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Epithelial-mesenchymal transition (EMT) confers high invasive and migratory

capacity to cancer cells, which limits the effectiveness of tumor therapy. Long

non-codingRNAs (lncRNAs) can regulate the dynamic process of EMT at different

levels through various complex regulatory networks. We aimed to

comprehensively analyze and screen EMT-related lncRNAs to characterize

lower-grade glioma (LGG) tumor biology and provide new ideas for current

therapeutic approaches. We retrieved 1065 LGG samples from the Cancer

Genome Atlas and Chinese Glioma Genome Atlas by machine learning

algorithms, identified three hub lncRNAs including CRNDE, LINC00665, and

NEAT1, and established an EMT-related lncRNA signature (EMTrLS). This novel

signature had strong prognostic value and potential clinical significance. EMTrLS

described LGG genomic alterations and clinical features including gene

mutations, tumor mutational burden, World Health Organization (WHO) grade,

IDH status, and 1p/19q status. Notably, stratified analysis revealed activation of

malignancy-related and metabolic pathways in the EMTrLS-high cohort.

Moreover, the population with increased EMTrLS scores had increased cells

with immune killing function. However, this antitumor immune function may

be suppressed by increased Tregs and macrophages. Meanwhile, the relatively

high expression of immune checkpoints explained the immunosuppressive state
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of patients with high EMTrLS scores. Importantly, we validated this result by

quantifying the course of antitumor immunity. In particular, EMTrLS stratification

enabled assessment of the responsiveness of LGG to chemotherapeutic drug

efficacy and PD1 blockade. In conclusion, our findings complement the

foundation of molecular studies of LGG, provide valuable insight into our

understanding of EMT-related lncRNAs, and offer new strategies for LGG therapy.

KEYWORDS

epithelial-mesenchymal transition, long non-coding RNAs, lower-grade gliomas,
tumor microenvironment, antitumor treatment

Introduction

Lower-grade glioma (LGG), consisting of World Health

Organization (WHO) grades II and III, has a better prognosis

relative to glioblastoma. However, it is worth noting that LGG

still has the potential for malignant transformation and strong

aggressiveness (Cancer Genome Atlas Research Network, 2015;

Gittleman et al., 2020). The primary treatment modality for LGG

is surgical intervention with the aim of maximizing tumor resection

and obtaining sufficient tissue for detailed molecular and genetic

characterization (Weller et al., 2021). The WHO guidelines for the

management of glioma issued in 2021 place greater emphasis on

molecular diagnosis compared to the 2016 guidelines (Louis et al.,

2016; Gritsch et al., 2022). This demonstrates that molecular-based

research can optimize the diagnosis and treatment of LGG. Especially

in the context of the breakthrough of immune checkpoint blockade

(ICB) for tumor treatment, in-depth molecular studies can not only

reveal the malignant mechanism of LGG but also identify patients

who are sensitive to antitumor therapy.

Epithelial-mesenchymal transition (EMT), is the biological

process by which epithelial cells are transformed into cells with

amesenchymal phenotype by a specific procedure. In the context of

tumor formation, EMT confers a variety of characteristics

associated with high malignancy to individual cancer cells (Yang

et al., 2020). Current studies have demonstrated the existence of

multiple complex EMT regulatory cascades in gliomas that

promote malignant proliferation and metastasis of tumor cells.

For example, P75CUX1 regulates EMT via β-catenin (Xu et al.,

2021), and miR-19a/b promotes EMT by regulating the SEPT7-

AKT-NF-κB pathway (Wang et al., 2021). In addition, restriction of

ferritin light chain expression modulates AKT-SK3β-β linked

protein signaling, which in turn inhibits EMT and

temozolomide resistance in glioma (Liu et al., 2020).

Consequently, EMT is considered a key regulator of tumor

metastatic progression and therapeutic resistance, including

surgical resection, chemotherapy, radiotherapy, and targeted

therapy (Dongre and Weinberg, 2019). Therefore, targeting

EMT as a strategy for LGGwill have broad and far-reaching effects.

Notably, lncRNAs, as one of the major regulators in EMT

development, can be involved in the dynamic process of EMT at

different levels through a variety of complex regulatory networks (Liu

et al., 2021). In hepatocellular carcinoma, the amplification of

lncRNA ZFAS1 promoted the expression of EMT-related genes

(Li et al., 2015). STAT3-activated lncRNA HOXD-AS1 suppressed

the expression of SOX4 by blocking miR-130a-3p, which eventually

upregulated EMT-related signaling targets and similarly enhanced

the migration and invasion of hepatocellular carcinoma (Wang et al.,

2017). Since most studies to date have focused only on the specific

functions of lncRNAs, our overall understanding of EMT-related

lncRNAs is limited, especially concerning the impact on LGG.

Therefore, a comprehensive analysis of EMT-related lncRNAs is

urgently needed. Furthermore, the understanding of how EMT is

regulated to affect the tumor microenvironment (TME) is steadily

increasing (Dongre and Weinberg, 2019). A study has shown that

EMT-related gene expressionmay alter the level of T-cell infiltration,

which may affect the responsiveness of immunotherapy and patient

survival (Wang et al., 2018). Therefore, an in-depth analysis of the

TME of EMT-related lncRNAs in LGG will provide new strategies

for tumor biology and tumor therapy research.

Accordingly, we determined that EMT is significantly

activated and affects the prognosis of LGG. Utilizing machine

learning, three hub EMT-related lncRNAs were deeply mined

and used as markers to construct an EMT-related lncRNA

signature (EMTrLS) to further investigate the different

features of mRNA expression profiles, clinicopathological

parameters, malignant pathways, tumor metabolism, gene

mutations, and tumor mutation burden (TMB) in LGG. In

addition, stratified analysis of the EMTrLS scores quantified

LGG immune cell infiltration and antitumor immune

function. Notably, in addition to its strong prognostic value,

the EMTrLS score is also intensely sensitive in predicting the

efficacy of chemotherapy and treatment response to ICB in LGG

patients. In conclusion, our analysis of EMT-related lncRNAs

quantified the characteristics of LGG and provided a viable

reference for the targeted treatment of LGG.

Materials and methods

Gene expression dataset

The LGG transcriptome expression profiles [Fragments Per

Kilobase of exon model per Million mapped reads (FPKM) values]

and corresponding clinicopathological data of The Cancer Genome
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Atlas (TCGA) dataset were obtained from the TCGA GDC project

of the UCSC Xena data portal (https://xena.ucsc.edu/). After

removing samples with no survival information or a survival

time of fewer than 30 days, 475 LGG samples were finally

obtained. mRNA expression profiles (FPKM) of 105 normal

brain tissues from GTEx used as a control with TCGA LGG

FIGURE 1
Flow chart of this study.
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were also obtained from UCSC Xena. To make the gene expression

profiles comparable across platforms, we converted the two sets of

FPKM values to Transcripts Per Kilobase of exonmodel per Million

mapped reads (TPM) values using the R package “limma” (Ritchie

et al., 2015). The processed values were then fused to reduce batch

effects and errors introduced by the integration process. The

transcriptome expression profiles of 33 cancers were obtained

also from the TCGA GDC project of the UCSC Xena data portal.

In addition, somatic mutation data (MAF format) were

downloaded from the TCGA database (https://portal.gdc.

cancer.gov/) for 475 LGG patients. The mutation types and

frequencies of genes were analyzed and visualized using the

“maftools” R software package (Mayakonda et al., 2018). The

somatic mutation data were also used to calculate TMB, which

can predict immunotherapy response (Chalmers et al., 2017).

The CGGA1 dataset was obtained from the CGGA 325 project

in the China Glioma Genome Atlas (CGGA) database (http://

www.cgga.org.cn/). The CGGA2 dataset was obtained from the

CGGA 693 project. Based on the same inclusion criteria, the

expression profiles and corresponding clinical data of 170 and

420 LGG samples were identified in CGGA1 and CGGA2,

respectively (Supplementary Table S1). In addition, 20 CGGA

nonglioma samples (Dataset ID: mRNA sequencing control) were

included as controls. The data was also normalized by TPM and

batch effects were removed with the aid of the R package “limma”.

Analysis flow chart

After data acquisition and processing, we followed the flow

chart in Figure 1 for further analysis.

Epithelial-mesenchymal transition-
related LncRNAs

The TCGA, CGGA1, and CGGA2 datasets were annotated

based on the Genome Reference Consortium Human Build 38

(GRCh38) annotation file from the GENCODE website (https://

www.gencodegenes.org/human/). A total of 14,142, 1,059, and

1,080 lncRNAs were identified in the three datasets, respectively.

We retrieved a total of 200 EMT signature genes from the

Molecular Signatures Database (MSigDB, https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). Based on the criteria of an

absolute value of Pearson correlation coefficient >0.5 and

p-value < 0.05, we screened 887, 210, and 447 EMT-related

lncRNAs in TCGA, CGGA1, and CGGA2, respectively.

Constructing EMTrLS

Combined with survival information, all EMT-related

lncRNAs were screened by univariate Cox regression

analysis, and 539, 133, and 210 lncRNAs with prognostic

values were obtained in the TCGA, CGGA1, and

CGGA2 datasets, respectively. Twenty-seven of these

lncRNAs had significant prognostic significance in all three

datasets. The random forest (RF) algorithm was used to rank

the weights of the prognostic value of the 27 lncRNAs with the

R package “randomForest”. Only 12 of the same gene

importance values in the three datasets ranked among to

the top 20, and Kaplan-Meier (K-M) survival curves

showed that 8 of the 12 had a significant prognostic

impact. Finally, least absolute shrinkage and selection

operator (LASSO) regression analysis of the eight lncRNAs

in the three datasets was performed by the R package “glmnet”

to screen the biomarkers for EMTrLS. Based on the LASSO

regression coefficients and expression [after log2 (TPM+1)

transformation] of each hub gene, the following equation was

used to calculate the EMTrLS score for LGG:

EMTrLS score � ∑
n

i�0
(Regression Coeffecient*Expression)

For the stratified analysis, samples from the three datasets

were grouped into EMTrLS-high and -low groups according to

the median value of TCGA.

Receiver operating characteristic (ROC) curves and

corresponding area under the curve (AUC) values were used

to assess the predictive power of the EMTrLS score and

clinicopathological characteristics on prognosis using the

“survivalROC” R package. The “survival” package was used to

perform univariate and multivariate Cox regression analyses to

assess the independent prognostic value of EMTrLS and

clinicopathological characteristics. The results were visualized

with the “forestplot” package.

Functional enrichment analysis

The R package “limma” was used to screen for differentially

expressed genes (DEGs) between the EMTrLS-low and -high

groups, with the implementation criteria of | log2(Fold Change)

| > 1, p < 0.05, and FDR <0.05. Based on the R packages

“clusterProfiler” and “enrichplot”, the 913 DEGs highly

expressed in the high EMTrLS score group [log2(Fold

Change) > 1] underwent for gene ontology (GO) [cellular

component (CC), molecular function (MF), biological process

(BP)] and Kyoto Encyclopaedia of Genes and Genomes (KEGG)

analyses.

Single-sample gene set enrichment
analysis

The single-sample gene set enrichment analysis (ssGSEA)

algorithm is calculated by rank normalization of the sample
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gene expression values based on genes in a known pathway and

then utilization of an empirical cumulative distribution

function to determine the enrichment status in that pathway

(Barbie et al., 2009). With this calculation, we explored the

activation status of nine classical tumor pathways and five

metabolism-related pathways. The marker genes for the

pathways of interest were obtained from MSigDB. ssGSEA

scores were normalized to a unit distribution in the analysis,

where 0 is the minimum activation value for each pathway and

1 represents the maximum.

Immunoinformatics analysis

The “estimate” R package was used to assess the overall level

of immune infiltration for each sample, ultimately providing

three scores: immune score, stromal score, and estimated score

(Yoshihara et al., 2013). We used two methods to assess the

abundance of each type of immune cell infiltration within the

tumor tissue, namely, TISIDB (http://cis.hku.hk/TISIDB) and

ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCellAI).

TISIDB is a user-friendly website containing signature genes

for 28 tumor-infiltrating immune cells (Ru et al., 2019). With

these signature genes, we quantified the immune infiltration of

LGG samples using the ssGSEA algorithm. The ImmuneCellAI

website enables online analysis and estimation of immune

infiltration for each sample, including the total infiltration

fraction and the level of infiltration of 24 immune cell types

(Miao et al., 2020).

Tumor Immunophenotyping (TIP) (http://biocc.hrbmu.edu.

cn/TIP/) is a tool that allows easy and rapid analysis of the

anticancer immune process (Xu et al., 2018). It divides this

process into 7 steps: step 1 tumor cell antigen release, step

2 cancer antigen presentation, step 3 stimulation and

activation, step 4 immune cell transfer to the tumor, step

5 immune cell infiltration, step 6 T-cell recognition of cancer

cells and step 7 killing of cancer cells. By online analysis, we

obtained quantitative results of the anticancer immune process

for each LGG sample.

Predicting the responsiveness of
anticancer treatments

The submap algorithm in GenePattern (https://cloud.

genepattern.org/gp/pages/index.jsf) was used to predict the

response of EMTrLS-high and -low cohorts to ICB treatment.

The advantage of this algorithm is that it uses an unsupervised

bidirectional subset projection approach that reveals similar

subtypes between independent datasets (Hoshida et al., 2007).

Gene expression files and information files for the

immunotherapy samples used as controls were obtained from

a report on melanoma (Roh et al., 2017). After obtaining the

normal p-values and Bonferroni-corrected p-values, they were

visualized using the R package “pheatmap”.

The R package “PRRophetic” contains the drug effects of

various cell lines included in the Cancer Genome Project (CGP)

database. Based on this, a ridge regression analysis was

constructed to predict the IC50 value of the drug by

combining LGG expression profiles and high and low

EMTrLS cohort grouping information; the smaller the

IC50 value was, the stronger the drug’s ability to inhibit

tumor cell growth.

Statistical analysis

Statistical analyses were performed based on using R software

version 4.1.2. K-M analysis and log-rank statistical tests were

used to detect differences in overall survival (OS) between the

groups. The Wilcoxon test was used to compare differences in

EMT, EMTrLS scores, ssGSEA scores, and gene expression. The

Kruskal test was used to compare differences between

histopathological subtypes. Fisher’s exact test was used to

assess differences in O (6)-methylguanine DNA

methyltransferase (MGMT) promoter methylation status, IDH

status, WHO grade, and 1p/19q status between the low and high

EMTrLS score subgroups in response to ICB treatment. p <
0.05 was considered to be statistically significant.

Results

Characteristics of Epithelial-mesenchymal
transition

First, we evaluated the activation of the EMT pathway in

LGG using the ssGSEA algorithm. A higher EMT score was

found in LGG tissue than in normal tissue, which was validated

in the CGGA1 dataset (Figure 2A). Interestingly, LGG patients

with increased EMT scores had decreased OS compared with

patients with low scores (Figure 2B). Moreover, samples

characterized by WHO grade II, IDH mutation, and 1p19q

codeletion had a significantly decreased EMT score,

corroborating the association between the EMT score and

poor prognosis (Figure 2C, Supplementary Figures S1A,B).

The above results suggested an aberrant EMT in LGG tumor

cells and an association between increased activation of EMT and

enhanced malignancy of LGG.

Machine learning screening of Epithelial-
mesenchymal transition-related LncRNAs

Then, lncRNAs associated with the 200 EMT signature genes

were identified using Pearson correlation analysis. As a result, we
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obtained 887, 210, and 447 EMT-related lncRNAs (| cor | > 0.5,

p < 0.05) in the TCGA, CGGA1, and CGGA2 datasets,

respectively (Supplementary Tables S2–S4). Furthermore, 539,

133, and 210 lncRNAs of prognostic significance were identified,

and 27 of them were common among the three datasets

(Figure 3A, Supplementary Table S5). The RF algorithm

allows for feature importance assessment, and we focused on

assessing how much each lncRNA contributes to the prognosis

and comparing the importance of different EMT-related

lncRNAs after determining the Gini mean. Notably, only

12 lncRNAs ranked in the top 20 in the three datasets based

on the mean Gini decrease (Figures 3B,C). The K-M curves of

12 lncRNAs showed that the high and low expression group of

CRNDE, DLGAP1-AS2, FOXD2-AS1, LINC00665, NEAT1,

PINK1-AS, SNAI3-AS1, and WARS2-IT1 showed significant

differences in survival time (Figure 3D). Accordingly, we

performed LASSO regression to screen for significantly

characterized genes again and finally identified three hub

lncRNAs, namely CRNDE, LINC00665, and NEAT1

(Supplementary Figure S1C).

Furthermore, we explored the association between the

expression of the three hub EMT-related lncRNAs and

different clinicopathological features. The expression of the

hub lncRNAs was down-regulated in samples with IDH

mutation and 1p19q codeletion. CRNDE showed low

expression in WHO grade II samples, while the expression

of LINC00665 and NEAT1 remained stable across glioma

grades in the CGGA cohorts (Figure 3E, Supplementary

Figures S1D,E). In addition, the expression of the hub

lncRNAs did not seem to be strongly correlated with

MGMT promoter methylation status. Next, pan-cancer

analysis was employed to investigate the effect of the hub

FIGURE 2
(A)Differences in EMT scores between nontumor tissues and LGG based on the TCGA, CGGA1, and CGGA2 datasets (B) K-M curves of the high
and low EMT score groups (C) EMT scores of TCGA samples with different clinicopathological characteristics (WHO grade, 1p/19q, IDH, and MGMT
status).
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FIGURE 3
(A) Venn diagram showing the results of univariate Cox regression analysis of EMT-related lncRNAs in the three datasets (B) Importance ranking
of EMT-related lncRNAs based on Gini coefficient of the random forest algorithm (top 20) (C) Venn diagrams of the top 20 lncRNAs in the three
datasets in terms of prognostic impact (D) K-M curves of 12 lncRNAs. The samples were divided into two groups based on the median value of each
gene expression. Red represents the high expression group, and blue represents the low expression group (E) Expression of the three hub
lncRNAs in TCGA samples with different clinicopathological parameters (WHO grade, 1p/19q, IDH, and MGMT status) (F) Pan-cancer analysis of the
three hub EMT-related lncRNAs (*p < 0.05, **p < 0.01, and ***p < 0.001).
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lncRNAs on tumorigenesis development. The results showed

that LINC00665, NEAT1, and CRNDE were differentially

expressed in a variety of tumors compared with

corresponding normal tissues, such as BRCA, CHOL,

COAD, KICH, KIRC, KIRP, LICH, LUAD, and PRAD

(Figure 3F). Taken together, these results suggested that the

three hub lncRNAs associated with EMT are potential

indicators for quantifying the malignant features of tumors.

FIGURE 4
(A) LASSO regression coefficients of the three hub lncRNAs (B) K-M survival curves for EMTrLS-high and -low cohorts in the three datasets (C)
Multivariate Cox regression analysis of EMTrLS scores, as well as WHO grade, age, IDH, 1p/19q, and MGMT status (D) ROC curves for the EMTrLS
score and clinicopathological parameters including gender, grade, age, IDH, MGMT, and 1p/19q status in the TCGA dataset (one-, three-, and five
years) (E) Nomogram constructed based on EMTrLS score, age, IDH, and grade for clinical determination (F) Calibration plots of a nomogram
predicting one-, three-, and five-year survival probabilities.
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Prognostic value of Epithelial-
mesenchymal transition-related LncRNA-
based stratification

Samples’ EMTrLS was quantified based on the expression

of the three hub lncRNAs and their LASSO regression

coefficients (Figure 4A). K-M survival curves showed that

samples with increased EMTrLS scores had significantly

decreased OS (p < 0.001) (Figure 4B). Univariate and

multivariate Cox regression analyses suggested that EMTrLS

could be an independent risk factor (Figure 4C, Supplementary

Figure S2A). In addition, ROC curves were used to assess the

sensitivity of prognostic indicators, showing that the one-,

three-, and five-year AUC values for the EMTrLS score were

greater than those of molecular markers such as IDH, 1p/19q,

and MGMT, respectively. This result suggested a robust time-

dependent predictive power of the EMTrLS (Figure 4D,

Supplementary S2B,C). In view of the robust prognostic

ability of EMTrLS, we constructed clinical nomogram plots

to enable optimization of clinical treatment (Figure 4E).

Meanwhile, the calibration plots validated the predictive

power of the nomogram with powerful accuracy

(Figure 4F). In conclusion, the EMTrLS constructed using

the three hub lncRNAs was of prognostic significance.

FIGURE 5
(A) The degree of EMT activation in the EMTrLS-high and -low cohorts in the three datasets (B) Spearman correlation analysis of EMT and
EMTrLS scores (C) Heatmap showing the expression of hub genes and clinicopathological characteristics of two different EMTrLS groups based on
the TCGA dataset (D) Stacked plots showing the distribution characteristics of clinicopathological parameters for the EMTrLS-high and -low cohorts
including grade, IDH, MGMT, and 1p/19q status (E) Differences in EMTrLS scores for clinicopathological subgroups of the TCGA dataset,
including 1p/19q, IDH, MGMT, grade and pathological histology (*p < 0.05, **p < 0.01, and ***p < 0.001)
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Correlation between EMTrLS and
Epithelial-mesenchymal transition scores

To further validate the correlation between our constructed

EMTrLS and tumor EMT status, we first explored the difference

in EMT scores between the two LGG groups with high and low

EMTrLS scores. The results showed that EMT scores were

significantly increased in the EMTrLS-high samples, implying

activation of EMT (p < 0.001) (Figure 5A). Furthermore, we

performed a Spearman correlation analysis between EMTrLS and

EMT scores, and the correlation coefficients were: 0.49, 0.56, and

0.4 in the TCGA, CGGA1, and CGGA2 datasets, respectively (p <
0.001) (Figure 5B). In summary, EMTrLS is associated with EMT

activity.

Association between EMTrLS and
clinicopathological features

With the heatmap, we further demonstrated the expression

of the three hub genes in EMTrLS and found that the expression

of the three genes increased with the EMTrLS score (Figure 5C,

Supplementary S3A,B). Furthermore, we found that patients

with low EMTrLS scores were characterized by IDH mutation,

WHO grade II, 1p/19q codeletions, and MGMT promoter

methylation (p < 0.001) (Figure 5D). In addition, the

EMTrLS scores also showed significant differences when

IDH, WHO grade and 1p/19q status differed, which was

perfectly validated by the two CGGA datasets. Notably, the

EMTrLS scores also differed significantly by LGG pathology

histology (p < 0.001) (Figure 5E, Supplementary S3C,D). In

summary, EMTrLS can distinguish LGGs with different

characteristics.

Functional enrichment

To clarify the functional differences associated with EMTrLS,

we screened 1,252 differentially expressed genes between the

EMTrLS-high and -low groups (Supplementary Table S6). GO

and KEGG analyses were performed on 913 genes upregulated in

the EMTrLS-high group. GO analysis revealed that pathways

such as extracellular matrix, extracellular matrix structural

constituent, and extracellular matrix organization were

significantly upregulated. In addition, KEGG analysis

highlighted that proteoglycans in cancer were upregulated in

the EMTrLS-high group (Figures 6A,B). Interestingly, these

genes upregulated in the EMTrLS-high group were also

enriched in some immune-related pathways such as MHC

class II protein completion and MHC class II receptor

activity. This result suggested that there may be a potential

association of EMTrLS with immune infiltration and immune

function.

To further explore the tumor cell aggressiveness between

the EMTrLS-high and -low groups, nine classical tumor

pathways including the TGFβ pathway, DNA repair,

apoptosis, PI3K-AKT-mTOR signaling, mTORC1 signaling,

P53 pathway, WNT pathway, cell cycle, and angiogenesis

were quantified by the ssGSEA algorithm. The scores of

these pathways differed slightly across datasets but showed

significant elevation in the EMTrLS-high group in at least

two datasets. Collectively, EMTrLS characterized the

malignant pathways associated with tumor development and

metastasis (Figure 6C, Supplementary Figures S4A,B). In

addition, we calculated the activation state of the metabolic

pathways of LGG. The unlimited proliferative capacity and

abnormal functional state of tumor cells often require a higher

degree of glucose metabolism and protein metabolism to

provide energy. The metabolic pathways of the glycolytic,

glutamate and glutamine showed high activation in the

EMTrLS-high group of all three datasets, indicating that

EMTrLS is also related to the glycolytic pathways and the

metabolic status of glutamate and glutamine in LGG

(Figure 6D, Supplementary Figures S4C,D).

Immune-related features

Given the interplay between EMT and the tumor immune

microenvironment, we further analyzed the association

between EMTrLS and immune infiltration in LGG. The

stromal, immune, and ESTIMATE score were higher in the

EMTrLS-high group, suggesting a higher level of immune

infiltration (Figure 7A). By calculating ssGSEA scores for

28 immune cells, we found increased levels of immune cell

infiltration, including CD8 T cells, central memory CD4 T cells,

gamma delta T cells, B cells, Treg cells, T follicular helper cells,

type 1 T helper cells, dendritic cells, macrophages, mast cells,

MDSCs, NK cells, and NK T cells (Figure 7B, Supplementary

Figures S4E–G). Correspondingly, we similarly found elevated

immune infiltration scores in the EMTrLS-high group using the

ImmuCellAI calculation. In addition, this method yielded

24 immune cells, of which T-cell cytotoxicity, exhausted

T-cells, NK cells, Th17 cells, Tregs, Th1 cells, dendritic cells,

monocytes, and macrophages were also significantly increased

in the EMTrLS-high group (Figure 7C, Supplementary Figures

S5A,B). Macrophages can activate and induce EMT through the

TGF-β, NF-κB pathway (Wei et al., 2019). This prompted us to

further explore the correlation between EMT-related lncRNA

and macrophage infiltration levels. The results showed that the

Spearman correlation coefficients of EMTrLS scores with

macrophages in the three datasets were 0.28, 0.33, and 0.26

(p < 0.001) (Supplementary Figure S5C).

It was interesting to note that both analysis methods

showed a significant increase in the infiltration of immune

cells with tumor-killing effects, in addition to immune cells
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such as macrophages, and Treg cells, which have the ability to

suppress antitumor immunity, in the group with high EMTrLS

scores. This result seems contradictory to the result that the

EMTrLS-high group had a poorer prognosis. Therefore, we

determined the antitumor immune differences between the

different EMTrLS samples with the aid of the TIP algorithm.

As a result, there was a significant increase in the third, sixth

and seventh steps, which means that patients with low EMTrLS

scores had a higher degree of T cell stimulation and activation,

recognition, and killing of cancer cells (Figure 7D).

Furthermore, the differential expression of immune

checkpoints and other molecules in the two LGG groups

further explained the lower antitumor effect of the EMTrLS-

high group. BTLA, CD274, CD28, CD40, CD48, CD86,

HAVCR2, ICOS, ICOSLG, IDO1, LAIR1, LGALS9, PDCD1,

TNFSF14, TNFRSF14, TNFRSF25, TNFRSF4, TNFSF4, and

TNFRSF8 in the three databases were upregulated in the

EMTrLS-high group. Activation of BTLA suppressed the

function of CD8 cancer-specific T cells (Chen et al., 2019).

The interaction of CD274 (PDL1) and PDCD1 (PD1)

suppresses the cellular immune response of an organism,

thus allowing tumor cells to evade surveillance and clearance

by the immune system (Jiang et al., 2019). The increased

expression of HAVCR2 (Bassez et al., 2021), LGALS9 (Wang

et al., 2020), and LAIR1 (Peng DH et al., 2020) promoted the

depletion and functional decline of T cells. In addition, ICOSLG

FIGURE 6
(A,B) Functional enrichment analysis of 912 upregulated genes in the EMTrLS-high subgroup was performed using GO analysis of BP, CC, MF,
and KEGG (C,D) Analysis of 9 tumor-associated classical pathways and fivemetabolic pathways based on the ssGSEA algorithm for the TCGA dataset
(ns means nonsignificant, *p < 0.05, **p < 0.01, and ***p < 0.001)
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(Iwata et al., 2020), and IDO1 (Zhai et al., 2018) promoted Treg

cell activity and suppressed antitumor immunity. CTLA-4,

which was upregulated in the high EMTrLS group, exerted a

negative regulation of the immune response upon binding to

the equally upregulated T cell costimulatory ligand CD86

(Chen and Mellman, 2017) (Figure 7E, Supplementary

Figures S6A–C).

EMTrLS-related genomic features

Mutations in important genes have a role in patient

prognosis and treatment outcome. We compared gene

mutations between the two samples groups. As a result, the

overall number of mutation frequencies was very similar;

however, the specific mutated genes were very different. The

FIGURE 7
(A) The “estimate” algorithm calculates the degree of tumor immune infiltration, including immune, stromal, and estimate scores, based on the
gene expression of the three datasets. Tumor purity of TCGA dataset (B) Calculation of immune infiltrated cells by ssGSEA algorithm based on the
TISIDB summary of signature genes. The size of the bubble is positively proportional to the log (fold change) value (EMTrLS-high vs EMTrLS-low
group), and the color represents the FDR q-value (C) ImmuCellAI online analysis of 24 immune infiltrating cells in TCGA tumor samples (D)
Differences in antitumor immune processes between high and low EMTrLS score cohorts (E)Heatmap of immune checkpoint expression in different
EMTrLS groups. The colors represent themean values of individual gene expression (nsmeans nonsignificant, *p < 0.05, **p < 0.01, and ***p < 0.001)
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top 5 mutations with highest frequencies in samples with low

EMTrLS scores were IDH1 (88%), TP53 (36%), CIC (34%),

ARTX (25%), and FUBP1 (17%), while the top 5 mutations

with highest frequencies in samples with high EMTrLS scores

were IDH1 (68%), TP53 (57%), ATRX (42%), TTN (17%), and

EGFR (11%) (Figures 8A,B). Increased mutations in TP53, an

important regulator of cell growth, proliferation, and damage

repair, often predict poor prognosis (Donehower et al., 2019).

ATRX is a histone chaperone protein that loads histones onto

telomeres and maintains heterochromatin (Qin et al., 2022). Loss

of ATRX activates the immunosuppressive transcriptome and

immune escape mechanisms in LGG cells.

Evidence from multiple sources suggests that higher TMB is

associated with better outcomes after ICB treatment, particularly

with PD-1 inhibitors (Chalmers et al., 2017). Stratified analysis

showed that EMTrLS significantly differentiated the TMB values

of LGG samples (Figure 8C). In addition, we found a positive

correlation between TMB and EMTrLS score (cor = 0.41, p <
0.001) (Figure 8D). This result implied that there is a potential

correlation between EMTrLS scores and ICB immunotherapy

outcomes that warrants further exploration.

ICB responsiveness and chemotherapy
outcomes based on EMTrLS score
stratification

In clinical applications, ICB is a promising therapeutic

approach, resulting in long-lasting survival benefits for

patients with melanoma and hepatocellular carcinoma

(Postow et al., 2015). With the submap algorithm, we

predicted the effect of ICB treatment in patients with a

different EMTrLS. As a result, LGGs with high EMTrLS were

more likely to respond to anti-PD1 therapy (TCGA p = 0.003,

Bonferroni-corrected p = 0.024; CGGA1 p = 0.003, Bonferroni-

corrected p = 0.016; CGGA2 p = 0.031, Bonferroni-corrected p =

0.248), suggesting that EMTrLS-based stratification has the

potential to predict the response to anti-PD1 therapy (Figure 8E).

FIGURE 8
Gene mutations between (A) low and (B) high EMTrLS score samples (top 15) (C) Different EMTrLS samples have significantly different TMB (D)
Correlation analysis of TMB and EMTrLS score (E) Prediction of the association of EMTrLS stratification with ICB responsiveness (F) Prediction of the
IC50 values for different chemotherapeutic agents in high and low EMTrLS cohorts of TCGA, including temozolomide, A-443654 (AKT inhibitor),
docetaxel, etoposide, and vinblastine.
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There is a significant difference in response to TMZ, which is

a first-line chemotherapeutic agent administered after surgery in

LGG patients (Omuro and DeAngelis, 2013). Accordingly, the

“PRRophetic” package was employed to predict the response to

chemotherapeutic agents among different EMTrLS groups. The

results showed that the IC50 estimates were lower in the high-

EMTrLS population (p < 0.001) (Figure 8F, Supplementary

Figures S6D,E). In addition, we included other therapeutic

agents including A-443654 (Akt inhibitor), docetaxel,

etoposide, and vinblastine. The results showed that the

IC50 estimates of A-443654 were higher in the EMTrLS-low

group in all three datasets (p < 0.001). The IC50 estimates of

docetaxel were lower in the EMTrLS-low group of the TCGA and

CGGA1 datasets (p < 0.001). This showed that the EMTrLS

score can guide the clinical treatment of different LGG groups.

And A-443654 and doxorubicin also have potential application

inthe treatment of glioma.

Discussion

To our knowledge, this is the first application of machine

learning to mine multiple datasets to identify the most well

characterized EMT-related lncRNAs. In this study, we finally

obtained three hub lncRNAs and used them to construct a

scoring system to explore the characteristic patterns of EMT-

related lncRNAs in LGG tumor cells. The stratified analysis

revealed that samples with different EMTrLS possessed

different clinicopathological parameters and EMT activation

statuses. Another feature of the EMTrLS-high group was the

activation of tumor malignancy-related pathways, as well as the

activation of glycolytic pathways, and glutamate and glutamine

metabolic pathways. In addition, EMTrLS distinguished the

heterogeneity of immune infiltration and antitumor immunity

in LGG samples. Notably, the EMTrLS-high subgroup was not

only more sensitive to TMZ treatment but also more responsive

to PD1 blockade therapy. Moreover, coupled with the powerful

prognostic predictive power of the EMTrLS scoring system, it has

the potential to guide more effective and precise treatment.

Our study revealed that abnormal states of EMT are present

in LGG tumor tissues and correlated with malignant

clinicopathological features, which may modulate the

aggressiveness and treatment resistance of glioma cells

(Pastushenko and Blanpain, 2019). Although, the study of

genes associated with EMT is currently popular among

researchers inthe field of oncology. The functions of single

lncRNAs such as TCL6 (Kulkarni et al., 2021), AP000695.4

(Liang et al., 2018), and RP11-390F4.3 (Peng PH et al., 2020),

in the EMT process, have been discussed and confirmed in detail.

Using bioinformatics approaches, many interesting EMT-related

genes have been mined and predictive models have been

constructed, including colorectal, bladder and clear cell renal

cell carcinomas (Cao et al., 2020; Zhong et al., 2020; Yang et al.,

2021). The construction of these risk models reveals that EMT-

related genes can be used as molecular markers for optimal

tumor treatment and have powerful prognostic capabilities.

However, there still exists a large number of lncRNAs that

have not yet been tapped identified, resulting in incomplete

understanding of EMT-related lncRNAs. Therefore more

comprehensive work is needed to confirm the expression and

function of EMT-related lncRNAs in LGG. This would be helpful

for a deeper understanding of the molecular features and

aggressiveness of low-grade gliomas.

In our study, a series of algorithms such as univariate Cox

regression, RF, and LASSO regression, were used to identify the

hub lncRNAs CRNDE, LINC00665, and NEAT1. The

expression of CRNDE regulates cancer cell proliferation,

migration, invasion, and apoptosis through multiple

signaling pathways, such as WNT/β-catenin (Yu et al.,

2017), PI3K/AKT (Liu et al., 2017), and mTOR (Wang et al.,

2015) signaling pathways. LINC0066 is aberrantly expressed in

a variety of human cancers and acts as an oncogene or tumor

suppressor gene (Zhu et al., 2022). Silencing LINC00665, which

is associated with poor prognosis in gliomas, suppressed the

expression of markers of EMT (Lu et al., 2021). The last hub

lncRNA NEAT1 promotes glioblastoma development and

progression through the EGFR/NEAT1/EZH2/WNT/β-
catenin axis (Chen et al., 2018). In addition, NEAT1 also

promotes gliomagenesis through the mTOR signaling

pathway (Yu et al., 2021). From these studies, it is clear that

CRNDE, LINC00665, and NEAT1 are highly oncogenic and

inextricably linked to EMT. This also explained that the

signature models constructed from these three hub genes

were able to describe the activation status of multiple tumor

malignancy-related pathways. Importantly, no study has

emerged that incorporates these three genes simultaneously

in statistical model construction. Our constructed EMTrLS

score demonstrated a stable correlation with EMT in

multiple datasets and described the malignancy and

aggressiveness of LGG with a strong predictive prognostic

value. Of course, it cannot be said that these three pivotal

lncRNAs can fully characterize all EMT-related lncRNAs. We

hope that our study can help characterize EMT-related

lncRNAs and provide a new way of thinking about

tumorigenesis and development.

The characterization based on the three hub lncRNAs

constructs was able to not only quantify the extent of EMT

and malignant tumor pathway activation but also reveal its

potential correlation with abnormal tumor metabolism. It is

possible that dysregulation of WNT signaling control induces

EMT, while increasing glucose consumption and lactate

production through activation of pyruvate carboxylase (PC)

gene expression (Lee et al., 2015). In addition to this, the

hypoxic microenvironment of gliomas may be another cause

of the relationship between glucose metabolism and EMT

abnormalities. Hypoxia-inducible factors (HIFs) increase the
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expression numerous glycolytic enzymes and can also activate

EMT through various pathways, including TGF-β, Notch, PI3K/
AKT, WNT/β-catenin, and NF-κB (Tirpe et al., 2019).

The process of EMT stimulates the production of cytokines

and chemokines in the TME to promote the infiltration of

immune cells. In turn, TME is an effective inducer of EMT

in tumor cells. The mutual maintenance of these two

phenomena alters the expression and activity of various cell

types that accumulate in the mesenchyme, particularly in

response to various immune cell subtypes that influence

tumor progression (Suarez-Carmona et al., 2017; Dongre and

Weinberg, 2019). However, few studies have elucidated the

potential mechanisms of EMT-related lncRNAs and immune

infiltration in LGG. We applied multiple immunoassays to

explore immune cell infiltration in LGG and determined the

association with EMTrLS stratification. Interestingly, we

observed a significant macrophage and Treg infiltration in

the EMTrLS-high group, accompanied by an increased

infiltration of immune cells with tumor-killing effects, such as

CD4 T cells and CD8 T cells. It may seem paradoxical that there

was a higher degree of infiltration of immune cells with

antitumor function in EMTrLS-high samples with poor

prognosis. However, some studies have shown that

CD8 T cells and CD4 T cells, also lead to loss of E-cadherin

expression in epithelial cells, accompanied by increased

expression of vimentin and ZEB1 (EMT markers)

(Santisteban et al., 2009; Goebel et al., 2015). Although the

mechanism is unclear, cytokines such as IL-6 may facilitate this

process (Chen et al., 2017). Furthermore, given the association

of EMTrLS with EMT activation, it is not surprising that

EMTrLS scores can be quantified to some extent for

antitumor immune cells. Moreover, these immune cells that

attack cancer cells are often overwhelmed by various

immunosuppressive cells that also have increased infiltration

in the EMTrLS-high group, such as MDSCs, macrophages, and

Tregs. They can directly inhibit the antitumor function of T cells

and NK cells and aid tumor progression (DeNardo and Ruffell,

2019; Togashi et al., 2019; Veglia et al., 2021). Notably, another

stratification study of EMTrLS revealed that the EMTrLS-high

group with poorer prognosis had overexpression of ICP, such as

PD-1, PD-L1, CD86, HAVCR2, and ICOS. This further explains

the reason why the antitumor immune function of the EMTrLS-

high group was not well performed. The significant infiltration

of immunosuppressive cells and overexpression of ICP may be

the key mechanism of immune escape in EMTrLS-high samples.

TMB has been shown to be a reliable biomarker for tumor

selection for ICB treatment. The exact mechanism is not

known, but most patients who benefit from treatment tend to

have a high TMB (Rizvi et al., 2015; Chan et al., 2019). In this

study, we found a potential correlation between EMTrLS

scores and TMB. EMTrLS stratified analysis indicated that

the EMTrLS-high group had a higher TMB and may be a

potential gaining group for immunotherapy. This is similar to

the results of our other study. A subclass mapping algorithm

we used revealed that the EMTrLS-high group was more

sensitive to PD1 blockade treatment. These results

illustrate the potential of EMTrLS to guide more effective

anti-PD1 therapy. However, due to the lack of LGG cohorts

treated with ICB, the predictive power of EMTrLS

requiresfurther validation in more prospective trials. In

predicting chemotherapy response, we found that the

EMTrLS-high cohorts were more sensitive to TMZ and

AKT inhibitor drugs. However, the mechanisms

underlying the correlation between EMTrLS and

chemotherapy response need to be further investigated.

Likewise, a large number of drug response experiments are

needed to confirm these predictions.

In conclusion, we constructed a novel EMTrLS with the help

of machine algorithms, which can comprehensively assess the

malignancy and prognosis of individual patients and provide new

insights for diagnosis and clinical treatment decisions. However,

it is undeniable that our study has some limitations. We should

further confirm the specific mechanisms by which the three hub

lncRNAs affect EMT through in vivo and in vitro experiments,

and further validate their regulatory effects on tumor immune

function and immune cells. In addition, our developed EMTrLS

scoring system for the assessment of antitumor treatment

sensitivity needs to be further verified in prospective studies

and chemotherapy drug sensitivity assays. The EMTrLS model

should include more clinical factors in practical clinical

applications to improve predictive accuracy. We will

incorporate these efforts into future studies.
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