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The STRAND Chart (Survival Time, Risk-Adjusted, N-Division Chart) is a new
tool for online risk-adjusted (RA) monitoring of survival outcomes. The chart
is drawn in continuous time, making it responsive to change in the process of
interest, for example, performance over time of a surgical unit and the proce-
dures that they employ. Though it is difficult to achieve with charts designed
for the purpose described, we show that our suggested chart keeps patient
ordering intact. We discuss the difficulties maintaining patient ordering poses,
making reference to other charts in the literature. Our conclusion is that the
best approach to preserving patient ordering on any chart of this nature involves
compromising on the fullness of presentation of the recorded data. The chart is
divided into N strands, each strand relating to a benchmark patient's survival
information at tn days following treatment, n = 1, 2, … ,N. We present a sim-
ple version of the chart where the strands consist of Bernoulli RA exponentially
weighted moving averages, recording RA failure rates at tn days. It can detect
recent process change and historical change. We illustrate the STRAND Chart
using a well-known UK post cardiac surgery survival dataset, where the nature
of a certain cluster in the data can be seen.
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1 INTRODUCTION

Monitoring of patient outcomes over time is prolific in the field of medicine, most especially in the form of sequential clin-
ical trials.1-3 Outside of the clinical trials setting, there has been increasing interest in assessing quality of care provided,
where there are potential underlying changes in performance and also planned changes in care that are not formally
assessed by clinical trial (such as periodic retraining of surgeons).4-7 While quality control and the use of control charts
for process monitoring has its roots in the industrial setting where monitored items, for example, electrical components,
are homogeneous in nature,8,9 in the medical context, the “items” monitored (patients) are heterogeneous in nature.10-12

Patients have different underlying characteristics and morbidities that, though they affect outcomes, are beyond the con-
trol of the medical practitioner or unit and hence need to be adjusted for. This aspect of monitoring in medical contexts
has given rise to a growing body of work on risk-adjusted (RA) monitoring with control charts.10-20

In the particular area of RA monitoring of survival data (akin to reliability or lifetime data in the industrial setting),21,22

development of methodology has moved from monitoring in discrete time to monitoring in near-continuous time, at finer
timescales. Where more basic methods record outcomes after some fixed period of time (30 days say) has elapsed, methods
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developed more recently react to survival events as and when they occur.10,14-16 Though they are not strictly in continuous
time, we will henceforth refer to near-continuous methods as continuous.

All of these methods fall broadly into two types: those that use sequential log-likelihood ratio (LLR) statistics and those
that use smoothed estimators of some summary statistic of survival such as survival beyond 30 days, mean or median
survival. The first type are cumulative sum (CUSUM) charts23 that are cumulatively summed LLR statistics of a null pro-
cess state versus an “out-of-control” process state, where an out-of-control process may have an elevated median survival
for example. The second type are charts that smoothly estimate some summary statistic of survival, an example being
exponentially weighted moving average (EWMA) charts.24,25 These EWMA charts can be constructed from a Classical
standpoint or from a Bayesian standpoint, where the former treats the chart measure as a statistic with sampling error
and the latter treats it as a posterior estimate for a randomly wandering underlying process parameter.11,17 Where Clas-
sical EWMA charts and CUSUM charts are set up using operating characteristics such as in- and out-of-control average
run lengths to a signal of process change,26,27 Bayesian EWMA charts would focus on quality of estimation and hence on
width and placement of credible intervals.11,17,28-34 The width of the credible intervals about the chart statistic determines
how often the chart will signal and the placement determines the balance between signals of improvement and signals
of deterioration in the process. As with Classical charts, Bayesian EWMA charts and similar Bayesian time series charts
would be tuned on test data before being applied to online data.35 Tuning the chart to the pilot data can be viewed as an
exercise in analysis of sensitivity to changes in chart parameters.

The charts are based on varying degrees of parameterisation of the survival curve. While all methods use a fully para-
metric risk model, some methods specify the survival curve fully and others specify it only in part. We refer to the latter
as semiparametric charts in this context.

In Section 2, we review existing charts in the literature designed to monitor RA survival outcomes. In Section 3, we
outline the details of our chart, and in Section 3.1, we apply the chart to the now classic post cardiac surgery survival
data from a UK hospital, 1992-1997.11,12,14,15,17,18 In Section 4, we compare the performance of our chart to that of the best
competing chart in the literature.

2 REVIEW OF RISK-ADJUSTED SURVIVAL TIME CONTROL CHARTS

2.1 The RA CUSUM and RAST CUSUM
These methods capture different aspects of the survival process being monitored. The RA Bernoulli CUSUM of
Steiner et al accumulates information about the measure Pr(X ≤ d number of days) where X is a dynamic censored
survival process.12 The information is gathered via a cumulatively summed (CUSUM) LLR statistic of a null risk model
versus an alternative model where the failure rate before d number of days is assumed to be higher (or, alternatively,
lower) across all patients. An LLR CUSUM can be written as

Ct+1 = Ct + LLRt, t = 1, 2, … , (1)

where t indexes arriving data.
The risk-adjusted survival time (RAST) CUSUM of Sego et al similarly accumulates an LLR CUSUM statistic of a null

versus an alternative hypothesis,15 but the likelihood used reflects the whole parametric survival model f X (x) as opposed
to a prespecified tail of the survival distribution Pr(X ≤ d). Hence, the RAST CUSUM of Sego et al is fully parametric,
whereas the RA Bernoulli CUSUM of Steiner et al is semiparametric.

The charts, with their differing specification of the likelihood, are presented as discrete time methods. They are updated
after a fixed period of time, d days, has elapsed following treatment. They have been presented in application to the
now classic UK cardiac surgery dataset of 1992-1997, where d = 30-day survival post cardiac surgery is of interest. An
application of the STRAND Chart (Survival Time, Risk-Adjusted, N-Division Chart) to this same dataset is given in
Section 3.1.

These charts, as discrete-time charts, are not as responsive to the continuous process as they might be, being slow to
react to early failures. A move from discrete-time charts to continuous-time charts, then, would lead to an improvement
in efficiency in detecting process change.

Methods developed subsequently have moved to continuous-time monitoring of survival data, where failures are
recorded as and when they occur rather than being recorded d number of days after treatment. Since they update on a
finer timescale, these charts are more reactive to deterioration in the survival process.



GRIGG 1653

A challenge for continuous-time survival time control charts is the problem of maintaining patient ordering, so that
time ordering according to the treatment timeline is preserved. The difficulty lies in the fact that patients do not fail in
necessarily the same order that they arrive in. If patient ordering is maintained by a chart, clusters of unusual failures
or successes in cohorts of patients on the treatment timeline can be identified by the chart effectively. Another chal-
lenge is presenting the data in a sensible and interpretable way. We believe that there is no perfect solution to creating
a (risk-adjusted) survival time control chart that meets both of these criteria and that the best solutions given the first
challenge is met will need to compromise on the fullness of presentation of data.

The reason survival time charts began as discrete as opposed to continuous is that, though recording in continuous
time would on the surface appear quite feasible, updating in discrete time avoids corruption of patient ordering on the
timeline. If failures were charted when they occurred instead of at the end of the censoring window, the ordering on the
chart would then be by outcome day rather than surgery day. As a result, a significant and important localised change on
the surgery timeline might be masked on the chart.

2.2 RA CUSUM in continuous time based on the Cox model
This RA CUSUM in continuous time of Biswas and Kalbflesich records patient survival time data in continuous time as
and when updates come in, by way of a Cox proportional hazards survival model.16,36

The chart is an LLR CUSUM, testing for a fixed change across patients in the instantaneous hazard, or intensity (the
probability of imminent failure). The chart is semiparametric in nature since, though the risk model is fully parametric,
the survival curve itself is left unspecified.

The continuous-time passage of patients through the censoring window is regularly recorded on the chart. Outside of
these regular records, the chart is updated whenever a failure occurs. Since information is recorded as and when it arrives
and is not reshuffled according to patient order, any clusters of failures or long ongoing survivals on the treatment timeline
may be contaminated by noise and potentially not detected by the chart. A remedial step would be to adopt the Weighted
CUSUM approach of Yashchin,21,37 weighting data as it comes in, giving heavier weights to more recent patients. This
would lead to a CUSUM method akin to the updating EWMA (uEWMA) Chart of Steiner and Jones discussed in the next
section,14 or the chart could be drawn reshuffled according to patient order, leading to a method akin to the Improved
Bernoulli CUSUM of Keefe et al discussed in Section 2.4.10 Such a chart would need to be regularly redrawn on new axes
however. We elaborate on this in Section 2.4.

2.3 uEWMA for survival time data and Weighted CUSUM
This method of Steiner and Jones, as with a Weighted Biswas and Kalbfleisch CUSUM, does respect patient ordering
by weighting incoming survival data (failures or ongoing incrementing survival) according to how recently a patient
was treated.14,16 It exponentially weights the jth patient's current contribution Sj,t to the user's chosen survival summary
statistic (the choice allowing for both fully parametric and semiparametric methods) according to where that patient is on
the current list of patients treated j = [1, … , Jt]. Patients operated on longer ago are downweighted by a factor (1 − k)r

according to the distance on the list between them and the most recent patient. The uEWMA chart can be written as

St = kSJt ,t + k(1 − k)SJt−1,t + k(1 − k)2SJt−2,t + · · · + k(1 − k)Jt−1S1,t t = 1, 2, … , 0 < k < 1. (2)

The chart effectively damps older cohorts of data down in the current cross-section of data at time t, lessening the effect
of the disorder caused by patient failures not occurring in the same order as arrivals. In practice, especially for larger k,
the weights decay quickly, so that the chart statistic St is little affected by only taking the summation over the most recent
block of patients.

In damping the older data down, the chart's sensitivity to historical change is reduced. Its focus is drawn toward
short-term behaviour of the process, rendering it more reactive to deterioration in surgical performance and less reac-
tive, in particular, to improvements further back relating to long survivals of higher-risk patients. This is a drawback of
a method such as this that respects patient ordering via the use of decaying weights. Valuable information in the data
regarding older cohorts is downgraded.

Another method that weighs incoming data in this way is the Weighted CUSUM of Yashchin.21,37 Yashchin remarks that
their approach as applied to survival time (equivalently lifetime, or reliability) data is not “sufficient [alone] for efficient
detection of change in the process level” and that “supplementary tests may be needed.”22 We suggest that rather than
introducing such supplemental tests to make up for the limitations of the chart employed, the chart design should be
reconsidered. We present our proposed method in Section 3. In the next section, we review a method that maintains
patient ordering while accounting for ongoing survival in a conservative way.
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2.4 Improved Bernoulli CUSUM
This chart of Keefe et al is an improvement to the Bernoulli RA CUSUM of Steiner et al in that failures are recorded as
and when they occur as opposed to when a fixed censoring time has elapsed.10,12 The chart is redrawn at the occurrence
of new failures in such a way that patient ordering is respected. Ongoing patient survival is conservatively treated in that
patients yet to have, if at all, recorded failures are assumed up until that time to be cases that survive past the censoring
time d.

This chart picks up process deterioration faster than the standard Bernoulli CUSUM because failures are recorded when
they occur. However, a chart that did not employ such conservative treatment of patients yet to present as failures would
identify process deterioration faster still. If full survival information were recorded for patients continuing to survive,
rather than the conservative measure used, the chart would be more efficient, both for detecting process deterioration
and improvement. This use of full survival information would make it akin to the Biswas and Kalbfleisch CUSUM,16 but
with reshuffling of points on the chart at regular redrawing of the chart, so that the chart adheres to patient ordering.

As we believe is necessary for a (risk-adjusted) survival time control chart, the chart does compromise on fullness of
presentation of the data in that it requires being redrawn on a new set of axes as new failures occur. We consider the chart
to be well suited to examining how clusters develop in a snapshot of time. However, we think it is not suited to viewing
clusters and clusters of clusters in bigger frames of time, unless an additional low signal boundary were set and clusters
of signals above that low boundary were recorded on a separate chart. The redrawing of the chart is not so much of a
drawback when the censoring window is fairly short, as for the post cardiac surgery data (where d = 30 days), since the
chart is fixed once a lag the size of the censoring period has elapsed. However, it is more of a drawback when the censoring
window is of the order of years, as for example, with the transplant data analysed by Biswas and Kalbfleisch16: one has to
wait a year, say, before the plotted chart at least a year previous to that is no longer subject to change.

3 METHOD INTRODUCED HERE: THE STRAND CHART

We propose a new method, the STRAND Chart, which is our solution to survival time monitoring where patient ordering
is maintained and where balance between early failures and longer-term survivals within data cohorts is maintained. The
chart can be a Bayesian or Classical chart. We present it as a Bayesian chart as we see this as the more natural approach.
The theoretical origins of the chart are fairly complex but the resulting method is simple to implement and interpret.

If we consider a survival time distribution where patients survive a number of days following an intervention such as
surgery, the STRAND Chart can estimate probabilities of failure at each of t1, t2, … , tN days. The first strand estimates
the failure rate at, say, t1 = 1∕2 a day, the second the failure rate at, say, t2 = 2 days and so on. The last strand would,
we suggest, relate to the failure rate at the censoring time of, say, tN = 30 days. We refer to survival past tn days (n in
1, … ,N) as survival past “gate” gn. In the example application in Section 3.1, these failure rates are small, as one would
expect from a high quality process. The chart signals when the credible interval about any strand excludes a target value,
for example, the estimated failure rate from the pilot data.

The discretisation into N strands means that the chart is not fully continuous, though increasingly fine continuity can
be achieved by adding more strands to the chart. Too many strands increase the complexity of the chart and so reduce
human readability. Also, too many strands can result in a reduction in chart efficiency (see Section 4). However, with
more strands, the passage of unusual cohorts of patients can be seen to track diagonally upward through the chart, by way
of peaks and troughs, in a ripple effect. The nature of any clusters can be seen to play out (see Figure 1): a cluster of late
failures in a cohort of patients would affect only upper strands of the chart; clusters of early failures might be balanced
in a cohort by unusual longer-term survivals, so that an effect on lower strands would be nullified in upper strands. That
the chart allows for the equal balance of failures and survivals in cohorts of data is an important feature.

As a Bayesian chart, the STRAND Chart can be formed of Bayesian time series estimators, updating estimates of the
probability of failure at each gate gn, n = 1, 2, … ,N in the light of the data. We present the chart here as a set of Bayesian
Bernoulli risk-adjusted exponentially weighted moving average (RA EWMA).17 The RA EWMA emanates from a model
where the probability of failure at time i, 𝜇i, satisfies the following conditions:

E[𝜇i] = E[𝜇i−1]

P[𝜇i] = 𝜅P[𝜇i−1], (3)
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FIGURE 1 STRAND Chart (Survival Time, Risk-Adjusted, N-Division Chart) showing dynamic risk-adjusted survival rate estimates for
gates at (1/2, 2, 10, 20, 30) days, 1 Jan 1992 to 31 Dec 1997. First upper and lower signals respectively on each strand shown in upper left corners.
Key: rate; 95% credible interval; signals of rise/fall in rate; - - - pilot data cut-off [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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where E represents a priori expectation and P represents a priori precision, the latter being equal to one over the variance
and a priori meaning before the data point yi is seen. According to the model, the quantity 𝜇i is said to be “mean steady”
and is assumed to have decaying precision P, by a factor 𝜅, from one time point to the next. It is assumed to change
smoothly with time and this smooth process can be learnt about via the data yi, i = 1, 2, … .

From the mean steady model, the EWMA statistic

mi = 𝜅mi−1 + (1 − 𝜅)𝑦i; i = 1, 2, …; 0 < 𝜅 < 1 (4)

results as the posterior mean for 𝜇i and the associated precision P[𝜇i] tends to 1∕(1 − 𝜅) as i tends to infinity.17

As an additional step, to account for patient heterogeneity, risk adjustment of the EWMA can be made so that we have

mi = 𝜅mi−1 + (1 − 𝜅)[𝑦i,𝑗 − �̂�i,𝑗 + �̂�i,b]; i = 1, 2, …; 𝑗 = 0, 1, 2, … , b, … , J; 0 < 𝜅 < 1, (5)

where the ith outcome at a gate, relating to a patient of type j, is approximately adjusted to the metric of a baseline patient
(one with a benchmark risk value) of type j = b via a risk model relating the expected rate for the arriving patient 𝜇i, j to
the current expected rate for a baseline patient 𝜇i,b. This risk adjustment step is elaborated on in the application section,
Section 3.1. Through the risk adjustment step, mi becomes an estimate for 𝜇i,b, which we refer to as simply 𝜇i.

As discussed elsewhere,11,17 these RA EWMAs can also be applied from within the frequentist framework. In the
Bayesian approach, we note that there is formal admission that there is uncertainty about the first point on the chart, m0.

The uncertainty about the RA EWMA statistic mi is accounted for as follows. Bounds are placed about mi to express
uncertainty about the baseline mean 𝜇i = 𝜇i,b. Since the data are Bernoulli, we suggest for simplicity that a conjugate
Beta distribution be chosen. We also suggest, again for simplicity, that the precision at time i be set to the steady-state
value 1∕(1 − 𝜅) so that the bounds about mi are percentiles of a Beta distribution with mean mi and precision 1∕(1 − 𝜅).

In summary, all that is required to apply the essential form of the STRAND Chart is a risk model relating patients to
a baseline or benchmark patient, a choice of gates, a choice for 𝜅 (which we will elaborate on in the application section,
Section 3.1), and outcomes yi, j indicating whether the ith patient survives or fails at a gate along with risk scores zi, j for
those patients. Only the data are required, a choice of gates and an indication of the amount of data to be apportioned as
pilot data, to implement the essential form of the STRAND Chart using the R package “strand” (available from the author).

It should be noted that there are existing Bayesian methods for monitoring survival data.38-40 However, these focus on
retrospective changepoint estimation and, by this, contrast with online monitoring methods. Where online methods are
ideal for detecting process change forward in time, changepoint methods are ideal for locating with hindsight when that
change occurred.

3.1 Example: post cardiac surgery survival
There is an accompanying package in R, “strand,” see Supporting information, for users to implement the chart. We used
the package to draw a chart of the now classic UK cardiac surgery data of 1992-1997, treating, as in other papers, the first
two years' data as pilot data.14,15 We chose gates at (1∕2, 2, 10, 2, 30) days with the aim of giving a comprehensive yet not
too detailed cross-section of the overall survival distribution. Patient risk is summarised by the Parsonnet score,41 and
survival is censored at 30 days following surgery. The resulting chart can be seen in Figure 1.

The risk model, assumed to be a set of logistic models, one for each strand, is calibrated to pilot data. This means that
the chart adopts an empirical Bayes approach where the initial prior for the variable of interest is calibrated on pilot data.
For each strand, this provides a starting point m0 for the incrementing estimate, mi, of the baseline failure rate 𝜇i at a
particular gate.

The STRAND Chart could alternatively be initialised by fitting an overarching fully parametric survival model as
opposed to a separate model for each strand. However, fitting separate risk models for each strand allows the survival
distribution to go unspecified, resulting in a semiparametric method that is more flexible.

The logistic risk model assumes that the odds of failure at a gate for a patient of type j is linked to the odds of failure for
a baseline patient by a scaling factor, such that

(
�̂�𝑗

1 − �̂�𝑗

)
=
(

�̂�b

1 − �̂�b

)
e𝛽(z𝑗−zb), (6)
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where zj is the patient risk score, in this case the Parsonnet score, and zb is the baseline patient risk score. As per
the paper of Steiner and Jones, we take the baseline Parsonnet score to be the median in the pilot data, zb = 7. For
these data, Equation (6) gives 𝛽 = (0.067, 0.071, 0.074, 0.074, 0.077) for the strands relating to the survival rates at
(1∕2, 2, 10, 2, 30) days.

When a patient of type j arrives at any of the gates at time i, their binary outcome of success is noted. The risk adjustment
step can be carried out by assuming that the current predicted failure rate at that gate for a baseline patient, �̂�i,b, is equal
to the previous chart value mi− 1. Substituting this into (6) gives

�̂�i,𝑗 =

(
mi−1

1−mi−1

)
e𝛽(z𝑗−zb)

1 +
(

mi−1
1−mi−1

)
e𝛽(z𝑗−zb)

. (7)

By using the logistic risk model, differing patient risks can be predicted by the STRAND Chart simply by scaling up or
down on the odds scale by the factor e𝛽(z𝑗−zb).

Given the vector of binary outcomes at time i, yi, j, �̂�i,b = mi−1 and �̂�i,𝑗 as given by (7), 𝑦i,𝑗 − �̂�i,𝑗 + �̂�i,b is the RA data value
to be fed into the RA EWMA.

The (vector-valued) smoothing parameter 𝜅 can normally be chosen by minimising the mean squared error of prediction
in the pilot data. However, since this curve tends to flatten out for 𝜅 → 1 for Bernoulli data, we recommend choosing a
𝜅 that is large enough for good prediction (low mean squared error) yet small enough to allow the chart to be reactive to
change in the process. We recommend using the following formula as a guide:

𝜅 = 0.993 − 0.192m0, (8)

where m0 is the starting value for a particular strand. This was developed from the example data, so is most useful for
applications with similarly small failure rates 𝜇. For these data, Equation (8) gives 𝜅 = (0.992, 0.990, 0.987, 0.986, 0.985)
for the strands relating to survival at (1∕2, 2, 10, 20, 30) days, respectively.

The Bayesian version of the chart allows the chart statistic to be treated as the posterior mean of the rate of failure for
a baseline patient at the survival gates, 𝜇i,b. The steady-state Bayesian RA EWMA allows the precision of the posterior
distribution for 𝜇i,b to be fixed at 1∕(1 − k). Credible intervals around the RA EWMA estimate for 𝜇i,b, mi, act as control
limits for the chart. These can be set by adjusting the probability interval. The default interval in the strand package is a
symmetric 95% credible interval.

In terms of placing the credible intervals, we do not recommend doing this by running simulations under null and
alternative hypotheses where the true mean is fixed and considering run length properties. To tune to test criteria, we
recommend setting the posterior credible bounds to the default and if necessary widening or narrowing one or both so that
no or very few signals occur in the pilot data. Credible interval width and placement seems a more natural and simpler
consideration to us than considering run length properties under basic null and alternative hypotheses. In the placement
of the credible intervals, the user can make the chart as robust as they require using the pilot data as a guide. We chose
the interval width and placement to give signals in the pilot data similar to those seen in other applications to these data
in the literature,12,14,15,17 that is, few signals of process improvement or deterioration.

Though we do not recommend the consideration of run length properties of the chart for setting chart parameters, it
is nonetheless of interest to consider the performance of the STRAND Chart compared to competing charts, appealing
to run length characteristics as standard in the literature.10,14 In Section 4, we compare the chart to the best-performing
chart in the literature, the uEWMA.14

To construct the posterior credible interval for 𝜇i,b, we can assume a conjugate Beta(mi∕(1 − 𝜅), 1∕(1 − 𝜅)) distribution
whose mean is mi and whose precision is 1∕(1 − 𝜅). For 95% credible intervals, we take an interval of width 95% from
this Beta distribution. For this application, we chose asymmetric bounds with the lower boundary at 5% and the upper
boundary at 97.5%, increasing signals of deterioration compared to symmetric bounds of 2.5% and 97.5%. Choosing these
bounds gives a similar signalling pattern to other charts in the literature applied to this particular dataset.12,14,15,17

In terms of results from the data, new information is available about these data when implementing the STRAND Chart.
In particular, the cluster of unusual deaths around three and half years (1266 days) from the start of monitoring can be
analysed in more detail: the nature of the cluster can be seen to play out in Figure 1. There are no signals at that particular
period of time at the 1/2-day survival gate (the lowest strand). At the 2-day survival gate (the next strand up), a block of
red indicating signals is evident, starting at 1266 days. As longer-term survivals are weighed in, however, at the 10- and
20-day gates (the next two strands up), the blocks of red reduce in size and the extremity of the overall signal of a cluster is
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reduced. This equal balancing of failures and survivals in cohorts of data that the STRAND Chart allows is an important
feature.

4 CHART PERFORMANCE

The best-performing chart in the literature appears to be the uEWMA with LLR scores.14 We compare this chart, through
consideration of run length properties under basic null and alternative hypotheses, to a STRAND Chart with the same
parameters as that in Figure 1. We also introduce into the comparison the uEWMA with scores relating to 30-day survival
as well as a STRAND Chart with a single gate estimating 1/2-day survival.

The simulations upon which the performance is assessed were carried out via empirical bootstrapping from the example
data, that is, sampling without replacement from the example data pairs of survival times and Parsonnet scores. For the
“in-control” scenario the data were sampled without any alteration. For the “out-of-control” scenario, the bootstrapped
survival times were accelerated by a factor q, as per the paper of Steiner and Jones.14 Figure 2 shows the results. All
simulated values were based on 20 000 chart runs. As a performance measure, median run lengths were estimated.

It can be seen from Figure 2 that, for survival times shortened by a factor q, the uEWMA with LLR scores appears
to be more efficient than the STRAND Chart in the format of that in Figure 1 for most values of q. The uEWMA with
scores relating to 30-day survival, however, is sometimes more and sometimes less efficient than that STRAND Chart.
Contrastingly, the STRAND Chart with a single gate at 1/2 a day is sometimes more and sometimes less efficient than the
uEWMA with LLR scores. It seems that a STRAND Chart with a single early gate may be more efficient than one with
multiple gates, though, due to the step-function nature of the median run length function, a STRAND Chart with a single
early gate may not be sensitive to small changes in the survival distribution compared to other charts.

Although having a single early STRAND might improve efficiency for moderate to large values of q, less can be deci-
phered about the monitored process by just having one early strand. In reality, process changes are likely to be more
complex than a simple acceleration of survival times such that the survival curve is affected in different ways. Hence,
we recommend having more strands to capture more information about the process as it changes with time and to cap-
ture more information about any clusters of failures. The potential sacrifice of efficiency we believe is worth the gain in
information.

Note that, for the STRAND Chart with gates at (1∕2, 2, 10, 20, 30) days, 𝜅 was selected by the formula given in (8) and
the credible bounds were set at 5% and 97.5% giving an “in-control” median run length of 210. For the STRAND Chart
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FIGURE 2 Efficiency of STRAND Chart (Survival Time, Risk-Adjusted, N-Division Chart) versus uEWMA (updating exponentially
weighted moving average) for the example data as measured by median “out-of-control” run length for a given survival acceleration q.
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with a gate at 1/2 day, 𝜅 was again selected by the formula given in (8) and the credible bounds were set at 13.6% and
97.5%. For the uEWMA with LLR scores, all parameters were set at the values specified in the paper of Steiner and Jones,14

except the upper signalling boundary that was set at hu = 0.009. For the uEWMA with scores relating to 30-day survival,
𝜅 was set at 0.01, the lower reflecting boundary was set at hl = 0.01, the upper boundary at hu = 0.048, and the chart
was initialised at S0 = 0.025.

It makes intuitive sense that the STRAND Chart is more comparable in terms of performance to the uEWMA with
scores relating to 30-day survival, it being based on n-day survival rates, than to the uEWMA with LLR scores. It is possible
to run the STRAND Chart as a set of EWMAs or CUSUMs with LLR scores and it is likely that, in that case, the perfor-
mance would be more alike to the uEWMA with LLR scores, though this is a hypothesis we have not formally tested. We
recommend using RA EWMAs for the strands, however, as this provides a direct way of estimating features of interest of
the process. Where LLR scores are more optimal, scores relating to summary measures of the survival distribution, such
as tail areas, are more interpretable. LLR scores also require a fully specified survival model for the data and specification
of the alternative hypothesis to be tested for.

DISCUSSION

The STRAND Chart for online monitoring of survival outcomes in continuous time keeps patient ordering intact, as the
uEWMA,14 Weighted CUSUM,21 and Improved Bernoulli CUSUM10 do. The Biswas and Kalbfleisch continuous-time Cox
proportional hazards CUSUM does not keep patient ordering intact in the same way,16 as we have argued, but does update
as and when information comes in and so is more sensitive to recent change in the process being monitored.

As in the papers of Steiner and Jones, Yashchin, and Keefe et al,10,14,21 patient ordering according to real-time ordering
of surgery is maintained, but here, short survival times do not affect all strands until the censoring period is up and all
survival times for that cohort of patients who are operated on the same day (or on neighbouring days) have been collected.
Thus, the short survival times do not get larger weights than the longer survival times in the same cohort simply because
they are more contemporary. Also, the longer survival times are not lost in the chart, since the chart in effect waits for them
to come through and to be weighted fairly against the short times. The layered nature of the chart and the natural real-time
delay mean that short-term survival patterns affect the lower strands of the chart, where these relate to short-term survival
rates, earlier in real monitoring time than they affect the upper strands of the chart, where these relate to longer-term
survival rates (within the censoring window).

The STRAND chart can be applied within a Bayesian framework, so is akin to Bayesian changepoint methods for
monitoring survival outcomes,39 but, in contrast to those methods, is an online as opposed to retrospective method. The
methods we review in this paper are, like the STRAND chart we present, also online methods.14-16,21 Where online meth-
ods can detect process change quickly, retrospective methods are ideally used as tools for locating the time of change
(or changepoint).

We do not try to discuss in full the relative merits of the Classical and Bayesian approach to applying the EWMA here,
as it is beyond the scope of this paper. For more insight, there is a background of available literature.11,17,28-33,42

The basic form of the STRAND Chart that we present is semiparametric in nature, much like the Cox proportional
hazards CUSUM of Biswas and Kalbfleisch16 in that the survival distribution is not fully specified. However, any statistic
could be used on each of the strands, in particular, the more efficient LLR CUSUMs or log hazard ratio CUSUMs. We
present the chart as a collection of RA EWMAs as this provides semiparametric smoothed estimates of percentiles of the
survival distribution that are optimal time series smoothers.43 Fully parametric methods have less freedom, and CUSUMs
based on the likelihood, although optimal in terms of efficiency, do not immediately give smoothed estimates of features
of the survival distribution.

In the example application to the now classic UK post cardiac surgery dataset of 1992-1997, we show that the STRAND
Chart can describe the nature of clusters of failures as they ripple through the chart, and we highlight where unusually
long survivals of patients are balancing out the unusual failures. Previously, undetected features of the data are highlighted
by the chart. Through bootstrapping of this dataset, we show that, given the format of estimating n-day survival, the
performance of the STRAND Chart is closer to that of the uEWMA with scores relating to 30-day survival than to the more
optimal uEWMA with LLR scores. We also show that STRAND Charts with a single early strand might be more efficient
for detecting process change but we note that such a chart would perhaps not describe the survival process in enough
detail. We expect that a STRAND Chart based on CUSUMs would have efficiency more alike to that of the uEWMA with
LLR scores. This is potential area for future investigation.
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