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Abstract: Human identification based on motion capture data has received signification attentions for
its wide applications in authentication and surveillance systems. The optical motion capture system
(OMCS) can dynamically capture the high-precision three-dimensional locations of optical trackers
that are implemented on a human body, but its potential in applications on gait recognition has not
been studied in existing works. On the other hand, a typical OMCS can only support one player
one time, which limits its capability and efficiency. In this paper, our goals are investigating the
performance of OMCS-based gait recognition performance, and realizing gait recognition in OMCS
such that it can support multiple players at the same time. We develop a gait recognition method
based on decision fusion, and it includes the following four steps: feature extraction, unreliable
feature calibration, classification of single motion frame, and decision fusion of multiple motion frame.
We use kernel extreme learning machine (KELM) for single motion classification, and in particular
we propose a reliability weighted sum (RWS) decision fusion method to combine the fuzzy decisions
of the motion frames. We demonstrate the performance of the proposed method by using walking
gait data collected from 76 participants, and results show that KELM significantly outperforms
support vector machine (SVM) and random forest in the single motion frame classification task,
and demonstrate that the proposed RWS decision fusion rule can achieve better fusion accuracy
compared with conventional fusion rules. Our results also show that, with 10 motion trackers that are
implemented on lower body locations, the proposed method can achieve 100% validation accuracy
with less than 50 gait motion frames.

Keywords: decision fusion; gait recognition; kernel ELM; optical motion capture; sensor fusion

1. Introduction

Human identification using motion capture data has attracted much attention for
its wide applications in authentication, surveillance, and medical applications [1]. Some
commonly used identification methods, such as face recognition and fingerprint, are not
preferred by some people who have sensitive privacy considerations [2]. Gait recognition
does not require the privacy data of the target person, and therefore is one promising alter-
native that can be used for human identification. In addition, when the facial appearance
of the target person is unavailable or changeable, it can be used for tracking the persons of
interest in public security with the gait information of target persons [3].

In gait recognition, the system authenticates or classifies the target person by using
her/his walking manner. The used gait data mainly include the following four modalities:
camera image gait data [4], inertial acceleration sensor data [5], floor sensor data, and
passive wireless signals [6] or wave radar data [7]. In addition, the recognition performance
can be further improved by integrating the above four data modalities [8]. The optical
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motion capture systems (OMCSs), such as the Vicon [9], can obtain highly precise gait
motion data of the target persons, and have been widely used in sports training [10],
animation [11], medical analysis [12], and robotics [13]. For example, in sports training,
using an optical motion capture system can accurately record the body motions, which
is helpful for the coach and the athletes to analyze the characteristics of the motions,
and provide new training guides for improving training performance [14]. Similarly, in
medical analysis, the OMCSs can be used to capture the motion behavior of patients with
Parkinson’s disease, and can be used as a diagnostic basis and in Parkinson treatment [15].

Existing gait recognition works mainly rely on sensor data or image data for classi-
fying the object, and the recognition accuracy is not high enough for some applications
with stringent accuracy requirements. The OMCSs can obtain high-precision gait motions,
which may be helpful for improving the gait recognition performance, but its potentials in
gait recognition has not been studied. Though it requires the implementation of optical
motion trackers, the system does not require sensitive information like face image and
fingerprint, thus it will be acceptable for some users with privacy concerns. In addition,
OMCS is widely used in sports training, physical treatment, and visual effects produc-
tion applications [11–15]. Existing work only support one player at one time, and it is
necessary to develop gait recognition methods if we want to classify different persons in
a multiple player scenario. In this way, the efficiency and capability of an OMCS can be
greatly improved.

As such, in this paper we attempt to use an OMCS for human identification, and our
goal is to achieve state of art identification accuracy with 10 optical trackers that are planted
on the lower body locations of the target person, including thigh, lower leg, and foot, and
both left and right body sides. The proposed method only requires the collection of several
gait cycles of the participants, and the tracked body locations are chosen as the lower body
part, which reduces the intrusion degree compared with other body parts such as chest
and head. We propose a decision fusion-based gait recognition method, and compared
with existing works, the proposed method has the following distinguished differences:

(1) We use an OMCS to record the gait trajectories of the persons and study the gait
recognition problem with the obtained data, which has not been considered in existing
works. Though OMCS requires the implementation of optical trackers, the system can ob-
tain high-precision gait motion data, which is helpful to improve the classification accuracy
when only using a relative smaller number of gait motions for human classification. In
addition, the system does not require a large number of optical trackers, and using only
10 optical trackers can achieve very good classification accuracy, and even 100% accuracy
when sample number is large enough.

(2) We use a powerful classifier, namely kernel extreme learning machine (KELM) [16],
to conduct the classification process for the extracted feature data. Existing works mainly
use SVM and random forest as the classifier [1]; in the considered problem of this paper, we
show that KELM can achieve much higher classification accuracy and efficiency compared
with the above two competitive classifiers.

(3) Instead of focusing on improving the classification accuracy of the base classifier,
in this paper we highlight the importance of decision fusion of multiple motion frames,
and we develop a first-classification-then-fusion method to achieve better classification
performance, and the design of the decision fusion rules plays a vital role in improving
the fusion performance. More specifically, we first conduct the classification process for
each single motion frame, and then propose a reliability weighted sum (RWS) rule for
combining the classification decisions of multiple motion frames. In the proposed RWS
rule, we first transform the outputs of the KELM classifier into fuzzy decisions by using
a membership transformation function, then compute the consistency matrix of all the
fuzzy decisions by using a consistency degree measurement. With the obtained consistency
matrix, we then use the Eigenvalue decomposition method to obtain the weight vector of
the fuzzy decisions. A fuzzy decision with larger average consistency value to other fuzzy
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decisions means that it is more reliable, and the corresponding reliability weight value will
be relatively larger, otherwise it will be relatively smaller.

(4) The experimental results on the collected gait motion data with 76 participants
demonstrate that the proposed rule outperforms several decision rules, including sum
rule, belief rule, weighted belief rule, product rule, and majority voting rule. The results
also show that the proposed method can achieve 100% classification accuracy with 10
motion optical trackers, which shows its potentials for its applications in authentication
and multiplayer motion tracking applications.

The remainder of this paper is organized as follows: Section 2 gives a brief review to
related work, the detailed process of the proposed decision fusion-based gait recognition
method is shown in Section 3. Experimental results are shown in Section 4. Section 5
concludes the paper.

2. Related Work

Gait recognition has been extensively studied in for its wide applications in authenti-
cation, surveillance, training, and medical treatment [1–3]. In most existing methods, the
gait recognition methodology mainly includes the following four steps: feature extraction,
dimension reduction, and classification [1]. The gait motion data contains both the locations
and velocity data; thus, it is more related to image gait data and acceleration sensor data.
From the perspective of tracker implementation way, the acceleration sensor data is similar
to the optical motion tracker used in this paper, since they all need to collected from the
tracker sensors deployed on different locations of the human body. The difference is that
accelerator cannot track the 3D positions of the gait, and it requires the system to collect
sufficient data samples (e.g., more than 1000) to achieve a relative better classification
performance [17]. For the optical motion tracker based system, its deployment cost is
higher compared with inertial sensor system, but it can obtain high-quality and precise
trajectories of the optical trackers. Since the precise gait motion trajectories are recorded,
the proposed system can achieve good performance with very limited number of data
samples or a few gait cycles. On the other hand, the image gait data can be regard as a
2D rejection of the 3D gait motions, and a set of gait images contain the trajectories of the
monitored person. However, due to the limitation of image resolution, it is hard to extract
precise 3-D precise trajectories from the image data without the assistance of range sensor,
which decreases the recognition accuracy of the system [18].

In the feature extraction step, the system needs to extract expressive feature represen-
tations from the raw data. Although the quality of the extracted features has significant
impacts on the classification accuracy of the gait recognition task, yet it is still not unified
that which feature is the best choice that suits all situations. For image data, existing
feature extraction methods can be categorized as model-based methods and model-free
methods [1]. In model-based feature extraction, the features depicting the human body
characteristics are extracted, typical features including stride length and step frequency [19],
body distances [20], gait template [21], and velocity Hough transform [22]. According to
the summary of Tang [23], the commonly used for extracting the acceleration data feature
mainly include mean value, standard deviation, range, signal energy, spectral entropy,
bandpower, etc. Some other features, including number of zero crossings, inter quartile
range, average peak length, spectral edge frequency, are also used in gait recognition
systems [24]. In this paper, we will also use relative distance feature and velocity features
as in the input of the classifiers, which belongs to the methodology of model-based feature
extraction. It has been shown that using relative distance of the body locations can achieve
good classification performances since they are able to depict both body shape and mo-
tion actions [20]. In addition, experiments have shown that the walking speed is highly
correlated to the age and gender of the target persons [25], thus it is also adopted in the
proposed gait recognition method.

In the classification step, the most commonly used classifiers include support vector
machine (SVM) [26], random forest (or Decision Tree Ensemble Classifier) [27]. The deep
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learning based method are also popular for gait recognition, such as deep convolutional
neural networks (CNN) [28], deep autoencoder-decoder [29], and long short-term memory
(LSTM) network [30]. In this paper, we want to train the classifier with only a limited
training data; thus, deep learning methods are not suitable in this situation since they
need large enough data to train the model. We will use a kernel extreme learning machine
(KELM) classifier to conduct the gait recognition process for single frame motion data,
and we will prove its superiority in classification accuracy compared with SVM and
random forest.

We emphasize that the gait recognition problem in this paper is different from the
above existing works, in which the classifier usually requires a very large training data
samples, and each sample is composed by several gait cycles to achieve good classification
performance. In the proposed method, we only record several gait cycles for training the
classifier for single motion classification, and 1–2 gait cycles for classification, which is
efficient for data collection process. However, the available number of gait motion data is
quite limited and cannot be solved by methods that require a larger number of training
and test data. To fully use the decisions of each single motion frame, in this paper we first
propose a method that first conducts frame-level classification, and then develop a decision
fusion method to combine the decisions of the single frames, while in existing work the
decision is directly made by the output of the classifier, and each classification requires a
bunch of gait motion data frames. In the following section, we will illustrate the detailed
steps of proposed gait recognition method using decision fusion.

3. Decision Fusion Based Gait Recognition
3.1. The Gait Motion Tracking System

We use optical motion trackers to record high-precision body motion trace to identify
the target person. Before identification, the participants are required to wear a set of optical
trackers, and then naturally and straightly walk through a flat test field with a length less
than 5 m, which can be done in a very short period of time. There are 76 participants in
total, with 46 females and 30 males, and their ages range from 20 to 60. The heights of
the participants range from 144 to 178 cm, and the weights ranges from 42 to 115 kg. The
sampling frequency of the body locations is 5 Hz, and there are 10 lower-body locations are
recorded in each frame, which include thigh, knees, shin, ankle, and tiptoe, and both left
and right sides are covered. The obtained walking lengths of the participants are different,
which range from 2.37 to 4.15 m. An example of the recorded gait data is shown in Figure 1,
in which 5 gait motion samples of one participant is plotted. Visually, we can see that it is
hard to identify the target person without using a proper gait recognition method.

Figure 1. An example of the 3D gait motion track data.

In this paper, we consider a gait recognition problem using high-precision optical gait
motion trackers. Before identifying the target, the system previously prepared a set of training
dataset with N different persons, denoted as T = {{(x1, y1, z1), c1}, . . . ; {(xN, yN, zN), cN}},
where xi = {xi,1, . . . ; xi,10}, yi = {yi,1, . . . ; yi,10}, and zi = {zi,1, . . . ; zi,10} denote the
recorded 3D coordinates of the trackers of person i, and ci denotes its label. Note that
the training data must at least contain a complete walking cycle of the person.
Given a new person to be identified, the system record T consecutive motion frames,
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denote as X =
{(

x(1), y(1), z(1)
)

, . . . ;
(

x(T), y(T), z(T)
)}

, where x(t) = {x(t)1 , . . . ; x(t)10 },

y(t) = {y(t)1 , . . . ; y(t)10 }, and z(t) = {z(t)1 , . . . ; z(t)10 } denote the 3D coordinates of t-th gait
motion frame. When the classifier is properly trained, our problem becomes identifying the
target person according to the input motion data X . As shown in Figure 2, the proposed
first-classification-then-fusion method mainly includes the following four steps:

Figure 2. The flowchart of the proposed gait recognition method.

(1) Feature exaction: For each person, the input raw data includes 10 motion tracks,
and they cannot be directly used to classify the target object. In this paper, we want to
identify the target person with a short gait motion capture trace; extracting the features
from a trace recorded from motion tracker time series is not practical in this situation since
each person may only has several gait cycles, and the number of collected gait motion
is quite limited. As such, a feature exaction process that only extracts relative location
distance and speed features from single frame data is proposed to obtain an expressive
feature representation of the input data, and then the extracted features will be the input of
the following identification process.

(2) Unreliable feature calibration: Though the OMCS can record high precise gait
trajectory data, we observe that a recorded motion instance may be biased due to sensing
failure or noise interference, and the corresponding the features of the biased motion data
are also unreliable. Therefore, it is necessary to detect and calibrate the unreliable feature
data, and relief their impact on the classification performance.

(3) Classification: In this paper, we will use a kernel extreme learning machine (KELM)
to deal with the classification task for the feature data of each single gait motion frame. We
will provide performance comparison results to demonstrate the advantages on classifica-
tion accuracy and efficiency of KELM for the gait classification in the experimental section.

(4) Decision fusion: The motion frame number of different persons are also different
due the variation of walking speed of the target person. With the obtained KELM outputs
of all the frames, we then need to combine them into a unified one to obtain the final global
decision. Compared with single frame classification, we expect a classification accuracy
improvement after combining the decision of multiple frames, and the decision fusion rule
will play a vital rule on the final fusion accuracy.

In the next subsections, we will give a detailed illustration of the above four steps,
along with their mathematical models.

3.2. Feature Extraction

Given a gait motion data, we use the relative distance of the tracker locations as
the feature of the input motion data. The reason is that the relative distance metric can
depict both walking action and physical body shape characteristics, which can effectively
distinguish the differences between gait motions of two persons. In frame (t), for two
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trackers i, j with coordinates (x(t)i , . . . ; x(t)i ) and (x(t)j , . . . ; x(t)j ), their Euclidean distance can
be computed by

d(t)i,j =

√(
x(t)i − x(t)j

)2
+
(

y(t)i − y(t)j

)2
+
(

z(t)i − z(t)j

)2
(1)

In this way, we can obtain a pairwise distance matrix D =
[
di,j
]
{10×10} that contains

the relative distance metrics between the 10 optical tackers, in which d(t)i,i = 0 and d(t)i,j = d(t)j,i .

Since D(t) is symmetrical, and diagonal elements are all 0, we only use the elements
of upper triangle or lower triangle of matrix D(t) as the feature representations. Let
d(t) = {d(t)1 , . . . , d(t)Kd

} be the one-dimensional vector that contains all the elements of upper
triangle matrix of D, then we can know the feature dimension is Kd = 10× 9/2 = 45.

It has been shown that gait speed can be used as features for human identification and
age prediction [23], thus except the relative distances among the optical trackers, we also
include the x-axis speed of each tracker into the features vector. For tracker i, the x-axis
coordinates in frames (t) and (t + 1) are x(t+1)

i and x(t)i , then we can estimate the x-axis
velocity as follows:

v(t)i =
1
τ

(
x(t+1)

i − x(t)i

)
(2)

where τ denotes the time period between two consecutive gait motion frames. In this paper,
τ = 0.2 s. In this way, we can obtain a velocity feature vector v(t) = {v(t)1 , . . . , v(t)Kv}, and
Kv = 10. Combined with the relative distance features, we finally obtain the gait feature
vector of motion frame (t) as z(t) = {d(t); v(t)}. Note that, before the classification step, the
features obtained need to be normalized since their magnitudes are different.

3.3. Unreliable Feature Calibration

Due to sensing failure or noise interference, the obtained track data may be biased,
and even become outliers. Accordingly, the obtained features also will be unreliable, and
will cause negative impacts on the classification performance of the gait recognition task;
thus, the unreliable features need to be detected and calibrated. In this paper, we use a
hypothesis test method to identify the unreliable features, in which we first estimated the
probability density function (PDF) of each feature, then find the unreliable features that is
larger or lower than the probability thresholds. Since the feature is irregularly distributed,
and cannot be reasonably depicted by one specified distribution, thus we use the kernel
density estimation method to estimate the PDFs of the features. Given a feature vector
z = {z1, . . . , zL}, where L denotes the number of feature data. The estimated PDF at point
z is estimated as follows [31]

f (z) =
1
L

L

∑
i=1
K
(

z− zi
ρ

)
(3)

where ρ > 0 denotes that kernel parameter. In this paper, we use radial basis function

as the kernel function, i.e., K
(

z−zi
ρ

)
= exp(− (z−zi)

2

ρ ), and the bandwidth parameter

ρ is computed by ρ = σ( 4
3L )

0.2
[32]. With the obtained PDF, we then can obtain the

corresponding cumulative distribution function (CDF) by Φ(z) =
∫ z

o p(z)dz. Let Pth be the
probability threshold that decides whether the feature is unreliable or not. In other word, a
feature data z will be regarded as unreliable when it satisfies the following condition:

Φ(z) > Pth or Φ(z) < 1− Pth (4)

The above criterion requires us to compute the CDF Φ(z) every time, which is not
efficiency enough. We can also compute the corresponding upper bound zub and lower
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bound zlb with respect to Pth and 1 − Pth by zub = Φ−1(Pth) and zlb = Φ−1(1− Pth)
respectively. In this way, expression (4) is equivalent to

z > Φ−1(Pth) or z < Φ−1(1− Pth) (5)

For a feature data z(t)i , if it is judged as unreliable, in this paper we simply calibrate it

as follows z(t)i = zub
i if z(t)i > Φ−1(Pth), and z(t)i = zlb

i if z(t)i < Φ−1(1− Pth). Note that we
do not delete the unreliable because the remained features are still reliable, and a classifier
that is strong enough may still can classify the target with calibrated data. In the following
multiple frame decision fusion process, the soft decision of a calibrated motion data is still
useful for recognizing the target person.

Figure 3 shows an example of the detected unreliable features, in which (a) and (b)
plot the tracker distance features and gait speed respectively, (c) and (d) plot the PDFs of
(a) and (b), respectively. When the probability threshold Pth = 99.9%, we will find 1 and
5 outliers in (a) and (b), respectively, and the outlier points are marked with red circles. In
this situation, the corresponding features will be to calibrated as their mean values to relief
their impacts on the classification performance.

Figure 3. Two examples of unreliable feature, in which (a,b) plot the tracker distance features and
gait speed, respectively, the unreliable features are marked with red circles, (c,d) plot the distribution
of (a,b), respectively.

3.4. Classification with Single Gait Motion Frame

With the obtained features, we then use a pattern recognition classifier to identify the
target person. The used classifier can be any proper classifier with acceptable classification
performance, such as the commonly used support vector machine (SVM), and random
forest. In the proposed decision fusion based gait recognition method, the classification
performance of each single gait motion frame has critical influences on the following fusion
accuracy, thus it is necessary to find a classifier with powerful classification capacities.
However, from the test results, we found that the classification performances of SVM and
random forest are not satisfactory to us. In this paper, we use KELM as the base classifier
for its outstanding classification performance in both accuracy and efficiency. Let Z be the
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features extracted from training motion data, then we can obtain the corresponding kernel
Gram matrix K =

[
Ki,j
]

M×M by using the kernel function, in which Ki,j is computed by

Ki,j = K
(
zi, zj

)
(6)

where K
(
zi, zj

)
denotes the kernel function with inputs zi and zj. In this paper we use

Gaussian kernel function, and Ki,j is computed by

Ki,j = e
(zi−zi)

2

h (7)

where h > 0 denotes the bandwidth function, usually it can be selected from{
2−9, . . . , 20, . . . , 29}. In the training process of KELM classifier, our goal is to obtain

the output weight matrix β, which is computed by [33]

β =

(
K +

1
λ

)−1
C (8)

where λ denotes the regularization parameter, and it can be selected from{
10−9, . . . , 100, . . . , 109}. Note that parameters h and λ can be set by different trials, and

the values can be chosen as the one with maximal classification performance. Now, given a
new input feature data z(t), we can obtain the corresponding output of the KELM classifier
as follows:

o(t) = K
(

z(t), Z
)T

β = K
(

z(t), Z
)T
(

K +
1
λ

)−1
C (9)

Note that o(t) is a vector that contains continuous predictions of target data, and
we need an additional decision making process to if we want to know the final discrete
predicted labels, namely the hard decisions.

Remark 1. A relative larger value of a KELM output means the probability that the target belongs
to the corresponding class will be higher. Apparently, a class with maximal output will be regarded
the hard decision of the classifier. For a KELM classifier, if an output o(t)i is closer to −1, then it is
more probable that the target does not belong to the corresponding class ci. On the other hand, if
o(t)i is closer to 1, then it will be more probable that it belongs to the class ci.

Since we want to combine the decisions of the multiple motion frames, the output will
be transformed to fuzzy decisions, and details will be introduced in the following subsection.

3.5. Decision Fusion of Multiple Motion Frames

To combine the decisions of the consecutive motion frames, in this paper we propose
a reliability-weighted sum rule (RWS) that adjusting the fuzzy decisions by considering the
differences among the fuzzy decisions. In general, a decision is relatively more consistent
to other decisions, it is more reliable, otherwise more unreliable. In RMS, the obtained
output data of KELM classifier are first transformed to fuzzy decisions by using a fuzzy
membership function. More specifically, for frame t, the fuzzy membership that the target
person belongs to class ci is defined as follows:

µ
(t)
i = exp

−( o(t)

o + γσ
(t)
o

)2
 (10)

where o and σ
(t)
o denote the average value and the standard deviation of the o(t). Parameter

γ is used for adjusting the discriminative degree of the obtained membership values. A
larger value of γ will produce a larger span of the membership, and the discriminative
degree is also higher. In this paper, we set γ = 0.5 in default.
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Remark 2. The above fuzzy decision means that, for one classifier output vector, a relative larger
output of one class will be transformed to a larger membership compared with other classes, otherwise
it will be relatively smaller. In particular, in KELM, we set the class label that the person belongs to as
+1, and other class labels as−1. For example, in a classification task with 5 classes, the decision label
vector when the person belongs to class 2 is c = [−1,+1,−1,−1,−1]T . Given a new gait instance
that belongs to class 2 and suppose its output vector is o = [−0.9, 0.2,−0.4,−0.8,−0.95]T , then
the fuzzy decision computed by Equation (11) will be µ = [0.0005, 0.6913, 0.2284, 0.0027, 0.0002],
we can see that a relative larger output value will produce a larger value of fuzzy membership.

With the above membership transformation process, we can obtain the fuzzy decisions
of all the motion frames, which are denoted as µ(1), . . . , µ(T). One can directly combine
the fuzzy decisions by using some classical decision fusion rules, such as the sum rule,
product rule, and majority voting rule [34]. However, the reliabilities of the decisions are
not considered in the above rules, which may decrease the accuracies of the final fusion
results. If we can know a reasonable reliability for each fuzzy decision, then the impacts
of the misclassified decisions can be reduced, and the classification accuracy of the global
fusion results can be improved.

As such, in this paper we propose a reliability estimation method by using the con-
sistency degrees among the fuzzy decisions. In belief function theory, the consistency
degree between two basic belief assignments (BBAs) m1 = {m1(ω1), . . . , m1(ωM)} and
m2 = {m2(ω1), . . . , m2(ωM)} is defined as follows [34]

ϕ(m1, m2) = ∑
ωi∩ωj 6=∅

m1(ωi)m2
(
ωj
)
. (11)

Following the above definition, we define the consistency degree between two fuzzy
decisions µ(1) = {µ(1)

1 , . . . , µ
(1)
M } and µ(2) = {µ(2)

1 , . . . , µ
(2)
M } as follows:

ψ(µ(1), µ(2)) = ∑
ωi∩ωj 6=∅

µ
(1)
i µ

(2)
j . (12)

Since we do not have compound classes in the above Equation, thus the consistency
degree equals to the inner product of µ(1) and µ(2), as given by

a1,2 = ψ(µ(1), µ(2)) =
M

∑
i=1

µ
(1)
i µ

(2)
i =< µ(1), µ(2) > (13)

If the obtained consistency value ψ
(

µ(1), µ(2)
)

is relative larger, then we can know

that µ(1) and µ(2) are more similar with each other, otherwise they are more conflicting
with each other.

Remark 3. For a complex classification task with multiple classes, there may exist several
outputs with relative larger fuzzy membership values. For example, for a fuzzy decision
µ(1) = [0.1, 0.1, 0.7, 0.85, 0.1]T , in which the memberships of class c3 and c4 are much larger
than the other 3 classes, and both of them are probable to be results. Given another output vector
µ(2) = [0.1, 0.1, 0.2, 0.85, 0.1]T , in which the membership of class c4 is much larger than other
classes. If the target belongs to class c3, we can see that, when the reliability weights of the two
fuzzy decisions are the same, fuzzy decision µ(2) will impose a higher negative impact to the final
decisions compared with µ(1). As such, it is necessary to allocate a relative smaller reliability weight
to µ(2) to avoid misclassification risks.

Remark 4. According to the above definition of decision consistency degree, we can see that,
for two fuzzy decisions µ(1) and µ(2), if µ(1) < µ(2), i.e., the memberships of µ(1) are all larger
than the corresponding memberships of µ(2), we have ψ

(
µ(1), µ(t)

)
≥ ψ

(
µ(2), µ(t)

)
for any
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µ(t) < 0. According to this property, we can see that, if one fuzzy decision has more than one
relative larger memberships, its corresponding consistency degree will be more probable larger than
a fuzzy decision with only one relative larger membership. For example, given two fuzzy decisions
µ(1) = [0.1, 0.7, 0.3, 0.2, 0.2]T and µ(2) = [0.1, 0.7, 0.8, 0.2, 0.2]T , then for µ(t) < 0, we have
ψ
(

µ(1), µ(t)
)
≥ ψ

(
µ(2), µ(t)

)
. This is because µ(2) indicates that the classifier indicates that both

class 2 and 3 are very probable to be the target class, and its consistency degree will be larger.

With above consistency computation method, we can obtain a consistency matrix
A = [at,k]T×T that contains pairwise consistency values of among the fuzzy decisions,

in which at,k = ψ
(

µ(t), µ(k)
)

. It can be expected that, for a fuzzy decision µ(t), if its
consistency degrees at = [at,1, . . . , at,T ] to other fuzzy decisions are relative lager values
compared with other fuzzy decisions, then we can see it is more consistent to other fuzzy
decisions, and its reliability degree should be higher. To achieve this goal, we use the
eigenvalue decomposition method (EDM) [35] to compute the reliability weight of each
fuzzy decision. In EDM, we want to compute the eigenvalues λ1, . . . , λT and eigenvectors
wt, . . . wT of A, which satisfies the following condition:

Awt = λtwt (14)

We can see that one eigenvalue corresponds to a unique eigenvector. The above EDM
problem can be properly solved by using the well-known Singular Value Decomposition
(SVD) method [35]. When all the eigenvalues and eigenvectors are obtained, we use the
eigenvector ws that with the maximal eigenvalue λmax = max{λ1, . . . , λT} as the decision
weight vector. Note that the obtained eigenvector ws can not be directly used as reliability
weight if it not normalized. Let r =

[
r(t)
]

1×T
be the normalized weight vector, and it is

computed by

r(t) = a + b
ws

t − ws
min

ws
max − ws

min
(15)

where a and b denote the lower bound and upper bound of the normalized weight respec-
tively, ws

max and ws
min denote the maximal and minimal value of ws, respectively. In this

paper, we set a = 0.6 and b = 0.4; thus, we have r(t) ∈ [0.6, 1].

Remark 5. It has shown that eigenvector ws can be used as the representation of the importance
of each vector in consistency matrix A [36,37]. More specifically, a relative larger value of at will
produce a relative larger eigenvalue of ws

t . With this property, eigenvector ws can be used as the
reliability degree of the fuzzy decisions. As mentioned above, a fuzzy decision with larger average
consistency value corresponds to a relative larger eigenvalue, and it is more reliable compared with
other fuzzy decisions.

Next, we can combine all fuzzy decisions into a unified global one by using the
obtained reliability weights, as given by

µg =
1
T

T

∑
t=1

r(t)µ(t) (16)

At last, the final decision is made by choosing the class with maximal global member-
ship value, as given by

cg = max
{

µ
g
1 , . . . , µ

g
N

}
(17)

The above fusion process is suitable for classifying the feature data with different
number of gait motion frames. It can be expected that, the fusion accuracy will be increased
if the number of the fused decisions (or motion frame number T) is increased. In general,
only several gait cycles (e.g., T ≥ 3) will be sufficient to achieve robust fusion accuracy.
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The detailed process of the proposed RWS rule is illustrated in the Algorithm 1. We
first train the KELM classifier by using Equation (8). Note that, in the proposed method,
only KELM is required to be trained, and RWS rule does not need to be trained and it
can be directly used for combining the fuzzy decisions. Given a data with several new
motion frames, we obtain the outputs of the KELM classifier, and transform the outputs
into fuzzy decisions µ(1), . . . , µ(T). Then, we compute the consistency matrix A by using
the obtained fuzzy decisions. Subsequently, the eigenvalue decomposition process is
conducted to matrix A, and the obtained eigenvector ws with the maximal eigenvalue
is used for representing the reliability values of the fuzzy decisions. Subsequently, we
normalize the eigenvector ws into a suitable interval and obtain the reliability vector
r =

[
r(t)
]

1×T
, and combine the fuzzy decisions by using a weighted sum combination

operation. Finally, the classification result of all fuzzy decisions is chosen as the class with
maximal global fuzzy membership.

Algorithm 1 The proposed RWS decision fusion rule.

Input: Motion frame data
(

x(1), y(1), z(1)
)

, . . . ;
(

x(T), y(T), z(T)
)

, RBF kernel parameter h, KELM
regularization parameter λ;
Output: Classification result cg;
1: for t = 1, . . . , T
2: Compute classification output o(t) by using Equation (10);
3: Compute fuzzy decisions µ(t) by using Equation (11);
4: end for
5: Compute fuzzy decision consistency matrix A =

[
at,k
]

T×T by using Equation (14);

6:
Compute eigenvalues λ1, . . . , λT and eigenvectors wt, . . . wT of consistency matrix
A =

[
at,k
]

T×T by using eigenvalue decomposition;
7: Find the eigenvector ws with the maximal eigenvalue λmax = max{λ1, . . . , λT};
8: Compute decision reliabilities r =

[
r(t)
]

1×T
by using Equation (16);

9: Compute global fuzzy decision µg by using Equation (17);
10: Obtain the final classification result cg by using Equation (18).

3.6. A Toy Example for Illustrating the Proposed RWS Rule

In this subsection we present a toy example to give a better understanding of the
proposed RWS rule. Consider a gait motion recognition problem with 5 possible persons,
and suppose that we have 10 consecutive motion frames, and the corresponding fuzzy
decisions are shown in Table 1. In this example, the memberships of class 2 are randomly
generated from interval (0.1, 0.8), and the memberships of other classes are randomly
generated from interval (0.1, 0.4). We can see that, except µ(2), the membership values of
class 2 in other fuzzy decisions are actually not very large. In particular, we can see that
in fuzzy decisions µ(1), µ(3) and µ(6), the classes with largest membership values are not
class 2. It can be expected that their reliability degrees will be relative smaller than other
fuzzy decisions.

Next, we compute the corresponding decision consistency matrix of the fuzzy deci-
sions in Table 1, and the results are shown in Table 2, in which Ai and A(i) denote the i-th
column and i-th row, respectively. The corresponding fuzzy decisions are shown in Table 3.
As expected, we can see the reliabilities of fuzzy decisions µ(1), µ(3) and µ(6) are the three
smallest of the 10 fuzzy decisions, and reliability of µ(2) is the largest. In particular, we can
see that the reliabilities of µ(9) and µ(10), respectively. From this example, we can see that
the obtained reliability weight of one fuzzy decision can reasonably reflect its overall con-
sistency to other fuzzy decisions. Finally, with the obtained reliability weights, the global
fuzzy decision can be obtained by Equation (17), which is µg = [0.11, 0.27, 0.16, 0.14, 0.14],
which shows that the final decision is class 2.
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Table 1. The fuzzy decisions.

Class 1 Class 2 Class 3 Class 4 Class 5

µ(1) 0.23 0.24 0.34 0.13 0.40

µ(2) 0.32 0.71 0.39 0.23 0.32

µ(3) 0.10 0.29 0.19 0.39 0.18

µ(4) 0.19 0.52 0.31 0.26 0.34

µ(5) 0.14 0.40 0.36 0.31 0.13

µ(6) 0.13 0.33 0.37 0.19 0.23

µ(7) 0.16 0.57 0.13 0.31 0.37

µ(8) 0.20 0.36 0.11 0.35 0.19

µ(9) 0.22 0.50 0.15 0.11 0.19

µ(10) 0.26 0.58 0.36 0.33 0.14

Table 2. The consistency matrix of the fuzzy decisions.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A(1) 0.40 0.53 0.28 0.44 0.34 0.35 0.40 0.29 0.31 0.42

A(2) 0.53 0.92 0.46 0.72 0.59 0.54 0.69 0.50 0.57 0.76

A(3) 0.28 0.46 0.31 0.39 0.34 0.30 0.39 0.31 0.27 0.42

A(4) 0.44 0.72 0.39 0.59 0.47 0.44 0.57 0.41 0.44 0.60

A(5) 0.34 0.59 0.34 0.47 0.43 0.38 0.44 0.35 0.34 0.52

A(6) 0.35 0.54 0.30 0.44 0.38 0.36 0.40 0.30 0.31 0.46

A(7) 0.40 0.69 0.39 0.57 0.44 0.40 0.60 0.43 0.44 0.57

A(8) 0.29 0.50 0.31 0.41 0.35 0.30 0.43 0.34 0.31 0.44

A(9) 0.31 0.57 0.27 0.44 0.34 0.31 0.44 0.31 0.36 0.46

A(10) 0.42 0.76 0.42 0.60 0.52 0.46 0.57 0.44 0.46 0.66

Table 3. The reliabilities of the fuzzy decisions.

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6) µ(7) µ(8) µ(9) µ(10)

Reliability
(Unnormalized) 0.26 0.44 0.24 0.36 0.29 0.27 0.35 0.26 0.27 0.37

Reliability 0.37 1.00 0.30 0.70 0.48 0.39 0.66 0.35 0.39 0.75

4. Experimental Results

In this section, we test the performance of the proposed method by comparing it with
some acknowledged baseline methods. The experiment mainly includes two parts: the first
one is the classification performance comparison of the single motion frame, and the results
of KELM, SVM, and random forest will be provided. The other one is the performance
comparison results of the proposed RWS rule and other fusion rules, including sum rule,
belief rule, weighted belief rule, product rule, and majority voting rule. As mentioned
before, the system has 10 motion trackers, which are implemented on the lower body
locations, and each body location has one or two trackers. For one body side, there are
5 trackers, and the trackers are implemented at the following three locations: thigh (one
tracker), lower leg (one tracker at ankle, one tracker at shank), foot (one tracker at ankle,
and one tracker at tiptoe). Since the system requires us to plant optical trackers on human
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bodies, it is better to reduce the number of trackers as much as possible. As such, we also
want to clarify that whether it is possible for us to implement only one tracker on the lower
leg and foot locations, thus we choose three trackers each body side, and six in total. With
the above considerations, we will test the recognition performances of single motion frames
and multiple motions with 10 and 6 motion trackers. All the experiments are conducted in
a Windows 10 system with Intel i7 CPU, and 16 GB RAM, and the algorithm is developed
in MATLAB 2020a platform.

4.1. Results of Single Motion Frame Classification

In this subsection, we test the classification performance of KELM on single motion
frames. We first use 9595 motion frames as the training dataset, and the number of each of
consecutive motion frames of each participant ranges from 82 to 179, and average number
of each participant is about 122, and the corresponding number of gait cycles are about 3–5.
We use another 4787 motion frames for the 76 participants, and the number of consecutive
motion frames of each participant ranges from 45 to 89, or 1–3 gait cycles. We can see that
test data size is about the 1/2 of the training data.

Except KELM, we also test the performance of support vector machines (SVM) and
random forest, which are used in [26] and [27], respectively. The classification perfor-
mance comparison results along with the parameter settings that can achieve the maximal
classification accuracies are shown in Tables 4 and 5. In Table 4, all the data collected
from 10 motion trackers are used, while in Table 5, only 6 selected trackers are used, and
they are located at front thigh, front knee, and ankle, both left foot and right foot. Since
the collected data from 6 selected motion trackers are just a part of the data from all the
10 trackers, we can expect that its classification accuracy will be lower compared with
the result of 10 motion trackers. For the random forest classifier, the number of template
classification trees is set as 400, and the maximal tree split is set as 1500 or 2000. For the
SVM classifier, the used kernel is RBF kernel, and the bandwidth parameter is h = 2−1 and
h = 2−2 in Tables 1 and 2, respectively. In KELM, the used kernel is also RBF kernel, the
kernel bandwidth parameter and regularization parameter in Table 1 are set as h = 23 and
λ = 104, respectively, and in Table 2 are h = 21 and λ = 104, respectively.

Table 4. Classification accuracy with all 10 motion trackers.

Classifier Accuracy (%) Train Time(s) Parameter Settings

Random Forest [27] 50.44 74.62 Number of Trees = 400,
Maxsplit = 2000

SVM [26] 56.17 27.88 RBF Kernel, h = 2−3

KELM 83.55 2.46 RBF Kernel, h = 24, λ = 105

Table 5. Classification accuracy with 6 selected motion trackers.

Classifier Accuracy (%) Train Time(s) Parameter Settings

Random Forest [27] 36.42 45.77 Number of Trees = 400,
Maxsplit = 1500

SVM [26] 43.80 18.19 RBF Kernel, h = 2−2

KELM 68.17 2.61 RBF Kernel, h = 21, λ = 107

From Tables 4 and 5, we can observe that, KELM achieves much better performances
in both classification accuracy and training time compared with both SVM and random
forest. More specifically, in Table 1, the classification of KELM achieves 27.38% and 33.11%
higher accuracy compared with SVM and random forest, respectively. In Table 2, KELM
achieves 24.37% and 31.75% classification accuracy improvement compared with SVM and
random forest, respectively. In addition, SVM and random forest require more than 10 and
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30 times of training time compared with KELM. The above results also indicate that, by
adding more motion trackers, the classification accuracy of single motion frame will be
increased. However, this practice will increase the deployment cost, and a relative lower
classification accuracy for single motion frame will also have good fusion accuracy after
combining multiple decisions of the frames.

4.2. Results of Multiple Decision Fusion

In this subsection, we demonstrate the classification performance of the proposed
RWS rule by comparing it with several well-known decision fusion rules. The details of
the compared rules as illustrated as follows:

(1) Majority voting rule [38]: Majority voting is a commonly used fusion rule for hard
decisions, thus it is widely used in sensor fusion for its advantage in low data transmission
amount. In this rule, we first obtain the hard decision of each motion frame, and then the
final decision is made by choosing the class with maximal number of hard decisions. In
this paper, if two class has the same voting number, the final decision is made by choosing
the one with maximal average membership.

(2) Sum rule [38]: In this rule, the final fuzzy decision is simply computed by adding
all the motion frame decisions, and the decision reliability is not considered. Given T mo-
tion frame fuzzy decisions µ(1), . . . , µ(T), the global membership of class ci is computed as

µi =
1
T

T

∑
t=1

µ
(t)
i (18)

(3) Product rule [38]: similar to Naive Bayes fusion, in product rule the final fuzzy
decision is obtained by the product of all the frame decisions. More specifically, the
un-normalized global membership of class ci is computed as

µi =
T

∏
t=1

(µ
(t)
i + δ) (19)

where δ > 0 is a very small constant to eliminate the influence of the memberships that are
close to 0. In our experiment, we set δ = 10−3.

(4) Belief rule [34]: Depmster-Shafer evidence theory is widely used in dealing with
multiple decision fusion problems. The belief fusion rule is derived by combining multiple
basic belief assignments (BBAs) by using the Dempster’s combinational rule, and it is
also applicable in the multiple motion frame decision fusion problem. The un-normalized
global BBA of class ci can be computed by

µi =
T

∏
t=1

1

(1− µ
(t)
i + δ)

(20)

(5) Reliability-weighted belief rule [34]: The obtained decision reliability can also be
used in computing the global BBA from the decisions of multiple motion frames. Similar
to Equation (18), the un-normalized global BBA on class ci is given by

µi =
T

∏
t=1

1

(1− r(t)µ(t)
i + δ)

(21)

Next, we test the classification accuracy of the fusion results of the proposed RWS
rule and the baseline fusion rules with different KELM parameter settings. In addition,
since the number of the test motion frames influences the classification, we also test the
classification accuracies with increasing ratio of test motion frames, and ratio increases
from 0.1 to 1. We test the fusion accuracies with the 10 trackers and 6 selected trackers, and
the obtained results are shown in Figures 4 and 5, respectively.
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Figure 4. Comparison of fusion accuracies with 10 optical motion trackers, in which (a) and (b) show
the results with original input features and calibrated input features, respectively.

Figure 5. Comparison of fusion accuracies with 6 optical motion trackers, in which (a) and (b) show
the results with original input features and calibrated input features, respectively.

From the two figures, we can observe that the proposed RWS rule can achieve higher
fusion accuracy compared with other rules. More specifically, we can see that, given the
same ratio of the test frames, in most times the proposed RWS can achieve higher accuracies.
However, it does not mean that the proposed rule will always be better than other rules.
For example, in Figure 5b, we can see that belief rule and reliability-weighted belief rule
achieve 100% accuracy, while the proposed rule only achieves 98.68%. As expected, the
fusion accuracies of 10 trackers are much higher than the accuracies of 6 selected trackers.
Therefore, if the deployment cost is acceptable, we can add more trackers to increase the
classification accuracy. By comparing the results of Figure 4a,b we can observe that results
with calibrated feature data are slightly better than the results with original non-calibrated
data. This is because the classification performance of single motion frame is influenced
by the unreliable features, and the performance will be increased if the unreliable features
are calibrated.

5. Conclusions

In this paper, we have studied the gait recognition problem by using optical motion
capture data, and we proposed a first-classification-then-fusion method, which includes the
following four steps: feature extraction, unreliable feature detection, classification of single
motion frame, and decision fusion of multiple frames. In particular, we proposed an RWS
decision fusion rule to combine the fuzzy decision of the gait motions. The experimental
results on 76 participants show that KELM achieves much higher classification accuracy
and training efficiency compared with SVM and random forest in the single motion frame
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classification task, and they demonstrate that the proposed method RWS achieves better
fusion accuracy compared with several existing fusion rules. Particularly, our results show
that, with high-precision 3-D gait motion tracking data, the recognition method can achieve
100% accuracy when the full data of 10 optical trackers are used.

It has to admit that, although the proposed method can achieve 100% recognition
accuracy, the relative high implementation cost on both optical trackers and the capture
cameras limits its application scenarios. On the other hand, our results indicate that the
performance of other gait recognition systems, such as video surveillance, can be further
improved if range sensor and depth sensor is integrated to enable measuring the distances
of the captured persons. It has to be recognized that, though the proposed method can
achieve very high recognition accuracy, it requires the implementation of optical motion
trackers, which limits its practical application scenarios.

Our future work is applying the proposed system in multiplayer motion tracking
scenarios and test the performance with more complex trajectories. In this way, the system
can support several players in the tracking field at the same time, which will greatly
enhance its capability and efficiency.
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