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SARS‑CoV‑2 RNA polymerase as target 
for antiviral therapy
Luigi Buonaguro1*  , Maria Tagliamonte1, Maria Lina Tornesello2 and Franco M. Buonaguro2

Abstract 

A new human coronavirus named SARS-CoV-2 was identified in several cases of acute respiratory syndrome in 
Wuhan, China in December 2019. On March 11 2020, WHO declared the SARS-CoV-2 infection to be a pandemic, 
based on the involvement of 169 nations. Specific drugs for SARS-CoV-2 are obviously not available. Currently, drugs 
originally developed for other viruses or parasites are currently in clinical trials based on empiric data. In the quest of 
an effective antiviral drug, the most specific target for an RNA virus is the RNA-dependent RNA-polymerase (RdRp) 
which shows significant differences between positive-sense and negative-sense RNA viruses. An accurate evaluation 
of RdRps from different viruses may guide the development of new drugs or the repositioning of already approved 
antiviral drugs as treatment of SARS-CoV-2. This can accelerate the containment of the SARS-CoV-2 pandemic and, 
hopefully, of future pandemics due to other emerging zoonotic RNA viruses.
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SARS-CoV-2 is a new human coronavirus identified in 
patients with acute respiratory syndrome in Wuhan, 
China in December 2019 [1, 2]. Since then, the SARS-
CoV-2 infection has become a pandemic, reaching almost 
every Country in all Continents with  more than 3 mil-
lion positive and 217.000 deaths, globally (on 29/04/2020 
https​://gisan​ddata​.maps.arcgi​s.com/apps/opsda​shboa​rd/
index​.html#/bda75​94740​fd402​99423​467b4​8e9ec​f6).

Similarly to the two new human CoV emerged in the 
past 20  years, namely the severe acute respiratory syn-
drome CoV (SARS-CoV) and the Middle East respiratory 
syndrome CoV (MERS-CoV) [3], also the current SARS-
CoV-2 is suggested to be originated as a zoonosis from 
bats [4]. Moreover, evidences show that in bats there is 
a continuous circulation of additional SARS-like and 
MERS-like coronaviruses able to replicate efficiently in 
primary human lung cells [5]. It is therefore predictable 
that new epidemics/pandemics due to zoonotic coronavi-
ruses will emerge in humans in the future. Consequently, 

together  with a preventive vaccine, effective antivirals 
are needed to be developed within a broader program of 
Global preparedness.

Inter-human transmission of coronaviruses is mediated 
by saliva droplets reaching the new host through cough-
ing and sneezing, both in symptomatic and asymptomatic 
positive subjects [6, 7]. Moreover, active virus replication 
in the upper respiratory tract is observed in patients also 
after the peak of respiratory symptoms, which may result 
in prolonged viral spreading of the infection [8]. There-
fore, reducing the viral titer represents a major goal in 
order to slow/block the disease progression as well as to 
significantly limit the viral shedding. The latter objective 
would result in the lowering of R0 from 2.5 (2.5 people 
infected by a positive subject) to a value < 1 (less than 
one person infected by a positive subject). In this way the 
spread of the virus would be drastically contained and 
lastly blocked. Finally, the reduced viral replication would 
give the opportunity to the adaptive humoral immune 
system (with the production of antibodies, hopefully 
neutralizing) enough time to mount a sufficient primary 
response capable of containing further viral replication 
and eradicating the infection.
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SARS-CoV-2 is a positive-sense RNA virus belonging 
to the Orthocoronavirinae (coronavirus, CoV) family 
and, in particular, to the genus beta (group 2) together 
with the other two new human coronaviruses SARS-
CoV and MERS-CoV. Similarly to all RNA viruses, the 
viral genome replication and transcription processes of 
SARS-CoV-2 depend on an RNA-dependent RNA poly-
merase (RdRp), which is encoded by the RNA virus to 
catalyze the RNA synthesis from RNA templates. Con-
sequently, RdRp is the key enzyme in the viral biologi-
cal cycle of all RNA viruses, regardless the polarity of the 
viral RNA genome [9, 10]. Although different for each 

RNA viruses, all viral RdRps are characterized by a 500–
600 residue catalytic module with palm, fingers, and 
thumb domains forming an encircled human right hand 
architecture. Seven catalytic motifs are located in the 
RdRp palm and fingers domains, comprising the most 
conserved parts of the RdRp and are responsible for the 
RNA-only specificity in catalysis. Nevertheless, RdRps 
from positive-sense and negative-sense RNA viruses 
show differences with significant implications in the 
enzymatic mode of action [11]. In particular, the palm 
catalytic subdomain (Motif C) is the most conserved 
region of all monomeric viral RNA polymerases with 

Fig. 1  Alignment of amino acid sequences from RdRp of RNA viruses. a Sequences from positive-sense SARS-CoV-2, SARS-CoV and MERS 
viruses; b Sequences as in (a) with the addition of positive-sense viruses HCV, Dengue, West Nile, Zika and Yellow Fever viruses; c Sequences 
from positive-sense coronaviruses and negative-sense viruses Influenza, Ebola, Rabies, Vesicular Stomatitis virus, Measle, LCMV, Respirovirus and 
Orthopneumovirus. Red dots indicate 100% conservation of the indicated aa residues. Red asterisks indicate 100% conservation among HCV and 
human coronaviruses. Motif B and C of the RdRp are indicated
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two aspartic acid residues that coordinate the two metal 
ions necessary for the phosphoryl transfer reaction [12, 
13]. However, while positive-sense RNA viruses show 
a glycine preceding the two aspartates, negative-sense 
RNA viruses show a serine, resulting in the alternative 
interactions with the metal ions [14]. Mutation of the 
first aspartic residue results in a complete loss of RNA 
polymerase activity, whereas mutations of the second 
aspartate diminish the polymerase activity or modify the 
metal cofactor requirements, but do not inactivate the 
enzyme [15, 16]. Negative-sense RNA viruses, have an 
asparagine instead of the second aspartic acid in Motif C 
which has been shown to enable viral RNA polymerases 
to use manganese (Mn2+) instead of magnesium (Mg2+) 
as cofactor [17].

The alignment of RdRp sequences from the three 
epidemic/pandemic coronaviruses, confirms the high 
homology and conservation along the sequence (Fig. 1a). 
Such homology and conservation is strongly retained 
when the analysis includes other positive-sense RNA 
virus, namely HCV, Dengue, West Nile, Zika and Yel-
low Fever viruses (Fig. 1b). In particular, HCV shows the 
greatest number of identical residues with the coronavi-
ruses. In Motif C, the DDxVV pattern has a 100% con-
servation but the three coronavirus are the only ones 

to show a serine instead of a glycine preceding the two 
aspartate residues.

On the contrary, such homology is very poor when 
RdRp sequences from the three epidemic/pandemic cor-
onaviruses are aligned with negative-sense RNA viruses, 
namely Ebola, Influenza, Rabies, Vesicular Stomatitis 
virus, Measle, LCMV, Respirovirus and Orthopneumovi-
rus (Fig. 1c). As predicted, the DDxVV pattern in Motif 
C is not present in the negative-sense RNA viruses. The 
Influenza virus is the only one showing the two aspar-
tates (DDxYY), while the other three show an asparagine 
substituting the second aspartate (DNxYY), suggesting 
the use manganese (Mn2+) instead of magnesium (Mg2+) 
as cofactor.

The structure modeling confirms the differences 
between the RdRps from positive-sense (HCV and SARS-
CoV-2) and negative-sense (i.e. Influenza) RNA viruses. 
Indeed, considering the Motif C β-strand structure, only 
the alignment of RdRp structures from the two positive-
sense RNA viruses results in the superimposition of the 
two Motifs (Fig. 2a). Furthermore, the highly conserved 
residues reside all in the inner part of the molecules 
which are in direct contact with the target genomic viral 
RNA and are responsible of the elongation of the nascent 
RNA molecule (Fig. 2b).

Fig. 1  continued
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The molecular modelling which includes also the sur-
face of molecules is a clearer representation of the over-
all structural difference between RdRps of positive-sense 
and negative-sense RNA viruses. In particular, this is 
clearly evidenced looking at the conformation of the core 

channel in which the Motif C β-strand-loop-β-strand 
structure protrudes (Fig. 3a–d).

Specific drugs for SARS-CoV-2 should be devel-
oped to target the RdRp regions directly involved in the 
viral genome replication and transcription. Nucleoside 

Fig. 2  Structure modelling of the RdRps. a RdRp structures were derived from PDB databank: SARS-CoV-2 (6M71), Influenza virus (6QCT); HCV 
(3MWV). The whole molecules are presented independently or superimposed. b Zoomin of the SARS-CoV-2 and HCV core molecules highlighting 
in red color the conserved residues. Modelling was performed with Molsoft Browser



Page 5 of 8Buonaguro et al. J Transl Med          (2020) 18:185 	

Fig. 3  Structure modelling of the RdRps. RdRp structures were derived from PDB databank and modelling was performed as described in Fig. 2. 
a External surface and internal structures of RdRps were compared. b SARS-CoV-2 RdRp; c HCV RdRp; d Influenza RdRp, zoomingin the channel in 
which the Motif C protrudes (black empty circle). Each of the latter three panels shows three different snapshots in a clockwise rotation
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Fig. 3  continued
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analogs would be the most obvious class of drugs to be 
repositioned or de novo developed. In particular, few ana-
logs are already available originally developed to target 
RdRps of other RNA viruses, such as Remdesivir (Ebola 
virus) [18], Favipiravir (Influenza virus) [19], NHC EIDD-
1931 (broad spectrum) [20] and Sofosbuvir (Hepatitis 
C virus) [21]. Remdesivir and Favipiravir are currently 
evaluated in clinical trials to assess the efficacy in SARS-
CoV-2 infected subjects (Remdesivir: NCT04292899; 
NCT04257656) (Favipiravir: NCT04310228). NHC 
EIDD-1931 has been shown to inhibit SARS-CoV-2 rep-
lication in vitro and in a pre-clinical animal model [22]. 
However, all three of them have been developed for neg-
ative-sense RNA viruses which show a significant differ-
ence in the RdRp sequence and structure compared to the 
positive-sense SARS-CoV-2 RNA virus. In this respect, 
Sofosbuvir could represent the optimal nucleoside analog 
to be repositioned to treatment of SARS-CoV-2 infec-
tion. Indeed, it has been developed for the positive-sense 
HCV RNA virus which shares high sequence and struc-
tural homology with SARS-CoV-2. Moreover, Sofosbuvir 
has been already shown to be effective for other positive-
sense RNA viruses, namely Yellow Fever and Hepatitis A 
virus [23, 24].

In conclusion, as for all RNA viruses, the RdRp of the 
newly identified positive-sense human SARS-CoV-2 
RNA virus represents the most optimal target for an 
antiviral drug. Linear amino acid sequence as well 
as molecule structure show the highest homology to 
RdRps of other positive-sense RNA viruses. Therefore, 
it is highly predictable that an antiviral developed for 
an RNA virus with a genome of the same polarity (i.e. 
Sofosbuvir for HCV) could have a higher inhibitory 
efficacy against the SARS-CoV-2, compared to those 
developed for negative-sense RNA viruses. Overall, the 
possibility of repositioning already available drugs will 
significantly accelerate the containment of the SARS-
CoV-2 pandemic and, hopefully, of future pandemics 
due to other emerging zoonotic RNA viruses.
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