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ABSTRACT 
SUMMARY: Low-affinity interactions among multivalent biomolecules may lead to the formation of 
molecular complexes that undergo phase transitions to become extra-large clusters. 
Characterizing the physical properties of these clusters is important in recent biophysical 
research. Due to weak interactions such clusters are highly stochastic, demonstrating a wide 
range of sizes and compositions. We have developed a Python package to perform multiple 
stochastic simulation runs using NFsim (Network-Free stochastic simulator), characterize and 
visualize the distribution of cluster sizes, molecular composition, and bonds across molecular 
clusters and individual molecules of different types.  
 
AVAILABILITY AND IMPLEMENTATION: The software is implemented in Python. A detailed Jupyter 
notebook is provided to enable convenient running. Code, user guide and examples are freely 
available at https://molclustpy.github.io/  
 
CONTACT: achattaraj007@gmail.com, blinov@uchc.edu   
 

SUPPLEMENTARY INFORMATION: Available at https://molclustpy.github.io/ 

 

 

1 INTRODUCTION  

Clustering of weakly interacting multivalent proteins and nucleic acids leads to biomolecular 

condensate formation via phase transition [1, 2]. These condensates are membrane-less sub-

cellular compartments that play an important role in spatiotemporal regulation of cellular 

biochemistry [3]. Dysregulation of condensate biology is implicated in a series of pathological 

conditions [4-6].  

Since clustering of multivalent biomolecules underlies the condensate formation, it is important 

to model and characterize cluster formation. For example, size and composition of the 

condensates have important consequences in cell signaling [7, 8]. A better understanding of the 

biophysical properties of such condensates may facilitate testing hypotheses, interpreting 

experimental observations, and developing strategies to modulate such systems in a controlled 

manner, potentially leading to identification of drug targets. 

Molecular clustering shows a switch-like behavior (phase transition) in a concentration 

dependent manner [9]. Below a threshold concentration, molecules remain in the monomeric and 

small oligomeric states (Fig 1A, dispersed state) that will manifest as a single homogeneous 

phase. Upon crossing the threshold, the system tends to form large clusters (Fig 1A, clustered 

state). The co-existence of large clusters along with small clusters results in a splitting of the  
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Fig. 1. Characterization of molecular clusters. (A) Two states of molecular clusters: dispersed (monomeric and small 
oligomeric molecular complexes) and clustered (large clusters along with small clusters). (B) Quantification of cluster size 
distributions, with dispersed state being unimodal and clustered state being bimodal. (C) Rule-based depiction of three multi-site 
molecules Nephrin (three phosphotyrosines), Nck (one SH2 and three SH3 domains) and NWASP (six PRM domains).  (D) A rule 
of Nephrin-Nck binding. Sites in grey do not affect the outcome of interaction, so they can be bound or unbound. (E) Simulation 
output for several observables, illustrating the envelope across multiple trials. (F) Average Cluster Occupancy (ACO), fraction of 
molecules in clusters of a given size. In insert is binning - the fractions of molecules in clusters of certain size range. (G) The 
average number of bonds per molecule – across all molecules and for NWASP in the insert. (H) The distribution of binding 
saturations across molecular clusters of different size. (I) Composition of clusters, i.e., relative abundance of each molecular types 
across cluster sizes. Inset shows compositions of a few large clusters.  
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system into two distinct phases (dense and dilute). The cluster size distribution would shift from 

an exponentially decaying unimodal distribution (Fig 1B, left) to a bimodal (bifurcated) distribution 

(Fig 1B, right).  

Weak molecular interactions result in a distribution of size and compositions of multi-molecular 

clusters [10]. Modeling this process requires multiple stochastic simulations and subsequent 

statistical analysis. We have previously used ad hoc code to analyze multivalent clustering for 

different biological systems [9, 11-13]. In this work, we present a Python package – MolClustPy 

that generalizes these methods to statistically analyze and visualize molecular clusters from 

multiple stochastic trials.   

The user needs to describe the molecules and their interactions in the rule-based BioNetGen 

Language (BNGL) format [14, 15] . Then MolClustPy will utilize the existing Python wrapper of 

BioNetGen (pyBioNetGen) to simulate the cluster formation for a user-defined number of times. 

The collected statistics averaged over multiple runs is used to provide average time courses of 

certain user-defined quantities (“observables”), as well as characterization of the final state of the 

system.  

 

2 CHARACTERIZATION OF CLUSTER COMPOSITION 

2.1 Biological system specification and simulation 

Because of stochastic nature of biomolecular condensates and very flexible molecular 

compositions and connectivity, stochastic agent-based modeling is the most appropriate for 

providing a comprehensive understanding at the system level. The most convenient way to define 

agents that are multi-site molecules and their interactions is via a modeling technique called rule-

based modeling [15].  

To demonstrate the utility of our package, we will consider an experimentally well-characterized 

multivalent system - Nephrin, Nck and N-WASP [16, 17]. Molecules are defined as objects with 

multiple binding sites. (Fig. 1C), and the interactions between molecules are defined as 

interactions leading to formation or breaking a bond between specific binding sites. Such 

interactions are best described by rules that define the input and output of interaction depending 

on the initial state of all binding sites. The rule in Fig 1D defines binding of Nephrin Y2 site to Nck 

SH2 site (sites shown in yellow). This rule corresponds to a potentially infinite number of individual 

interactions among molecular clusters, because other sites of interaction molecules (shown in 

grey) may be bound to other molecules not shown in the rule definition. However, all interactions 

corresponding to the single rule are parameterized by the same on- and off-rate constants. Note 
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that rules are not limited to binary site-site interactions but can be extended to encode arbitrary 

levels of complexities for interaction among multi-valent molecules; for example, the binding 

strength of one molecular site may depend on the binding status of other sites of the same 

molecule to capture allosteric or cooperativity effects. Once two molecules are part of a complex, 

an additional bond (intra-complex) formation may be prevented (zero affinity) or amplified (higher 

affinity) to avoid or promote ring formation.  

To stochastically simulate rule-based systems with a potentially infinite number of species and 

interactions we use an agent-based Network-Free stochastic simulator NFsim [18]. NFSim 

simulation outputs consist of two major parts – observables and final molecular configuration.  

Observables are predefined global properties of the biological system whose concentrations are 

reported as a time course during the simulation, for example, concentrations of free molecules of 

a certain type.  The final molecular configuration is the set of molecular complexes that exist at 

the end of single simulation run.  

 

2.2 MolClustPy outputs 

MolClustPy analyzes both observables and molecular clusters across multiple simulation runs. 

Figure 1E illustrates plots of the time courses for observables. Importantly, we demonstrate both 

the mean trajectory and the standard deviation shown as a fluctuation envelope. The larger is 

system’s stochasticity, the wider is the envelope. To demonstrate the width of the distribution, 

we plot observables for a lower concentrations of molecules. 

Figure 1F illustrates the cluster size distribution: each bar corresponds to the fraction of total 

molecules in each cluster size. In other words, this is a probability distribution of finding 

molecules in a certain cluster size. For example, the probability of finding a molecule in a 

monomeric form is 17%. The mean of the distribution is called average cluster occupancy 

(ACO) as shown by the dashed line. For a large cluster size range, a binned histogram might be 

helpful, as shown in the inset. Here we see that 33% of all molecules are in small clusters of 

sizes up to 10, while around 62% of molecules are in large clusters (> 1000 molecules).  

Figure 1G captures the molecular crosslinking – the average number of bonds per molecule. 

For our mixed-valent system, Nephrin can have 1-3 bonds, Nck can have 1-4 bonds, while 

NWASP may have 1-6 bonds. In that case, inspecting bond distribution of individual molecular 

types (NWASP, inset) gives more intuitions.   

Figure 1H demonstrates the degree of bond saturation across molecular clusters of different 

sizes. Bound fraction (BF) is the ratio of bound sites over total sites present in that cluster. The 
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color bar shows the relative frequencies of a given configuration. From the BF pattern we see 

that there is a greater variability in smaller clusters, while large clusters converge to a fixed BF 

likely due to entropic reasons.   

Figure 1I demonstrates the molecular composition of the clusters, giving the relative fraction of 

each molecular type within a given cluster size. Note that within each bar the sum of all fractions 

is 1. The large clusters seem to have identical compositions (inset), suggesting a stoichiometry 

driven clustering process which is consistent with recent experimental finding [8]. 

3 IMPLEMENTATION 

The package is implemented in Python. It requires the pyBioNetGen package to run. 

MultiRun_BNG.py processes the BNGL file that defines molecules, initial species, rules of 

interactions and optional observables. The user must input three parameters related to simulation:  

duration of each simulation, number of output time points, and number of stochastic trials. 

MultiRun_BNG.py calls the pyBioNetGen package which executes NFsim simulations the 

required number of times. NFsim_data_analyzer.py collects the observables and molecular 

clusters to perform various statistical analyses. DataViz_NFsim.py visualizes the statistical 

outputs.  

 

To quantify the cluster property distribution, we collect the molecular species (clusters) from 

multiple trials and perform statistical analysis on the combined dataset. A “cluster” is a molecular 

network where each node is a multivalent molecule, and the bonds comprise the edges. We 

analyze the network topology and their relative abundances. For example, the degree of a node 

gives the number of bonds coming out of that particular molecule. Bound fraction is then computed 

as the ratio of bound sites over total sites present in a molecule.    
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