoptosis by inactivating caspases, 

but also affects autophagy by inhibition of the ATG6-PI3K complex which is essential for 

the formation of the autophagosomal membrane (Figure 2). Therefore, a detailed study on 

the regulation of Bcl-2, PI3K, and ATG6 is important to understand the caspase mediated 

switching from apoptosis to autophagy.

Clinical Effects of ICD Induced DAMPs in Cancer Treatment

The clinical relevance of immunogenetic cell death and cancer treatment is very promising, 

as the methods discussed here used to detect ER stress, calreticulin, HSP, ATP secretion, and 

caspase-3 activation can be used in identifying and developing new anticancer agents. Many 

clinical trials have begun in the last ten years to begin determining the efficacy of some 

approved ICD inducing chemotherapeutics, for example: doxorubicin, epirubicin, idarubicin, 

MTX, bortezomib, cyclophosphamide, and oxaliplatin [47]. Some of these trials have 

combined ICD inducers with immune checkpoint blockers (ICBs) or with monoclonal 
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antibodies [1]. Voorwerk et al. conducted a clinical trial in triple negative breast cancer 

(TNBC) patients where the best objective response rate (ORR) was in patients treated with 

the ICB, nivolumab, combined with the ICD inducer, doxorubicin [48]. Hiddemann et al. 

also significantly improved outcomes in patients with follicular lymphoma by combined 

treatment of doxorubicin with the monoclonal antibody, rituximab [49]. Federico et al. also 

combined ICDs with a monoclonal antibody, with a very impressive response rate of 61.5% 

in children with recurrent neuroblastoma and with very strong indications of increased 

immune activation [50]. A third combination of ICD inducers has been with vaccinations. 

Kanekiyo et al. combined a peptide vaccine with oxaliplatin treatment in patients with 

advanced colorectal cancer, resulting in increased cytotoxic T-cell levels and improved 

outcomes [51]. However, Camisaschi et al. demonstrated a decrease in regulatory T-cells for 

melanoma patients vaccinated with a peptide vaccine and treated with cyclophosphamide 

compared with both vaccination alone and the control [52].

While these clinical trials have made it clear that ICD-inducing compounds will play a very 

important role in the future of cancer therapeutics, the most effective compounds and 

combinations are still unclear, as shown by the mixed results of superior and inferior 

prognoses when using ICD inducers in clinical trials. It is also important to note that most 

clinical trials focus their study on a singular ICD inducer in combination with another 

therapeutic agent. It will be important to compare the effects of multiple approved ICD 

inducing compounds when establishing the most effective treatments. This points to the need 

for further preclinical studies to determine the efficacy of various combinations, as well as 

identify new ICD inducers.

CRT exposure and HSPA/HSPC4 are important DAMPs that are associated with the 

activation of APCs to pick up dead cells for processing and presentation of tumor associated 

antigens. They are also associated with the release of proinflammatory cytokines like IL-6 

and TNFα. Clinical studies suggest that patients treated with ICD inducers having higher 

levels of HSP and CRT exposure have greater chances of survival [53]. Moreover, it has also 

been found that higher exposure of CRT and HSP tend to attract more CD45RO+ memory T 

cells and can increase the rates of survival by 5 years [54]. HSP enriched cancer cell lysate 

can be used as an anticancer vaccine to boost antitumor immunity in patients [55]. Another 

form of antitumor immunity is mediated by type1 interferon production due to TLR3 

signalling in anthracycline based drug treated patients. Clinically, TLR3 agonists are only 

used as prognostic tools to determine risk in cancer patients, as well as predict a future 

outbreak of cancer in healthy subjects. The role of ATP as a DAMP in ICD mediated cancer 

therapy has already been discussed earlier in details. HMGB1 release in the extracellular 

space is a marker for cell death, as it is released only when there is a breakdown of nuclear 

and plasma membrane [56]. Higher HMGB1 levels in cancer patients with esophageal 

squamous cell carcinoma has been correlated with increased chances of survival in patients 

that have undergone chemoradiotherapy [57].

Strategies to Induce ICD for Overcoming Multi-drug Resistance

Multi-drug resistance rises to be an important factor contributing to the failure of 

chemotherapy. Resistance of tumor cells to a wide variety of chemotherapeutic drugs can be 
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summarised as multi-drug resistance in cancer cells. Modern advances in genomics, 

proteomics, and functional analytical techniques have enabled us to gain deeper insights into 

the genes and signalling pathways involved in multi-drug resistance. It has been shown that 

acquired multi-drug resistance in cancer cells arise due to the increased expression of 

therapeutic targets or by activation of alternative compensatory signalling pathways [58] and 

sometimes due to a high degree of molecular heterogeneity by therapy induced selection of 

minority resistant population [59]. There are several ways in which this drug resistance is 

achieved: 1) increased efflux of drugs by ATP dependent transporters [60,61] 2) reducing the 

absorption of drugs [62] 3) enhancing drug metabolism and elimination by glutathione S-

transferase and cytochrome P450 enzymes [63,64] 4) apoptotic pathway blocking by 

upregulation of anti-apoptotic genes like Bcl2 and AKT [65], along with mutations in the 

p53 pathway [66] 5) epigenetic regulation and miRNA regulation [67,68] 6) mutation in 

drug targets [69] 7) changes in microenvironment due to hypoxia [70] or cancer stem cell 

regulation [71]. One of the above mechanisms involving blockage of apoptotic pathway 

serves as an important reason for the development of multi drug resistance, as most of the 

chemotherapeutics work by induction of apoptosis in cancer cells. The focus was then 

shifted to other forms of programmed cell death, and autophagy was found to be a 

contributing candidate. Autophagy is basically used as a protective mechanism by tumor 

cells, which further leads to the development of multi-drug resistance. The role of autophagy 

in tumorigenesis is already known [72]. However, uninterrupted autophagy may also lead to 

autophagic cell death, thus autophagy can be suitably used to promote the efficacy of 

treatment on MDR cancer cells.

The obvious therapy that was initially thought of as a remedy to MDR was inhibition of 

autophagy as a means to increase sensitisation of cancer cells towards chemotherapy. This 

includes genetic inhibition of Atgs, such as Beclin1, Atg5, Atg7, and Atg12, to sensitise 

MDR cancer cells to therapeutic agents [73,74]. Overexpression of miR-23b-3p or miR-489, 

which targets autophagy initiating genes, sensitises chemoresistant human cancer cell line to 

chemotherapeutic drugs [75,76]. However, as already mentioned earlier, uninterrupted 

autophagy leads to cancer cell death; this can hence be used as a remedy wherein induction 

of prolonged autophagy induces autophagic cell death in apoptosis deficient MDR cancer 

cells. There are several anticancer agents that can induce excessive autophagy, thereby 

killing cancer cells. One of them is suberoylanilide hydroxamic acid (SAHA), a histone 

deacetylase inhibitor that induces autophagic cell death in tamoxifen resistant MCF-7 breast 

cancer cells, significantly reducing tumor growth [77]. Therefore, it becomes evident that 

both inhibition of autophagy or uninterrupted autophagy can be used as a remedy against 

apoptosis independent MDR cancer cells [78].

However, the question remains whether sensitising MDR cancer cells by regulating 

autophagy can be made immunogenic for increasing the efficacy of the therapeutic agents. 

Studies suggest that regulating the premortem autophagic flux can be beneficial in inducing 

an immunogenic effect by the increased release of DAMPs while undergoing an 

immunogenic form of cancer cell death [10]. AXL receptor tyrosine kinase mediates multi-

drug resistance in cancer cells and supresses tumor immunity. In lung adenocarcinoma, cells 

develop resistance to EGFRi by acquiring a mutation in the EGFR gene. It was found that 

the EGFRi resistance was mediated by upregulation of AXL, which apart from inducing 
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MDR was also involved in immune evasion from natural killer (NK) cells and cytotoxic T 

cells (CTL). Small molecule inhibitors of AXL render MDR cancer cells sensitive to NK 

cells and CTL [79]. Though this form of treatment has shown fruitful results in tumor 

growth inhibition and sensitisation of resistant cells, in order to provide long term protection 

against recurrence and metastasis, an immunogenic form of cell death is necessary. As 

mentioned earlier, an increased autophagic flux is correlated with the increased expression 

of AXL and hence can be targeted to modulate the effects of AXL in MDR. It was shown 

that targeted inhibition of AXL using small molecule inhibitors, like bemcentinib, abrogates 

the high premortem autophagic flux in resistant cells, thus enhancing immunogenicity by the 

controlled release of ATP, an increased post-mortem release of HMGB1, and increased 

expression of CRT on the surface while undergoing an immunogenic form of cell death [80]. 

AXL signalling abrogates apoptotic pathways and increases autophagic flux, thus inducing 

multi drug resistant cells. However, increased autophagy does not correlate to increased 

immunogenicity in this case, but contributes to multi-drug resistance. AXL inhibitors not 

only sensitise MDR cells to chemotherapy, but also reduce the autophagic flux driving the 

cells to the release of DAMPs and an immunogenic form of cell death [80]. Another study 

on colorectal cancer showed a similar outcome when a therapy based on autophagy 

inhibition and antineoplastic drugs helped in the elimination of drug resistant colorectal 

cancer cells, as well as developed immunity by DC maturation and CTL recruitment to the 

TME. It was found that increased autophagy in colorectal cancer cells prevented apoptosis 

and helped in the development of drug resistance. Using a combination of chloroquine as an 

autophagy blocker and 5-FU in low concentration helped overcome the drug resistance and 

induce immunogenic effects in colorectal cancer [81].

The above discussions favor the inhibition of autophagy as a therapy to overcome multi-drug 

resistance in cancer cells, as well as induce immunogenic cell death. However, the 

reinitiation of apoptosis in the tumor cells can also be used as a therapy in resistant tumors. 

Several successful efforts have been taken in this field, including the use of BH-3 mimetics 

[82]. Their function is to inhibit the Bcl-2 protein and induce apoptosis. A combination 

treatment of carfilzomib and ABT-263, a BH3 mimetic, significantly improved apoptosis in 

colon cancer cells with mutant KRAS-mediated apoptosis resistance [83]. Other such BH-3 

mimetics include obatoclax, which sensitizes the hypoxic cells to apoptosis induced by 5-FU 

[84]. Apoptosis induced cell death remains mostly non-immunogenic, but it has been found 

that ICD inducers often use the apoptotic pathway to increase expression of DAMPs and 

mediate an immunogenic process of cell death, shikonins being one such example. It 

activates the apoptotic pathway and increases the release of DAMPs while undergoing ICD 

[85].

Conclusion

There lies an intricate balance in the cellular mechanism which determines the outcome of 

programmed cell death. Tumor cells hijack this pathway for long term survival and 

immunomodulation. Induction of apoptosis in cancer cells via the use of chemotherapeutic 

drugs was considered a form of treatment, but the problem with apoptosis lies in the fact that 

apoptosis does not induce an immunogenic response. Several clinical evidences suggest that 
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the simple use of apoptotic drugs does not provide long term benefits to cancer patients and 

that there must be some way to activate an immunogenic form of apoptosis [86,87].

We have reviewed the combined pathways of apoptosis, autophagy, and exocytosis required 

for the efficient release of DAMPs and discussed several ways in which we can improve the 

immunogenic response to these DAMPs in order to amplify the effects of ICD and overcome 

chemotherapy resistance. Precisely targeting specific steps of apoptosis and/or autophagy 

may be more efficient to induce ICD than simply induction or blockage of the entire process. 

For example, blocking autophagy at a later stage does not affect the distribution of ATP, 

however it can help prevent the immunosuppressive effect of autophagy, as well as induce 

ER stress and apoptosis. Similarly, it was found that apoptotic membrane blebbing was 

required for the efficient release of ATP, but apoptosis is generally not immunogenic. We 

need to investigate more into the events that are actually involved in the release of DAMPs 

and try to restrict the events that have immunosuppressive effects in order to get the most out 

of ICD mediated treatment.
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Figure 1: 
Chemotherapeutic drugs inducing Immunogenic Cell Death (ICD) in tumor cells mediate the 

release of DAMPs from the dying tumor cells. Cancer cells dying due to ICD induce CRT 

exposure on the outer surface of plasma membrane and secrete ATP and HMGB1. These 

DAMPs have respective receptors on various immune cells. Most commonly, Antigen 

Presenting Cells (APCs) are the ones that are first recruited to the site of ICD and pick up 

signals to start an immune response. They contain TLR4, P2X7R and CD91 receptors on 

their surface which recognise HMGB1, ATP and surface exposed CRT respectively. ATP 

helps in the recruitment of DC to tumor bed, CRT helps in the uptake of tumor antigens by 

DCs and HMGB1 helps in optimal antigen presentation to T cells. Cytotoxic T lymphocytes 

(CTLs) are activated by these mature DCs by antigen presentation and IL-1β secretion. 

CTLs produce inflammatory cytokines like IFN-γ which leads to the elimination of 

chemotherapy resistant tumors.

(Abbreviations: ICD: Immunogenic Cell Death; CRT: Calreticulin; ATP: Adenosine 

Triphosphate; HMGB1: High mobility group Box 1; APCs: Antigen Presenting Cells; 

TLR4- Toll-like receptor 4; IL-1β- Interleukin 1 beta; IFN-γ: Interferon-gamma; CTL: 

Cytotoxic T lymphocyte).
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Figure 2: 
Crosstalk between autophagy and apoptosis leading to the release of ATP. Continued ER 

stress induced by chemotherapeutic agents lead to cell death by either autophagy or 

apoptosis. There is a mutual inhibition mechanism between apoptosis and autophagy. The 

intrinsic apoptotic pathway can be activated by the release of CHOP due to continued ER 

stress which activates Bax to induce mitochondrial outer membrane permeabilization 

(MOMP) and downstream activation of caspase-9. caspase-9 in turn activates effector 

caspase-3 which brings about apoptosis [43]. However, it has also been found that caspase 

mediated cleaving of ATG4D helps promote autophagy [44]. The release of ATP in the 

extracellular space is dependent upon PANX1, which when cleaved by caspase-3 forms 

channels that help in the release of ATP [37]. Though the release of ATP is dependent on 

caspase-3 activation, the accumulation of ATP and its transport to the plasma membrane is 

mediated by the autophagic machinery [18]. ER stress induced phosphorylation of Beclin1 

by DAPK and association of Beclin1 complex together with ATG5, ATG12, ATG16L and 

LC3 II help in the formation of autophagosome [45]. ATP is found to co-localise with these 

autophagic proteins inside the autophagosome. Fusion of autophagosome with lysosome 

leads to the formation of autolysosome [46]. Autolysosome matures to amphisome which is 

a late endosomal complex. ATP loaded amphisome fuses with plasma membrane using the 

VAMP7-SNARE complex to release ATP in the extracellular medium upon autophagic 

stimulation [46].
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(Abbreviation- CHOP: C/EBP homologous protein; MOMP- Mitochondrial outer membrane 

permebialization; DAPK: Death-associated Protein Kinase; VAMP7- Vesicle-associated 

membrane protein 7; SNARE: SNAP receptor; PANX1: Pannexin1).
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