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Adrenomedullin (AM) plays an important role in the regulation of inflammatory processes; however, the role and expression
of AM in synovial inflammation have not been determined. To investigate the expression and role of AM in inflamed synovial
tissue (ST), the gene expression profiles of AM in the ST, including synovial macrophages and fibroblasts, of a murine patellar
surgical dislocationmodel were characterized. In addition, the effects of interleukin- (IL-) 1𝛽 andAM in cultured synovial cells were
also examined. CD11c+ macrophages were found to be elevated in ST of the surgically dislocated patella. Higher gene expression
of CD11c, IL-1𝛽, AM, receptor activity-modifying proteins 2 (RAMP2), and 3 (RAMP3) was also observed in ST obtained from
the dislocated side. AM expression was also significantly increased in synovial fibroblasts and macrophages in response to IL-1𝛽
treatment. Synovial macrophages also highly expressed RAMP3 compared to fibroblasts and this expression was further stimulated
by exogenously added IL-1𝛽. Further, the treatment of the F4/80-positive cell fraction obtained from ST with AM inhibited IL-
1𝛽 expression. Taken together, these findings demonstrated that AM was produced by synovial fibroblasts and macrophages in
inflamed ST and that increased levels of AMmay exert anti-inflammatory effects on synovial macrophages.

1. Introduction

The synovial membrane lines the cavity of synovial joints
and is composed of macrophage- and fibroblast-like syn-
oviocytes and an underlying layer of synovial tissue. Syn-
ovial macrophages produce several inflammatory cytokines,
including interleukin- (IL-) 1𝛽, IL-6, and tumor necrosis
factor- (TNF-) 𝛼, which contribute to arthritis progression
and associated joint pain [1–3]. For this reason, the regulation
factor of these cytokines in synovial tissue (ST) may aid
in the understanding of arthritis pathogenesis and synovial
inflammation.

Adrenomedullin (AM) is a 52-amino-acid vasodilator
peptide that is released from vascular smooth muscle and
endothelial cells during inflammation and plays an important
role in the regulation of inflammatory processes [4–9]. AM

belongs to the calcitonin gene-related peptide (CGRP) family
and was originally identified in human pheochromocytoma
tissue using elevated platelet cAMP activity as an indicator
[6]. AM induces its biological effects bymodifying the activity
of the calcitonin receptor-like receptor/receptor activity-
modifying protein 2 or 3 receptor complex [10, 11]. Plasma
AM concentrations are reportedly elevated in rheumatic
disorders [12, 13], and exogenously administered AM has
anti-inflammatory effects on murine monocyte/macrophage
cell lines [14] and lung inflammation models [15]. To date,
however, the role and expression of AM in synovial inflam-
mation have not been determined.

To determine if AM regulates the function of synovial
macrophages during synovial inflammation, here, we charac-
terized the expression profiles of AM in the inflamed synovial
tissue of mice. In addition, the regulation of AM expression
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by inflammatory cytokines and effects of AM on synovial
macrophages and fibroblasts were also examined.

2. Materials and Methods

2.1. Animals. Specific-pathogen free colonies of 9-week-old
C57BL/6J mice were maintained at Nippon Charles River
Laboratories (Kanagawa, Japan). The mice were housed
throughout the study in a semibarrier system under a
controlled environment (23 ± 2∘C; 55% ± 10% humidity;
12 h light/dark cycle). All of the experimental protocols were
approved by the Kitasato University School of Medicine
Animal Care Committee.

2.2. Induction of Synovial Inflammation. Synovial hyperpla-
sia was induced in mice using a surgical technique. Briefly,
micewere anesthetized, and amedial parapatellar arthrotomy
was performed on one knee (dislocation side) by first extend-
ing the joint and then dislocating the patella laterally. The
joint was then fully flexed, and the rectus femoris was sutured
on the lateral side, followed by suturing of the skin. The
contralateral knee was not subjected to surgery as a control.

2.3. Flow Cytometric Analysis of ST Cells. One week after
surgery, C57BL/6J mice were sacrificed by the intramuscular
injection of a mixture of medetomidine, midazolam, and
butorphanol tartrate. Skin was removed with a scalpel, and
ST was harvested and then digested with 1mg/mL type I
collagenase for 2 h at 37∘C. The released cells were reacted
with antibodies against F4/80 (clone: BM8), CD11b (clone:
M1/70), and CD11c (clone: N418) (Biolegend, CA, USA), and
staining with 7-amino actinomycin D (7-AAD) was used
to identify dead cells. Isotype-matched antibody controls
were also used as a negative control. For each synovial cell
sample, 30,000 live, single-cell events were analyzed by flow
cytometry (FACSVerse; Becton-Dickinson).

2.4. Isolation of F4/80-Positive Cells from ST. ST-derived
mononuclear cells were isolated by the digestion of excised
ST with type I collagenase for 2 h at 37∘C and were then
suspended in 500 𝜇L phosphate-buffered saline (PBS) con-
taining biotinylated anti-F4/80 antibody. After incubation
for 30min at 4∘C, the cells were washed with PBS and
mixed with streptavidin-labelled magnetic particles (BD
IMag Streptavidin Particles Plus-DM; BDBiosciences, Tokyo,
Japan), and labelled cells were subjected to magnetic sepa-
ration using an IMag separation system (BD Biosciences).
After 30min incubation on ice, unbound (F4/80-negative)
cells (fibroblast-rich fraction) were collected by the addition
of warmed (37∘C) 𝛼-minimum essential culture medium
(MEM) to the cell suspension.The tube containing the bound
cells was removed from the magnetic support and F4/80-
positive cells (macrophage-rich fraction) were collected by
the addition of 3mL 𝛼-MEM.The F4/80-positive and F4/80-
negative cell fractionswere centrifuged at 300𝑔 for 10min and
the obtained cell pellets were cultured in six-well plates con-
taining 𝛼-MEM.The cellular gene expression ofCD11c, IL-1𝛽,

AM, and RAMP3 was analyzed by reverse transcription-
polymerase chain reaction (RT-PCR). The cell isolation and
expression analysis was performed in five times.

2.5. Effect of IL-1𝛽 and AM on ST-Derived Cells. Collected
F4/80-positive and F4/80-negative cells from C57BL/6J mice
were cultured in 𝛼-MEM in six-well plates for 1 week at 37∘C
in a 5%CO2 incubator. Synovial fibroblasts andmacrophages
were then incubated with 0 (control group), 5, or 50 ng/mL
mouse recombinant IL-1𝛽 (Biolegend, San Diego, CA, USA)
and were also stimulated with 0 (control group), 10−7, and
10−6M AM (Phoenix Pharmaceuticals, USA) for 24 h. IL-1𝛽,
AM, RAMP2, and RAMP3 expression was analyzed by RT-
PCR. The experiment was performed four times.

2.6. Real-Time Polymerase Chain Reaction (PCR). Total
RNA was obtained from ST and cultured F4/80-positive
(macrophage) and F4/80-negative (fibroblast) cells using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s instructions and was used as template
for first-strand cDNAPCR synthesis.The PCR reactions were
performed with reaction mixtures consisting of 2 𝜇L cDNA,
a specific primer set (0.2 𝜇Mfinal concentration), and 12.5 𝜇L
SYBR Premix Ex Taq (Takara, Kyoto, Japan) in a final volume
of 25 𝜇L. The primers were obtained from Hokkaido System
Science Co., Ltd. (Sapporo, Japan) and were designed using
Primer Blast software (Table 1). The specificity of the ampli-
fied products was confirmed by melt curve analysis. Quanti-
tative PCR was performed using a real-time PCR detection
system (CFX-96; Bio-Rad, Hercules, CA, USA) and the
following cycling parameters: initial denaturation at 95∘C for
1min, followed by 40 cycles of 95∘C for 5 s, and 60∘C for 30 s.
The level of target mRNA expression was normalized to that
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

2.7. Statistical Analysis. Thepaired 𝑡-test was used to examine
differences in the ST of control and dislocated patella. The
paired 𝑡-test was also used to examine differences between
F4/80+ and F4/80− cell fractions. One-way ANOVA with
Fisher’s least significant difference (LSD) test was used to
examine differences among the control group and the group
stimulated with either low or high concentration IL-1𝛽 or
AM. All statistical analyses were performed using SPSS
software version 19.0 (SPSS, Inc., Chicago, IL,USA).A𝑃 value
of < 0.05 was considered statistically significant.

3. Results

3.1. Characterization ofMacrophage Populations in ST. Proin-
flammatorymacrophages in synovium express CD11c [16, 17].
Here, the proportion of CD11c+ macrophages in the ST of a
murine patellar surgical dislocation model was investigated
by flow cytometry. The number of F4/80+ CD11b+ (Figures
1(a), 1(b), and 1(e)) and CD11c+ F4/80+ CD11b+ macrophages
(Figures 1(c), 1(d), and 1(f)) in the ST of the dislocated patella
was significantly higher compared to that found in the ST of
the contralateral (control) side. Consistent with this finding,
CD11c mRNA expression in the ST of the dislocated side was
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Table 1: Sequences of the primers used in this study.

Gene Direction Primer sequence (5󸀠-3󸀠) Product size
(bp)

CD11c F TTCTTCTGCTGTTGGGGTTTG 132
R CAACCACCACCCAGGAACTAT

IL-1𝛽 F GCAACTGTTCCTGAACTCAACT 89
R ATCTTTTGGGGTCCGTCAACT

AM F TAAGTGGGCGCTAAGTCGTG 74
R TCTCATCAGCGAGTCCCGTA

RAMP2 F CACTGAGGACAGCCTTGTGT 117
R GTCCAGTTGCACCAGTCCTT

RAMP3 F CTGCAACGAGACAGGGATGC 95
R GGTTGCACCACTTCCAGACA

F4/80 F TGGGATGTACAGATGGGGGA 189
R CCTGGGCCTTGAAAGTTGGT

GAPDH F AACTTTGGCATTGTGGAAGG 223
R ACACATTGGGGGTAGGAACA

significantly higher compared to that detected in the ST of the
control side (Figure 1(g)).

3.2. Expression of the F4/80, CD11c, IL-1𝛽, AM, and RAMP3
Genes in ST. Real-time PCR analysis of RNA extracted from
the control and inflamed ST showed that the expression
of the CD11c, IL-1𝛽, AM, RAMP2, and RAMP3 genes was
significantly elevated in the ST from the dislocated side
(Figures 2(a)–2(d)). In addition, expression of IL-1𝛽 and
RAMP3 in the F4/80+ fraction was significantly higher than
that in F4/80− fraction (Figures 3(a) and 3(d)), whereas AM
and RAMP2 expression was higher in the F4/80− fraction
(Figures 3(b) and 3(c)).

3.3. Effect of Exogenous IL-1𝛽 on F4/80, IL-1𝛽, AM, RAMP2,
and RAMP3 Gene Expression in Cultured Primary Synovial
Fibroblasts and Macrophages. The expression of the F4/80,
IL-1𝛽, AM, RAMP2, and RAMP3 genes in cultured primary
synovial fibroblasts and macrophages obtained from ST
was measured before and after IL-1𝛽 stimulation. F4/80
expression in the F4/80+ fraction was significantly higher
than that in F4/80− fraction and did not change by IL-1𝛽
stimulation in either fraction (Figure 4(a)).The expression of
IL-1𝛽 and RAMP3 increased significantly in both the F4/80−
and F4/80+ cell fractions treated with exogenously added
IL-1𝛽 compared to the untreated control cells (Figures 4(b)
and 4(e)). In addition, AM and RAMP2 expression in the
F4/80− fraction was significantly higher than that in F4/80+
cell fraction, regardless of IL-1𝛽 stimulation. However, AM
expression increased significantly in the F4/80− and F4/80+
cells fractions treated with IL-1𝛽 compared to the untreated
control cells (Figures 4(c) and 4(d)).

3.4. Effects of AM on IL-1𝛽, AM, RAMP2, and RAMP3 Gene
Expression in Synovial Fibroblasts and Macrophages. F4/80

expression in the F4/80+ fraction was significantly higher
than that in the F4/80− fraction and was not affected by AM
stimulation of either fraction (Figure 5(a)). IL-1𝛽 expression
in the F4/80+ cell fraction was significantly decreased in the
presence of exogenously addedAM (Figure 5(b)). In contrast,
AM, RAMP2, and RAMP3 gene expression in the F4/80− and
F4/80+ cell fractions was not changed by treatment with AM
(Figures 5(c)–5(e)).

4. Discussion

In the present study investigating the role of AM in syn-
ovial inflammation, CD11c+ populations of macrophages
were found to be elevated in the ST of a murine patellar
surgical dislocation model. Higher gene expression of the
genes encoding CD11c, IL-1𝛽, AM, RAMP2, and RAMP3
was also observed in ST from the dislocated side compared
to control ST. In addition, the expression of AM increased
significantly in synovial fibroblasts and macrophages treated
with exogenous IL-1𝛽. Synovialmacrophages were also found
to highly express RAMP3 compared to synovial fibroblasts,
particularly when stimulated with exogenously added IL-1𝛽.
In addition, the treatment of ST-derived macrophages with
AM inhibited IL-1𝛽 expression in the F4/80+ cell fraction.
Taken together, these findings indicate thatAMwas produced
by synovial fibroblasts and macrophages in response to
synovial inflammation and that increased levels of AM may
exert anti-inflammatory effects on synovial macrophages.

Synovitis contributes to the destruction of joint surfaces
in osteoarthritis and rheumatoid arthritis [18, 19]. Chosa et al.
found that plasma levels of AM in patients with rheumatoid
arthritis (RA) are elevated compared to healthy individuals
and that AM levels in synovial tissue and joint fluid in RA
patients are significantly higher than those associated with
osteoarthritis [20]. In the present study, the expression levels
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Figure 1: Characterization ofmacrophage cells in inflamed synovial tissue ofC57BL/6Jmice. Flow cytometric analysis of CD11c+F4/80+CD11b
macrophage cells in the synovial tissue (ST) obtained from the control and dislocated side of a patellar surgical dislocation model generated
in C57BL/6J mice (a–f). (a, b) Dot-plot analysis of F4/80+CD11b+ cells in ST of the control (a) and dislocated side (b) of mice; 𝑥-axis, F4/80;
𝑦-axis, CD11b. (c, d) Histogram analysis of CD11c+ cells in the gated regions in the dot-plots of ST cells isolated from the control (c) and
dislocated side (d) of mice. Percentages of F4/80− and CD11b+ cells (e) and CD11c+ cells in the F4/80− and CD11b-positive gated regions
in the ST of control and dislocated side (f) of mice (𝑛 = 5). (g) Real-time PCR analysis of CD11c expression in the ST obtained from the
control and dislocated side of C57BL/6J mice (𝑛 = 5). ∗Statistically significant difference between the control and dislocated side. All data are
presented as the mean ± standard error (𝑛 = 5).
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Figure 2: Real-time polymerase chain reaction (PCR) analysis of interleukin- (IL-) 1𝛽, adrenomedullin (AM), receptor activity-modifying
protein 2 (RAMP2), and RAMP3 gene expression in the synovial tissue of C57BL/6J mice. (a) IL-1𝛽, (b) adrenomedullin (AM), (c) receptor
activity-modifying protein 2 (RAMP2), and (d) RAMP3 gene expression in ST obtained from the control and dislocated side of a patellar
surgical dislocation model generated in C57BL/6J mice. ∗Statistically significant difference between the control and dislocated side. All data
are presented as the mean ± standard error (𝑛 = 5).

of AM and number of CD11c+ F4/80+ CD11b+ macrophages
were significantly elevated in the ST obtained from the
dislocated patella side of C57BL/6J mice. In addition, the
ST macrophage fraction highly expressed IL-1𝛽, which when
exogenously added, stimulated AM expression in synovial
cells. These findings are consistent the elevated IL-1𝛽 pro-
duction previously observed in CD11c+ macrophages [16, 21]
and the stimulation of AM production by IL-1𝛽 treatment in
several cell types, including vascular smoothmuscle cells and
adipocytes [8, 22]. Taken together, the previous and present
findings suggest that activatedmacrophages contribute to the
stimulation of AM production in inflamed joints.

Vascular smooth muscle cells, endothelial cells, mono-
cytes, and macrophages produce and secrete AM in vitro
[14, 23–25]. Previous studies showed that AM is secreted by
fibroblast-like synoviocytes in RA patients [26, 27]; however,
the expression of AM in synovial macrophages was not
elucidated.Here, the expression ofAM increased significantly
in a cell fraction consisting of synovial fibroblasts and
macrophages in the presence of exogenously added IL-1𝛽.
However, AM gene expression in the F4/80− cell fraction
was higher than that in the F4/80+ cell fraction. The present
findings suggest that although synovial macrophages are a
potential source for AM, synovial fibroblasts may be the
major source of AM in inflamed synovial tissue.

AM binds to a heterodimeric plasma-membrane receptor
composed of the calcitonin receptor-like receptor (CRLR)
and receptor activity-modifying protein- (RAMP-) 2 or 3
[10, 11]. In the present study, the fibroblast cell fraction
obtained from the inflamed STofmice expressed significantly
higher levels of RAMP2 compared to the macrophage cell
fraction, consistent with a report in which RAMP2 was
expressed in the synovial fibroblasts of RA patients [28].
In contrast, RAMP2 expression levels in macrophages were
approximately 100-fold lower than that detected in syn-
ovial fibroblasts. In addition, RAMP3 expression in synovial
macrophages wasmarkedly higher compared to that detected
in fibroblasts and was also stimulated by exogenously added
IL-1𝛽. Uzan et al. also reported that RAMP3 protein was
not detectable in synovial fibroblasts from RA patients [28].
The present findings suggest that AM acts on synovial
macrophages through RAMP3 during synovial inflamma-
tion.

Several recent studies have provided evidence that AM
has anti-inflammatory effects by regulating innate immunity
responses, including the reduced production of proinflam-
matory cytokines, including TNF-alpha, IL-6, and IL-1 [14,
15, 29, 30]. For example, AM suppresses the in vitro secretion
and gene transcription of TNF-𝛼 and IL-6 in the murine
monocyte/macrophage cell line RAW 264.7 [14] and also
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Figure 3: Real-time polymerase chain reaction (PCR) analysis for interleukin- (IL-) 1𝛽, adrenomedullin (AM), receptor activity-modifying
protein 2 (RAMP2), and RAMP3 gene expression in F4/80-negative and -positive cells derived from inflamed synovial tissue. (a) IL-1𝛽, (b)
adrenomedullin (AM), (c) receptor activity-modifying protein 2 (RAMP2), and (d) RAMP3 gene expression in ST obtained from the control
and dislocated side of a patellar surgical dislocation model generated in C57BL/6J mice. ∗Statistically significant difference between F4/80-
negative and F4/80-positive fractions. All data are presented as the mean ± standard error (𝑛 = 5).

attenuates TNF-𝛼 and IL-1𝛽 production in an in vivo acute
lung injury mouse model [15]. In addition, subcutaneous
AM injection suppresses the inflammation response in a
collagen-induced arthritis mice model [31]. Intra-articular
AM injection also reduces synovial inflammatory cytokine
production in an antigen-induced arthritis rabbit model
[32]. In the present study, expression of the gene encoding
IL-1𝛽 was reduced in the AM-treated F4/80+ cell fraction
obtained from inflamed ST. The present results suggest that
AMandRAMP3 levels are increased in synovialmacrophages
in response to synovial inflammation and that AM may
exert anti-inflammatory effects via the suppression of IL-1𝛽
production by macrophages.

Two limitations of the present study warrant mention.
First, although F4/80 has been used as a murine macrophage
marker [33, 34], a recent study indicated that F4/80 is
required for the induction of efferent CD8+ regulatory T cells
needed for peripheral tolerance [35]. In the present study,
F4/80was used formacrophage isolation, and it remains to be
determined whether F4/80 expression contributes to AM/IL-
1𝛽 cross-talk. Second, the obtained research data cannot
be directly extrapolated to human subjects because human

EMR1 is a marker of eosinophils but is not expressed on
macrophages.

In conclusion, AM production was increased in synovial
fibroblasts and macrophages in a murine patellar surgical
dislocation model. In inflamed ST, AM appears to mediate
anti-inflammatory effects by inhibiting IL-1𝛽 secretion by
synovial macrophages. Adrenomedullin may constitute a key
target in future therapies for inflammatory arthritis.
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Figure 5: Effects of adrenomedullin (AM) on interleukin- (IL-) 1𝛽 gene expression in cultured primary synovial fibroblasts andmacrophages.
The effects of AM on F4/80, IL-1𝛽, AM, RAMP2, and RAMP3 gene expression in cultured primary synovial fibroblasts (F4/80-negative
fraction) and macrophages (F4/80-positive fraction) were examined by real-time PCR. A𝑃 < 0.05 compared with F4/80-negative fraction.
B
𝑃 < 0.05 compared with fraction matched-untreated control.
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