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Abstract

Ultraviolet (UV) damage to the skin leads to the release of noncoding RNA (ncRNA) from 

necrotic keratinocytes that activates toll-like receptor 3 (TLR3). This release of ncRNA triggers 

inflammation in the skin following UV damage. Recently, TLR3 activation was also shown to aid 

wound repair and increase expression of genes associated with permeability barrier repair. Here, 

we sought to test if skin barrier repair after UVB damage is dependent on the activation of TLR3. 

We observed that multiple ncRNAs induced expression of skin barrier repair genes, that the TLR3 

ligand Poly (I:C) also induced expression and function of tight junctions, and that the ncRNA U1 

acts in a TLR3-dependent manner to induce expression of skin barrier repair genes. These 

observations were shown to have functional relevance as Tlr3−/− mice displayed a delay in skin 

barrier repair following UVB damage. Combined, these data further validate the conclusion that 

recognition of endogenous RNA by TLR3 is an important step in the program of skin barrier 

repair.
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INTRODUCTION

Excessive exposure to UV causes damage to the skin resulting in painful sunburn and skin 

cancer. In the year 2000, ultraviolet (UV) light exposure was linked to 60,000 deaths 

worldwide and significant morbidity (>1.5 million disability-adjusted life years lost) (Lucas 

et al. 2006). Among the several forms of injury caused by UV light exposure, disruption of 

the skin permeability barrier must be responded to by subsequent repair (Haratake et al. 

1997; Holleran et al. 1997). Previous studies have demonstrated that skin barrier repair is 

initiated following changes in the epidermal calcium gradient (Lee et al. 1992; Menon et al. 

1992). Disruption of the calcium gradient results in changes in gene expression, epidermal 

lipid metabolism, and lamellar body secretion that help restore permeability barrier function 

to damaged skin. For example, disruption of the skin barrier caused by UVB exposure 

results in increases in lipid metabolism and lamellar body dynamics (Haratake et al. 1997; 

Holleran et al. 1997), and low doses of UVB induced epidermal lipid synthesis enzymes and 

antimicrobial peptides (Hong et al. 2008). Thus, although the antimicrobial and permeability 

barriers of the skin are often thought of as separate systems, many studies have shown that 

injury to the skin stimulates production of both structural and antimicrobial components of 

the barrier. This interaction demonstrates that the permeability and antimicrobial barriers of 

the skin are co regulated and dependent on one another (Dorschner et al. 2001; Aberg et al. 

2007, 2008; Schauber et al. 2007; Ahrens et al. 2011).

While calcium sensing is instrumental in the barrier repair process, additional cellular 

mediators play key roles in this process (summarized in these reviews (Feingold et al. 2007; 

Feingold and Denda 2012) and primary articles (Jensen et al. 1999; Komuves et al. 2000; Ye 

et al. 2002; Hachem et al. 2003, 2006; Wang et al. 2004; Man et al. 2004; Schmuth et al. 

2004; Lim et al. 2007; Demerjian et al. 2008; Sokabe et al. 2010; Mihara et al. 2011; Kida et 

al. 2012)). However, although many regulators of skin barrier repair have been investigated, 

the mechanisms that regulate skin barrier repair following UVB exposure are incompletely 

described.

Recently, the inflammatory response to UV damage was shown to be partially dependent on 

toll-like receptor 3 (TLR3) and its downstream signaling adaptor molecule TIR-domain-

containing adapter-inducing interferon-β (TRIF) that acts by detection of the release of 

endogenous snRNA (Bernard et al. 2012). These observations were consistent with similar 

findings that TLR3 can sense necrosis of mammalian cells (Kariko et al. 2004b; Cavassani 

et al. 2008; Lai et al. 2009) and can influence wound repair (Lin et al. 2011, 2012), but are a 

departure from the classically known role of this pattern recognition receptor as being 

responsible for effective immune responses to viral double stranded RNA (dsRNA) (Kawai 

and Akira 2008; Dunlevy et al. 2010). Recently, it was also observed that activation of 

TLR3 induced the expression of genes in human keratinocytes that participate in formation 

of the physical barrier of the skin (Borkowski et al. 2013). In this study we hypothesized that 

TLR3 is physiologically relevant to the barrier repair response after UV damage. We 

demonstrate that release of endogenous RNA and the subsequent activation of TLR3 is 

necessary to permit restoration of the skin permeability barrier function after UVB injury.
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RESULTS

UVB damaged keratinocytes stimulate genes important for the skin barrier

To detect whether products of UVB-damaged keratinocytes trigger expression of genes 

involved in skin barrier repair, we exposed cultured normal human epidermal keratinocytes 

(NHEK) to 15 mJ/cm2 UVB and then transferred these irradiated cells to nonirradiated 

NHEK cultures. The exposure of NHEK to the products of UVB-damaged keratinocytes 

caused significant increases in mRNA abundance of ATP-binding cassette sub-family A 

member 12 (ABCA12), glucocerebrosidase (GBA), acid sphingomyelinase (SMPD1), and 

transglutaminase 1 (TGM1) (Figure 1a).

These increases in mRNA were significantly higher than NHEK cultures that were exposed 

to sonicated, non-irradiated NHEK although increases in ABCA12 mRNA were also 

observed following treatment with sonicated NHEK (Figure 1a). Desmosomes and tight 

junctions play an important role in forming a functional skin barrier (Furuse et al. 2002; 

Leclerc et al. 2009). To determine whether these components of the skin barrier were 

affected by dsRNA or UVB-damaged NHEK products, we measured the transcript 

abundance of the genes corneodesmosin (CDSN), occludin (OCLN), tight junction protein 1 

(TJP1), and claudin 1 (CLDN1) after treatments with Poly (I:C), sonicated NHEK, and 

UVB-damaged NHEK. We observed that Poly (I:C)- and UVB-treated NHEK applied to 

NHEK cultures, stimulated significant increases in CDSN, OCLN, TJP1, and CLDN1 

mRNA (Figure 1b). Sonicated NHEK significantly increased mRNA levels of CDSN, 

OCLN, and CLDN1 (Figure 1b). Only CDSN and TJP1 mRNA were induced significantly 

more in UVB-treated NHEK treatments compared to sonicated NHEK treatments (Figure 

1b).

In order to assess the global effects of dsRNA on desmosomes and tight junctions in 

keratinocytes, we examined data from a previously performed microarray in which NHEK 

were treated for 24 hours with 1 μg/ml Poly (I:C) (Borkowski et al. 2013). Examination of 

this microarray data revealed that CDSN, periplakin 1 (PKP1), desmocolin 2 (DSC2), 

OCLN, CLDN4, CLDN7, and CLDN23 were all significantly increased (Borkowski et al. 

2013). In order to validate the microarray results, we performed real-time PCR for 

desmosomal and tight junctional genes. In NHEK treated for 24 hours with 1 μg/ml Poly 

(I:C), we observed significant increases in desmoglein 1 (DSG1), DSG3, CDSN, plakophilin 

1 (PKP1), desmoplakin (DSP), junction plakoglobin (JUP), desmocolin 1 (DSC1), OCLN, 

TJP1, CLDN1, CLDN 4, CLDN 7, CLDN 11, and CLDN 23 (Table 1).

Poly (I:C) increases tight junction function in keratinocytes

As we observed increased mRNA for genes associated with tight junctions following 

treatment of NHEK cultures with both Poly (I:C) and UVB-damaged NHEK products, we 

next evaluated the function of tight junctions in response to dsRNA. In this set of 

experiments, NHEK were grown to confluence in normal keratinocyte media in 24-well 

inserts prior to being differentiated (De Benedetto et al. 2011; Kuo et al. 2013). 

Differentiating, partially stratified keratinocytes were then treated with Poly (I:C) and 

transepithelial electrical resistance (TEER) values were measured using an EVOMX 
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voltohmmeter (World Precision Instruments, Sarasota, FL). We observed that Poly (I:C) 

treatment led to dose-dependent increases in TEER readings at 24 and 48 hours after 

treatment (Figure 2a and 2b). The initial increase in TEER values stimulated by Poly (I:C) 

diminished over time and was no longer significantly different than control samples by day 

4 (Figure 2c).

Another method used to assess tight junction function is measurement of paracellular flux of 

fluorescein sodium through differentiated keratinocytes. In this experiment, keratinocytes 

were grown to confluence and differentiated as previously described and Poly (I:C) was 

added and allowed to incubate for 48 hours. Fluorescein sodium was then added to the upper 

chamber and that which passed through the differentiated keratinocytes was measured in the 

bottom chamber after 30 minutes. We observed that doses of 0.1 and 1 μg/ml Poly (I:C) 

significantly decreased the paracellular flux of fluorescein sodium across differentiated 

keratinocytes (Figure 2d).

TLR3 activation is required for U1 RNA-induced changes in skin barrier gene expression

U1 spliceosomal RNA (U1 RNA) is a noncoding, small nuclear RNA (snRNA) that is 

increased in UVB-treated keratinocytes and stimulates inflammation in human keratinocytes 

and mouse skin in a TLR3-dependent manner (Bernard et al. 2012). In order to determine 

the effects of U1 RNA and TLR3 activation on skin barrier genes, TLR3 was knocked down 

using small interfering RNA (siRNA) and NHEK were then treated with 1 μg/ml U1 RNA 

for 24 hours. U1 RNA caused a significant increase in transcripts of ABCA12, GBA, 

SMPD1 and TNFα, while the induction of these genes was significantly decreased in NHEK 

pretreated with TLR3 siRNA (Figure 3).

Multiple snRNAs can stimulate skin barrier and inflammatory cytokine gene expression

TLR3 is activated by dsRNA and it has been proposed that the double stranded stem loops 

of U1 RNA serve as the TLR3 ligand (Bernard et al. 2012). However, in addition to U1, 

numerous other noncoding snRNAs were observed to have increases in their read frequency 

after UVB exposure (Bernard et al. 2012). To determine whether additional ncRNAs could 

act in a similar manner to U1, we synthesized the spliceosomal RNAs U2, U4, U6, and 

minor spliceosomal RNA U12 (U2 RNA, U4 RNA, U6 RNA, and U12 RNA), as well as the 

small Cajol Body-specific RNAs 9 and 18 (scaRNA9 and scaRNA18). All of these snRNAs 

are predicted to contain double stranded regions using RNAfold software and the VARNA 

applet (Figure 4a) (Gruber et al. 2008; Blin et al. 2009). Treatment of NHEK for 24 hours 

with these synthetic snRNAs also resulted in an increase in mRNA abundance of ABCA12, 

GBA, SMPD1, TGM1, TNFα, and IL-6 (Figure 4b).

Tlr3−/− mice display a barrier repair defect after UVB-induced barrier disruption

The capacity of UVB irradiated NHEK and dsRNAs to alter the expression of genes 

involved in barrier repair and increase NHEK tight junction function prompted us to directly 

test whether TLR3 influences permeability barrier function after UVB injury. Tlr3−/− mice 

and WT controls were exposed to a single 5 kJ/m2 dose of UVB as previously described 

(Bernard et al. 2012), and transepidermal water loss (TEWL) was examined to evaluate the 

kinetics of permeability barrier disruption and repair. This high dose of UVB has been 
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reported to cause apoptosis and necrosis in cell culture and cause permeability barrier 

disruption in mice (Haratake et al. 1997; Lai et al. 2009; Uchida et al. 2010). Although 

levels of TEWL in WT and Tlr3−/− mice were similar over the first 3 days following UVB 

light exposure, Tlr3−/− mice displayed elevated and prolonged high levels of TEWL with 

significantly higher TEWL at Day 4 (Figure 5a). WT mice exhibited a 3.3-fold faster 

recovery between days 3 and 4 (p = 0.055) than Tlr3−/− mice (Figure 5b). Interestingly, 

permeability barrier disruption caused by a chemical depilatory reagent or by tape stripping 

did not have a significantly different effect on barrier disruption or repair in Tlr3−/− or 

Trif−/− mice, respectively, when compared to WT mice (Supplementary Figure 1). 24 hours 

after UVB exposure, no gross morphological differences were detected between WT and 

Tlr3−/− mice in semi-thin Toluidine blue stained sections (Figure 5c). However, 

transmission electron microscopy images demonstrated that Tlr3−/− mice display more 

abundant vacuolization of cells subjacent to the first layer of the stratum granulosum in 

comparison to WT mice (Figure 5d). Interestingly, 80% of Tlr3−/− mice exhibited chronic 

non-healing wounds at 8 and 16 weeks following a single acute 5 kJ/m2 dose of UVB. 

Photographs of these mice reveal that 4 of 5 Tlr3−/− mice failed to completely 

reepithelialize at both 8 and 16 weeks after UVB exposure (Supplementary Figure 2).

Although our in vitro data described a keratinocyte response that may be responsible for 

skin barrier repair, we also sought to determine whether other cell types, either resident or 

migratory to the skin, contributed to the permeability barrier repair defect observed in 

Tlr3−/− mice. In order to assess relative contributions of Tlr3 present either on resident or 

migratory bone marrow derived cells in the skin, WT and Tlr3−/− mice were lethally 

irradiated and reconstituted with either WT or Tlr3−/− bone marrow in order to create 

chimeric mice. Control mice (WT → WT and Tlr3−/− → Tlr3−/−) showed similar 

differences in skin barrier repair after UVB induced barrier disruption as previously shown. 

When WT bone marrow was injected into Tlr3−/− mice (WT → Tlr3−/−), the barrier defect 

observed in Tlr3−/− mice was not rescued, and TEWL levels were significantly higher than 

WT → WT mice at days 3 and 4 (Figure 5e). Conversely, when Tlr3−/− bone marrow was 

injected into WT mice (Tlr3−/− → WT), TEWL levels were also significantly higher than 

WT → WT mice at day 3 (Figure 5f). In order to explore the differences in response to UVB 

radiation, we assessed the levels of 25 common cytokines and chemokines in the skin 24 

hours after UVB treatment. We observed that significantly lower amounts of IL-5, 

RANTES, IL-15, and GM-CSF were present in Tlr3−/− → WT mice skin when compared to 

WT → WT mice. No other significant differences in cytokine and chemokine levels were 

observed between control (WT → WT) and other groups (Table 2).

DISCUSSION

TLR3 activation has classically been described in the context of immunity as a mechanism 

for detecting viruses (Kawai and Akira 2008; Dunlevy et al. 2010), though recent evidence 

has revealed that it serves an additional role to sense injury (Cavassani et al. 2008; Lai et al. 

2009; Lin et al. 2011, 2012; Bernard et al. 2012). Herein we describe how TLR3 acts to 

promote expression of skin barrier repair genes after UV injury, and that snRNAs or Poly 

(I:C) can initiate a similar response in keratinocytes. Furthermore, mice lacking Tlr3 

demonstrate a decreased capacity to restore permeability barrier function. Though triggers of 
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skin barrier repair had previously been described to involve sensing a disturbed calcium 

gradient in the epidermis (Lee et al. 1992; Menon et al. 1992), the results reported in this 

manuscript support the hypothesis that TLR3 serves as an additional sensor of skin damage 

following UVB exposure. Furthermore, as skin barrier disruption is often delayed 48–72 

hours following acute UVB exposure (Haratake et al. 1997; Holleran et al. 1997), TLR3 

activation during this time may serve as a mechanism for accelerating skin barrier repair.

Injury to the skin results in a breakdown of both the permeability barrier to small molecules 

and the immune defense barrier against infection. UVB exposure causes many molecular 

changes, including damage to keratinocytes resulting in both apoptotic and necrotic forms of 

cell death. Non-apoptotic forms of cell death trigger greater cytokine release from 

keratinocytes (Lai et al. 2009), likely through the release of cellular contents that present as 

damage associated molecular patterns (DAMPs) to numerous pattern recognition receptors 

(PRRs) present in or on neighboring cells (Kaczmarek et al. 2013). Additionally, U1 RNA, a 

single stranded, ncRNA is released from necrotic cells following UV damage, and TLR3 

detects this mammalian RNA (Bernard et al. 2012). In the present study, products from 

UVB-damaged keratinocytes that induce cytokine responses also enhanced mRNA 

expression of skin barrier, desmosome, and tight junction genes. Additionally, synthetic U1 

RNA stimulated expression of the skin barrier genes in a TLR3 dependent manner. These 

data demonstrate that the endogenous products of UVB damaged keratinocytes promote skin 

barrier repair gene expression through TLR3.

While tight junctions and desmosomes may not be directly responsible for maintaining 

permeability barrier function in the skin, they can create a barrier to ions, macromolecules 

and water flux (Kirschner et al. 2013), and play an important role in maintaining a functional 

skin barrier (Kirschner and Brandner 2012). Numerous skin diseases result from either 

mutations in adhesional proteins or autoimmunity to components of the desmosome or tight 

junction (Lai-Cheong et al. 2007). This manuscript reports that Poly (I:C), a ligand of TLR3, 

increases tight junction gene expression and function in human keratinocytes. In a 

physiological setting, damage to the epidermis typically affects more than just the stratum 

corneum. Thus it follows that sensing a damage signal such as dsRNA promotes formation 

of multiple components of the epidermis that help restore permeability barrier function and 

the mechanical integrity of the epidermis. Our data gives a more complete description of 

genes that are affected by TLR3 activation following UVB damage and suggests that 

multiple mechanisms may be responsible for the delayed repair observed in Tlr3−/− mice.

We hypothesized that U1 RNA was one of many endogenous ncRNAs that could potentially 

stimulate TLR3 by recognition of its double-stranded regions. To identify these additional 

ncRNAs we synthesized and studied a number of other candidate ncRNAs from a list of 

ncRNAs that were present in increased frequency in keratinocytes damaged by UVB 

(Bernard et al. 2012). These ncRNAs were specifically selected because the secondary 

structures of these snRNAs were predicted to contain double stranded regions which might 

activate TLR3. Double stranded RNA of at least 21 base pairs in length has been 

demonstrated to activate TLR3 (Kariko et al. 2004a). The stem-loop structures of the 

snRNAs that we synthesized satisfy this requirement and were able to activate TLR3. While 

this response to these ncRNAs has not been previously shown, the activation of TLR3 by 
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self RNA has previously been demonstrated and it is likely that other endogenous ncRNAs 

exist within the cell that have the potential to activate TLR3. Previous studies demonstrated 

that U1 RNA must first be exposed to UVB in order to stimulate TLR3 (Bernard et al. 

2012). In contrast, in our studies, treatment of the in vitro transcribed RNA with UVB had 

no effect on its potential to activate TLR3-dependent gene expression. It remains to be 

determined whether changes in RNA structure are caused by direct UVB exposure or 

whether other yet to be determined changes occur that make endogenous ncRNA more 

immunostimulatory.

In order to determine whether TLR3 was important for permeability barrier repair, Tlr3−/− 

mice were treated with a single high dose of UVB to induce permeability barrier disruption. 

The initial kinetics of barrier disruption were similar in WT and Tlr3−/− mice. However, 

Tlr3−/− mice displayed a prolonged elevation in TEWL values in comparison to WT, 

suggesting that these mice have a defect in permeability barrier repair. While tape stripping 

and chemical depilation may serve as important models for investigating permeability 

repair, they were not sufficient to demonstrate the importance of Tlr3 in barrier repair. This 

is most likely due to the fact that barrier disruptions of this type instantly disrupt the calcium 

gradient in the epidermis through removal of outer layers of the cornified envelope without 

causing cell death that could result in the release of cellular contents such as ncRNAs.

While it is known that wound healing is delayed in Tlr3−/− mice (Lin et al. 2011, 2012), this 

manuscript presents evidence that permeability barrier repair is affected by TLR3 

deficiency. Although the deficiency in permeability barrier repair may play a role in the 

wound healing phenotype of Tlr3−/− mice, it is not sufficient to explain this phenotype and 

future studies will aim to more completely characterize these findings.

While much of our data describes keratinocyte specific changes in response to TLR3 

activation, we sought to determine whether other cell types in the skin contribute to 

permeability barrier repair, as it is known that many myeloid derived cells migrate to sites of 

injury and are important for skin barrier disruption and repair (Haratake et al. 1997; Holleran 

et al. 1997). To determine the effect of Tlr3 present on bone marrow derived immunocytes 

on skin barrier repair, we injected WT bone marrow into Tlr3−/− mice prior to administering 

UVB-induced barrier disruption. The Tlr3-dependent skin barrier defect in these WT → 

Tlr3−/− mice was not rescued, and appeared to be exacerbated, as significant differences in 

TEWL values were observed earlier than in traditional Tlr3−/− mice. This finding 

demonstrates that Tlr3 present on keratinocytes or other radio-resistant cells is required for 

proper skin barrier repair, as Tlr3 present on only myeloid cells was not sufficient to restore 

normal skin barrier repair. Conversely, when Tlr3−/− bone marrow was injected into WT 

mice, we also observed a higher TEWL value at day 3 in comparison to WT → WT mice. 

This later finding is not surprising and demonstrates that Tlr3 on bone marrow derived cells 

is also required for proper skin barrier repair. Since these mice display deficiencies in certain 

cytokines (IL-5, RANTES, IL-15, and GM-CSF) following UVB exposure, it would be 

interesting to determine whether these cytokines affect permeability barrier repair. Thus, we 

conclude that Tlr3 on both resident skin cells and infiltrating myeloid cells is required for 

proper permeability barrier repair. Future studies should focus on the specific contributions 

of each cell type to permeability barrier repair.
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In recent years, innate immune receptors, such as toll-like receptors have been shown to be 

responsible for more than just pathogen detection and clearance. Their role in recognizing 

and responding to DAMPs has become increasingly evident with many diseases being 

identified as being exacerbated or caused by PRR activation (Rosin and Okusa 2011). Prior 

studies have demonstrated that UV exposure stimulates an enhanced antimicrobial barrier. 

This report now shows how a pathway previously associated with anti-viral immune 

responses also stimulates repair of the permeability barrier. Indeed, the cutaneous 

immunological and physical barriers are closely interrelated and should be thought of as 

one. Future work should focus on the downstream signaling pathways of TLR3 that activate 

genes that promote skin barrier homeostasis and repair as well as the relative contributions 

of other cell types in the skin that could potentially influence this essential process.

MATERIALS & METHODS

UVB irradiation

NHEKs were irradiated with UVB at 15 mJ cm−2, using Spectronics handheld UVB lamps 

with two 8W bulbs (312 nm) as previously described (Lai et al. 2009). Dosimetry was 

performed using a digital ultraviolet radiometer by Solartech Inc. UVB-irradiated cells were 

collected 24 hours after exposure by pooling cells scraped from wells and floating cells., 

600,000 of these “UV damaged” cells were then added to 200,000 NHEKs grown to 80% 

confluence. Nonirradiated NHEKs were lysed using a tip sonicator (30% power for 10 

seconds) and used as controls. For mouse skin irradiation, hair was shaved and chemically 

depilated from the back, and 96 h later, the hairless skin was exposed to UVB (5 kJ/m2).

In vitro transcription of snRNA

snRNA was generated using Ampliscribe™ T7-Flash™ Transcription Kit from 

(Epicentre©, an Illumina© company, Madison, WI). Templates used for reactions were gel 

purified PCR products from the following primer pairs found in the supplementary methods.

Transepidermal Water Loss

Transepidermal water loss (TEWL) was measured using a TEWAMETER TM300 (C & K, 

Cologne, Germany). TEWL was measured prior to UVB barrier disruption and every 24 

hours for 5 days.

Mice

Sex-matched C57BL/6 wild-type controls, male and female TLR3-deficient mice on a 

C57BL/6 background, and TRIF-deficient mice on a C57BL/6 background were housed at 

the University Research Center at the University of California, San Diego (UCSD). All 

animal experiments were approved by the UCSD Institutional Animal Care and Use 

Committee.

Bone Marrow Reconstitution

6 week old mice were administered antibiotics (200 mg Sulfamethoxazole and 40 mg 

Trimethoprim) (Hi-Tech Pharmacal, Amityville, NY) in the drinking water 1 day prior to 
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lethal irradiation. Mice were placed in a cesium source irradiator (J.L. Shepherd & 

Associates, San Fernando, CA), and exposed to 10 Gy (1000 Rad) of total body γ-

irradiation. The following day, bone marrow was isolated from the femur and tibia of 10 

week old mice. 6*106 cells were injected suborbitally into lethally irradiated mice. Mice 

were allowed to recover 6 weeks before experimentation. Antibiotics were continued for 14 

days after reconstitution with cages and water changed every other day during this time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TLR3 toll-like receptor 3

ncRNA noncoding RNA

snRNAs small nuclear RNAs

dsRNA double-stranded RNA
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Figure 1. UVB-damaged keratinocyte products stimulate genes important for skinbarrier
Normal human keratinocytes were treated with either 1 μg/ml Poly (I:C), sonicated 

keratinocytes, or UVB-treated keratinocytes for 24 hours. Real-time PCR was used to 

quantify mRNA levels and fold change values are calculated relative and normalized to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression for (a) lipid transport 

(ABCA12), lipid metabolism (GBA and SMPD1), transglutaminase-1 (TGM1) and (b) 

desmosome (CDSN) and tight junction (OCLN,TJP1, and CLDN1) transcripts. Data are 

mean +/− SEM, n = 3, and are representative of at least three independent experiments. * = 

P < 0.05, ** = P < 0.01, *** = P < 0.001 compared to control. τ = P < 0.05, τ τ = P < 0.01, τ 

τ τ = P < 0.001 comparing sonicated to UVB treated NHEK treatments. One-way ANOVA 

with Bonferroni post test.
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Figure 2. Poly (I:C)-treatment increases tight junction function in keratinocytes
Transepithelial electrical resistance (TEER) was measured in confluent differentiated 

primary human keratinocytes grown in transwell inserts that were treated with various 

concentrations of Poly (I:C) for 24 hours (a) and 48 hours (b). (c) Time course data of TEER 

values. (d) Paracellular flux was measured 30 minutes after addition of fluorescein sodium 

to differentiated keratinocytes that were treated with various concentrations of Poly (I:C) for 

48 hours. Data are mean +/− SEM, n = 3–8, and are representative of at least three 

independent experiments. * = P < 0.05, ** = P < 0.01, *** = P < 0.001. One-tailed t-test.
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Figure 3. U1 RNA stimulates skin barrier genes in a TLR3-dependent manner
TLR3 was silenced in normal human epidermal keratinocytes (NHEKs) for 48 hours before 

treatment with 1 μg/ml U1 RNA or 1 μg/ml Poly(I:C) for 24 hours. Real-time PCR was used 

to quantify (a) ABCA12, (b) GBA, (c) SMPD1, and (d) TNFα mRNA levels and fold 

change values are calculated relative to and normalized to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) expression. Data are mean +/− SEM, n = 3, and are representative 

of at least three independent experiments. * = P < 0.05, ** = P < 0.01, *** = P < 0.001. 

Two-tailed t-test.
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Figure 4. small nuclear RNAs stimulate skin barrier genes
(a) Structures of snRNA species generated using RNAfold and VARNA applet. (b) Normal 

human epidermal keratinocytes were treated with 1 μg/ml in vitro transcribed snRNAs for 

24 hours in the presence of a Dharmafect 1. Real-time PCR was used to quantify mRNA 

levels and fold change values are calculated relative to and normalized to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) expression and then to NHEK that have been treated 

with a control in vitro transcribed RNA. Data are mean +/Ȓ SEM, n = 3, and are 
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representative of at least three independent experiments. * = P < 0.05, ** = P < 0.01, *** = 

P < 0.001. Two-tailed t-test.
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Figure 5. Tlr3−/− mice exhibit delayed barrier repair following UV-treatment
(a) TEWL values were measured daily for 5 days in WT and Tlr3−/− mice exposed to 5 

kJ/m2 UVB. Data are mean +/− SEM, n = 3 WT. n = 5 Tlr3−/− , and are representative of at 

least two independent experiments. * = P < 0.05, Two-way ANOVA. (b) Barrier recovery 

between day 3 and 4. One-tailed t-test. Skin was harvested from mice 24 hours after 

treatment with 5 kJ/m2 UVB. (c) Toluidine blue stained ultrathin sections. Scale bar = 20 

μm (d) Transmission electron microscopy images of UVB-treated skin of WT and Tlr3−/− 

mice. Scale bar = 1 μm. (e+f) Mice were lethally irradiated and subsequently reconstituted 
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with bone marrow 7 weeks prior to UVB irradiation and TEWL measurements. Data are 

mean +/− SEM, n = 6–8, and are representative of at least two independent experiments. * = 

P < 0.05, ** = P < 0.01 Two-way ANOVA.

Borkowski et al. Page 19

J Invest Dermatol. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Borkowski et al. Page 20

Table 1
Desmosome and tight junction genes affected by Poly (I:C)-treatment

Data in table represent real-time PCR and microarray fold change data from normal human epidermal 

keratinocytes (NHEK) treated with 1 μg/ ml Poly (I:C) versus control, water-treated NHEK.

Gene name Fold change (real-time PCR) +/−SD t-test

DSG1 4.61 1.548 *

DSG3 4.78 0.535 ***

CDSN 126.25 10.740 ***

PKP1 9.26 0.939 ***

DSP 3.21 0.120 ***

JUP 6.28 0.996 ***

DSC1 4.05 0.415 **

DSC2 2.05 0.186 ns

OCLN 5.68 0.339 ***

TJP1 3.19 0.237 ***

CLDN1 6.26 1.484 **

CLDN4 9.75 0.667 ***

CLDN5 1.13 0.680 ns

CLDN7 8.11 1.609 **

CLDN11 0.19 0.027 **

CLDN23 9.00 2.291 **

*
P < 0.05,

**
P < 0.01,

***
P < 0.001 compared to control. Two-tailed t-test.
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