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Abstract The isoflavone calycosin-7-O-β-D-glucopyranoside (CG) is a principal constituent of
Astragalus membranaceus (AR) and has been reported to inhibit osteoclast development in vitro and
bone loss in vivo. The aim of this study was to investigate the osteogenic effects of CG and its underlying
mechanism in ST2 cells. The results show that exposure of cells to CG in osteogenic differentiation
medium increases ALP activity, osteocalcin (Ocal) mRNA expression and the osteoblastic mineralization
process. Mechanistically, CG treatment increased the expression of bone morphogenetic protein 2 (BMP-
2), p-Smad 1/5/8, β-catenin and Runx2, all of which are regulators of the BMP- or wingless-type MMTV
integration site family (WNT)/β-catenin-signaling pathways. Moreover, the osteogenic effects of CG were
inhibited by Noggin and DKK-1 which are classical inhibitors of the BMP and WNT/β-catenin-signaling
pathways, respectively. Taken together, the results indicate that CG promotes the osteoblastic
5
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Figure 1 Chemical structure of calyc
(CG).
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differentiation of ST2 cells through regulating the BMP/WNT signaling pathways. On this basis, CG may
be a useful lead compound for improving the treatment of bone-decreasing diseases and enhancing bone
regeneration.

& 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Regulation of bone mass is controlled by continuous bone
remodeling through osteoblastic bone formation and resorption.
Disorders of bone remodeling are implicated in a variety of
diseases such as osteoporosis, hypercalcemia and rheumatoid
arthritis as well as tumor metastasis into bone1. Understanding
osteoblastic differentiation is therefore crucial to improving the
treatment of such disorders.

Osteoblasts are the main bone-forming cells arising from mesench-
ymal stem cells. They produce alkaline phosphatase (ALP) and bone
matrix proteins such as osteocalcin (Ocal) and osteopontin (OPN) which
act to induce osteoblastic mineralization2. Osteoblast differentiation is
regulated by various signaling pathways involving bone morphogenetic
proteins (BMPs), wingless-type MMTV integration site family (WNT)/
β-catenin proteins, transforming growth factor-β (TGF-β), insulin-like
growth factor-1 (IGF-1), fibroblast growth factor (FGF), and mitogen-
activated protein kinase (MAPK)3–5. Of these pathways, the one
involving BMPs is key in skeletal development, maintaining adult
bone homeostasis and stimulating bone formation in fracture healing6.
Activation of the WNT/β-catenin signaling pathway is essential for
proper bone development7 and, in cooperation with the BMP signaling
pathway, regulates osteoblast differentiation and bone formation8.

Astragalus membranaceus (AR) is one of the most important
medicinal plants in traditional Chinese medicine. In recent years, it
has received considerable attention because of its immunostimu-
lant effects9, antibacterial and antiviral properties, hepatoprotective
and antiinflammatory activity and beneficial cardiovascular
effects10. Of particular interest is the observation that AR inhibits
osteoclast development in vitro and bone loss in vivo in ovar-
iectomized (OVX) rats11. Moreover, AR combined with calcium
has been shown to significantly improve bone mineral density,
biomechanical strength, and ash weight of the femur and tibia of
OVX rats12. However, the main osteogenically active components
of AR remain to be identified.

The isoflavone calycosin-7-O-β-D-glucopyranoside (CG, Fig. 1) is a
principal constituent of AR. It is a strong inhibitor of hyaluronidase
(HAase)13 and of matrix degradation caused by IL-1β or HAase in
human articular cartilage explant and chondrocytes14. Since it is known
that isoflavones are active in preventing osteoporosis15,16, it is reason-
able to hypothesize that CG may exhibit osteogenic effects. Accordingly
osin-7-O-β-D-glucopyranoside
this study aimed to investigate the osteogenic effects of CG and its role
in the osteogenic differentiation of bone marrow stromal cell.
2. Materials and methods

2.1. Cell culture

Bone marrow stromal ST2 cells were seeded at a density of
1� 105 cells/mL and cultured in regular growth culture medium
containing α-minimum essential medium supplemented with 15%
fetal bovine serum (Biochrom, Australia), 100 units/mL penicillin
(Gibco, Australia) and 100 mg/L streptomycin (Gibco) in a
humidified atmosphere of 5% CO2 at 37 1C. At 80% confluence,
the cells were cultured in osteogenic differentiation medium
(OBM) which consisted of the above culture medium containing
10 nmol/L dexamethasone (Sigma-Aldrich, USA), 10 mmol/L
β-glycerophosphate (Sigma-Aldrich), 50 μg/mL ascorbic acid
(Sinopharm Chemical Reagent, China) and various concentrations
of CG (98.3%, National Institutes for Food and Drug Control,
CAS 20633-67-4, China) added as a solution in dimethyl sulfoxide
(Sigma-Aldrich, final concentration 0.1%).

2.2. Cell viability assay

Cell viability was assessed using the MTT (3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide, Sigma-Aldrich) assay. Briefly, cells
(1� 104 cells/well in 96-well plates) were maintained in OBM at 37 1C
for 24 h. Cells were then treated with CG (4, 8, 16 and 32 μmol/L) in
OBM for 1, 3 and 6 days at which times 20 μL MTT (5 mg/mL) was
added to each well and samples incubated in the dark at 37 1C. After
4 h, medium was discarded and the precipitated formazan dissolved in
DMSO (150 μL/well). Absorbance was measured with a microplate
Figure 2 Effect of CG on the proliferation of ST2 cells. Cells were
seeded in 96-well plates for 24 h and then treated with different concentra-
tions of CG for 1, 3 and 6 days. Cellular proliferation was determined using
the MTT assay. Results are expressed as means7SD (n¼3).
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reader (iMARKtm, BIO-RAD) at 570 nm. Cell viability in OBM
(without CG) was used as control and designated as 100%.

2.3. ALP activity assay

After incubation with CG (4, 8, 16 and 32 μmol/L) in OBM for 3,
7 and 9 days, ST2 cells were collected and lysed with 0.1% Triton
X-100. p-Nitrophenyl phosphate (pNPP, Sigma-Aldrich) was used
as the substrate to measure the intracellular ALP activity. Briefly,
100 μL lysate supernatant was incubated with 100 μL substrate
solution containing 3 mmol/L pNPP, 1 mol/L diethanolamine
buffer and 0.5 mmol/L MgCl2 for 30 min at 37 1C. The reaction
was stopped by adding 0.2 mol/L NaOH solution and absorbance
determined using a microplate reader at 405 nm. Relative ALP
activity was normalized to the protein concentration of each
sample assayed using the BCA method and then to the control.

2.4. Alizarin red-S staining

After incubation of cells with CG (4, 8, 16 and 32 μmol/L) in OBM for
28 days, mineralized nodule formation was determined using Alizarin
red-S (ARS)17. Briefly, cells were washed twice with PBS, fixed in ice-
Figure 3 Effect of CG on osteoblast differentiation in ST2 cells as indicat
in Section 2 and treated with different concentrations of CG for 3, 7 and
osteoblast marker gene Ocal after exposure to CG at the indicated concent
and (C) osteoblastic mineralization. Cells were cultured in OBM and tre
identified by Alizarin red S staining. *Po0.05, **Po0.01, ***Po0.001
cold 70% ethanol for 1 h at room temperature and then stained with
40 mmol/L ARS solution (pH 4.2) at room temperature for 30 min.
Images of the stained matrix were acquired using a digital camera. To
quantify mineralization, stained cells were dissolved by adding 10%
cetylpyridinium chloride for 1 h and transferred to a 96-well plate for
measuring absorbance at 570 nm with a microplate reader.
2.5. RNA isolation and real-time PCR (RT-PCR)

After incubation of cells with CG (4, 8, 16 and 32 μmol/L) in OBM
for 9 days, the cells were collected and total RNA extracted using
TRIzol reagent (Invitrogen, USA). RNA of each sample was reverse
transcribed to cDNA using SuperScript™ III Reverse Transcriptase
(Invitrogen). cDNA was then amplified using GoTaqs DNA
Polymerase (Promega, USA) and SYBR Green PCR Master Mix
(Applied Biosystems, USA). The expression levels were quantified
using a CFX Connect™ Real-Time System (BIO-RAD). The primers
used for real-time PCR were as follows: Runx2: 50-TGCTTCAT
TCGCCTCACAAA-30 (sense) and 50-TTGCAGTCTTCCTGGA-
GAAAGTT-30 (antisense); Ocal: 50-TGCTTGTGACGAGCTAT
CAG-30 (sense) and 50-TGAACTAGGAGGGACAGGAG-30 (anti-
sense); BMP2: 50-TGAGGATTAGCAGGTCTTTG-30 (sense) and 50-
ed by: (A) ALP activity where cells were cultured in OBM as described
9 days prior to determination of ALP activity; (B) expression of the
rations for 9 days. mRNA was determined by real-time PCR analysis;
ated with CG for 28 days after which mineralization deposits were
versus control.



Figure 4 Effect of exposure to CG for 9 days on the BMP/WNT
pathway in ST2 cells as indicated by: (A) expression of the osteoblast
marker genes, BMP-2, Runx2 and β-catenin. mRNAs determined by real-
time PCR analysis; (B) expression of the osteoblast markers, p-Smad1/5/8,
β-catenin and Runx2. Protein expression was determined by Western blot
analysis. *Po0.05, **Po0.01, ***Po0.001 versus control.
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CACAACCATGTCCTGATAAT-30 (antisense); β-catenin: 50-CCG-
TTCGCCTTCATTATGGA-30 (sense) and 50-CCTAACTAAGC-
TTTGGAACGG-30 (antisense); GAPDH: 50-CCGTTCGCCTTCAT-
TATGGA-30 (sense) and 50-CCTAACTAAGCTTTGGAACGG-30

(antisense). Values were normalized to that of GAPDH using the
2�ΔΔCT method.
2.6. Protein isolation and Western blotting

After incubation of cells with CG (8, 16 and 32 μmol/L) in OBM for 9
days, the cells were collected and lysed in RIPA buffer (20 mmol/L Tris-
HCl, 200 mmol/L NaCl, 1% Triton X-100, 1 mmol/L dithiothreitol)
containing 1% protease inhibitor (Roche). The concentration of protein
was measured using a Protein Assay Kit (BIO-RAD). Total protein from
each sample was separated by SDS-polyacrylamide gel electrophoresis
and transferred to a polyvinylidine fluoride (PVDF) membrane. The
blotting membrane was then incubated with primary antibodies of anti-
Runx2, anti-β-catenin and anti-p-Smad1/5/8 (Santa Cruz Biotechnology).
Subsequently, the blots were washed with TBST (10 mmol/L Tris-HCl,
50 mmol/L NaCl, 0.25% Tween 20) and incubated with HRP-conjugated
secondary antibody. The blots were visualized with enhanced chemilu-
minescence (ECL) and exposed to photographic film. β-Actin was used
as a loading control.

2.7. Osteogenetic analysis after co-treatment with CG and
Noggin or Dickkopf (DKK-1)

After incubation of cells with 16 μmol/L CG and 0.5 μg/mL Noggin
(Sigma-Aldrich) or 0.1 μg/mL DKK-1 (Peprotech, USA) in OBM for 9
days, cells were collected, lysed with 0.1% Triton X-100 and subjected
to determination of ALP activity as mentioned above. In addition, cells
were collected, lysed in RIPA buffer and protein expression of
p-Smad1/5/8 and β-catenin determined by Western blotting.

2.8. Statistical analyses

Data were analyzed using SPSS 13.0 software. Values are expressed
as mean7S.E.M. unless otherwise indicated. Data analysis was
performed by one way analysis of variance (ANOVA) followed by
Tukey's post hoc test. Differences for which Po0.05 were considered
to be statistically significant.
3. Results and discussion

3.1. Effect of CG on ST2 cell viability

ST2 cells are a type of bone marrow stromal cell which can be
differentiated into osteoblast-like cells in OBM18 by inducing the
formation of a matrix of type I collagen and, through subsequently
activating the BMP signaling pathway19, be stimulated to further
differentiate into mature osteoblasts. Activation of WNT/β-catenin
signaling induces differentiation of pluripotent mesenchymal cells
into osteoblast progenitors. When these osteoprogenitors become
osteoblasts, both the BMP and WNT/β-catenin pathways can
promote further differentiation as evidenced by increased ALP
activity and mineralization20,21. On this basis, ST2 cells were used
in the present study to investigate the osteogenic effect of CG. After
incubation of ST2 cells in OBM with up to 32 μmol/L CG for up to
6 days, there was no evidence of cytotoxicity to the cells (Fig. 2). In
addition, DMSO was not cytotoxic to ST2 cells at the final
concentration of 0.1% (data not shown).

3.2. CG promotes osteoblastic differentiation of ST2 cells

The process of bone formation is reported to first involve osteoblast
proliferation followed by increased ALP activity. The latter is a well-
recognized early marker of osteoblast differentiation, development and
maturation of extracellular matrix leading ultimately to mineraliza-
tion22. Our in vitro data show that exposure to increasing concentra-
tions of CG for 3, 7 and 9 days caused increases in ALP activity
which was significant at 16 μmol/L and more significant at 32 μmol/L
(Fig. 3A). Expression of mRNA by the osteogenic marker gene Ocal
was also increased by treatment with 16 and 32 μmol/L CG for 9 days
(Fig. 3B). In addition, exposure to CG treatment for 28 days caused a
significant increase in mineralized nodule formation (a well-
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recognized late marker of osteoblast differentiation) at concentrations
48 μmol/L (Fig. 3C). These indicators of bone-formation appear to
have little correlation with stimulation of cellular proliferation as the
growth rate of ST2 cells slowed only slightly with exposure to
increasing CG concentrations (Fig. 2).
3.3. Mechanism of CG-induced osteogenesis

The BMP pathway is one of the main signaling cascades that
stimulate bone formation. The mechanism of receptor activation
involves BMP-induced phosphorylation of two sequentially acti-
vated kinases, with the type I receptor acting as a substrate for the
type II receptor kinase. The activated type I receptor relays the
signal to the cytoplasm by phosphorylating its downstream target,
Smad1/5/8 protein, which then interacts with Smad4 and translo-
cates into the nucleus23. A number of compounds have been found
to affect this pathway by increasing the expression of BMPs and/or
activating the downstream signaling pathway24–27.

The results of this study indicate that not only BMP-2 mRNA
expression is dose-dependently increased by CG treatment (4�32
μmol/L) for 9 days (Fig. 4A), but also the translational level of
Figure 5 Effect of BMP/WNT pathway inhibitors on the osteogenic effec
induced ALP activity. Cells were cultured with Noggin (0.5 μg/mL) in the p
Noggin on Smad1/5/8 phosphorylation. (C) Effect of DKK-1 on ALP activi
(16 μmol/L) prior to determination of ALP assay. (D) Effect of DKK-1 on β
analysis. *Po0.05, **Po0.01 versus control group, #Po0.05, ##Po0.01 v
phosphorylated Smad1/5/8 (Fig. 4B). We also showed that Noggin
(a specific inhibitor of the BMP pathway28) significantly inhibited
the increase in CG-induced ALP activity and Smad1/5/8 phos-
phorylation in ST2 cells (Fig. 5A and B). These two findings are
the first evidence that BMP signaling is involved in bone
metabolism regulated by CG. Also the fact that Noggin signifi-
cantly inhibited the CG-induced increase in ALP activity and
Smad1/5/8 phosphorylation further confirms that CG-induced
osteogenic regulation is involved in the BMP pathway.

WNT/β-catenin signaling is another key pathway in osteoblastic
differentiation that contributes to regulating bone formation and
remodeling29,30. The results show that CG treatment (8�32 μmol/L)
of ST2 cells increased the transcriptional and translational level of
β-catenin, and that co-treatment with CG and DKK-1 (a specific
inhibitor of the WNT/β-catenin signaling pathway29) significantly
inhibited increases in ALP activity and β-catenin protein expression
(Figs. 4 and 5). Thus it is clear that WNT/β-catenin signaling is also
involved in CG-induced osteogenesis in ST2 cells.

As the master osteogenic transcription factor, Runx2, is a
downstream regulator of the WNT/BMP pathway and plays a
critical role in the process of osteoblast maturation31 and Ocal
expression32. The results of this study indicate that mRNA and
ts of CG in ST2 cells after 9 days. (A) Effect of Noggin (Nog) on CG-
resence of CG (16 μmol/L) prior to determination of ALP. (B) Effect of
ty. Cells were cultured with DKK-1 (0.1 μg/mL) in the presence of CG
-catenin expression. Protein expression was determined by Western blot
ersus CG alone treated group.



Figure 6 The underlying mechanism of CG-induced osteogenesis in
ST2 cells. The scheme indicates the effect of CG on the BMP- and
WNT-signaling pathways leading to osteogenesis.
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protein expression of Runx2 in ST2 cells are increased by
exposure to CG (8�32 μmol/L) for 9 days (Fig. 4). On this basis,
we speculate that CG-induced Runx2 translocation occurs through
regulating the WNT/BMP signaling pathway and subsequently
increases ALP activity and Ocal expression to perform its
osteogenic activity (Fig. 6).

In conclusion, our findings demonstrate that CG can stimulate
osteoblastic differentiation of ST2 cells by regulating the WNT/
BMP signaling pathways. The underlying osteogenic mechanism
of CG in ST2 cells is presented in Fig. 6. Considering safety and
cost, CG appears to be an alternative therapeutic agent for osteo-
porosis and bone-related diseases that merits further investigations.
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