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The specific role of serotonin and its interplay with dopamine (DA) in adaptive,
reward guided behavior as well as drug dependance, still remains elusive. Recently,
novel methods allowed cell type specific anatomical, functional and interventional
analyses of serotonergic and dopaminergic circuits, promising significant advancement
in understanding their functional roles. Furthermore, it is increasingly recognized that
co-release of neurotransmitters is functionally relevant, understanding of which is
required in order to interpret results of pharmacological studies and their relationship
to neural recordings. Here, we review recent animal studies employing such techniques
with the aim to connect their results to effects observed in human pharmacological
studies and subjective effects of drugs. It appears that the additive effect of serotonin
and DA conveys significant reward related information and is subjectively highly
euphorizing. Neither DA nor serotonin alone have such an effect. This coincides with
optogenetically targeted recordings in mice, where the dopaminergic system codes
reward prediction errors (PE), and the serotonergic system mainly unsigned PE. Overall,
this pattern of results indicates that joint activity between both systems carries essential
reward information and invites parallel investigation of both neurotransmitter systems.
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INTRODUCTION

Among the brain’s neuromodulators, serotonin (5-hydroxytryptamine, 5-HT) is likely the most
ambivalent one with regard to its supposed importance for behavior and level of understanding.
Serotonergic drugs are widely used in psychiatric disorders, abused as recreational drugs and
liabilities in the serotonergic system have been identified as important etiological factors in many
prevalent disorders. On the other hand, 5-HT is commonly described as ‘‘mysterious’’ in scientific
contexts (Daw et al., 2002; Luo et al., 2015; Li et al., 2016), reflecting the fact that a unifying function
of its physiological role has not been established and data are often inconclusive. Although an
involvement of 5-HT in rewarding and aversive processing, hedonic experience, mood and higher
cognitive functions such as consciousness or self reflection are undisputed, its precise contribution
is controversial. These ambiguities reach deep into the history of studies on the serotonergic system.
It has long been known from animal studies across different species that the raphe nuclei, the origin
of most of the forebrain’s serotonergic innervation, are among the most potent areas inducing
self stimulation equivalent to stimulation of the medial forebrain bundle or the ventral tegmental
area (VTA; Miliaressis et al., 1975; Van Der Kooy et al., 1978; Rompre and Miliaressis, 1985).
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On the other hand, influential theories of 5-HT functioning
position it as a behavioral inhibitor (Soubrié, 1986) essential
in facilitating aversive processing (Tye et al., 1977), therefore,
opposing the role ascribed to dopamine (DA; Deakin and Graeff,
1991; Daw et al., 2002; Cools et al., 2008a; Dayan and Huys,
2009). These partly contradictory functions may be explained by
interactions between different cell types within the raphe that
depend on serotonin.

Here, we will outline the role of different cell types in raphe
nuclei and the cell-type specific anatomy of the serotonergic
system. We first review recent studies on serotonin’s role in
human and animal behavior related to rewarding and aversive
processing. We then relate these findings to novel results
in which serotonergic and non-serotonergic signals including
co-release of other transmitters related to the 5-HT system
have been investigated via genetic targeting approaches. We
thereafter focus on self-stimulation studies as a measure of
reward in animals, that offers the possibility to relate findings
to human behavior including subjectively experienced reward
induced by drugs. In conclusion, we will summarize the
importance of considering different cells and the interplay
of neuromodulatory systems and neurotransmitter co-release
when discussing the role of neuromodulators like 5-HT
and DA.

THE SEROTONERGIC SYSTEM

The density of 5-HT receptors in the cortex shows a descending
rostro-caudal gradient, indicative of an especially prominent
involvement of 5-HT in higher cognitive functions (Kranz
et al., 2010; Celada et al., 2013). Serotonergic afferents are
provided by only a small group of cells located in the raphe
area of the midbrain. Two major nuclei here consist in the
dorsal and median raphe (DRN, MRN) which comprise around
160,000 and 60,000 serotonergic neurons in humans, respectively
(Charnay and Léger, 2010). The majority of serotonergic input
to the forebrain is provided by the DRN, on which we focus
here. There are considerable differences in the percentage of
serotonergic neurons within the DRN across species: in humans,
70% of DRN neurons were found to contain 5-HT (Baker et al.,
1991), whereas in cats (Léger and Wiklund, 1982) and rats,
serotonergic neurons do not constitute the majority of the cell
population in the DRN. Of the remaining cells, glutamatergic
and GABAergic neurons constitute the majority (Hornung,
2003; Bang and Commons, 2012) and the GABAergic cells
mediate inhibitory feedback within the DRN (Liu et al., 2000).
Aside from cell type diversity, co-release of neurotransmitters is
increasingly recognized as functionally relevant (El Mestikawy
et al., 2011). Neurons that express tryptophan hydroxylase 2
(TpH2), the rate-limiting enzyme in 5-HT synthesis that is
almost exclusively expressed in serotonergic neurons, have been
found to express the vesicular glutamate transporter type 3
(VGluT3) which transports glutamate into presynaptic vesicles
in non-primarily glutamatergic neurons (Hioki et al., 2010).
Glutamate release from these 5-HT neurons has been repeatedly
observed (Johnson, 1994; Liu et al., 2014; Qi et al., 2014).
Co-release is by no means restricted to the serotonergic system,

but has been acknowledged in dopaminergic neurotransmission
as well (Stuber et al., 2010; Tecuapetla et al., 2010). This
intrinsic interlacing between neurotransmitter systems suggests
that the functional relevance of neuromodulatory systems is
difficult to judge when dissecting individual components of a
physiological system consistently releasing more than a single
neurotransmitter.

A major goal in understanding neuromodulatory systems is
to combine correlational evidence, for example from imaging
studies (Macoveanu, 2014), with pharmacological interventions,
and provide a plausible picture bridging results from direct
recordings of specific activation or lesion studies in animals
and pharmacological interventions, eventually consistent with
self reports in humans. Methods that affect overall serotonergic
tone are dietary acute tryptophan depletion (ATD; Fadda
et al., 2000) which reduces 5-HT, tryptophan loading which
presumably increases 5-HT (Young, 1996), and administration
of SSRI which increase 5-HT levels, but could decrease
co-release of glutamate (Fischer et al., 2015c). Direct agonists
to 5-HT receptors have been used in various studies with
complex results, likely due to the diversity of 5-HT receptors
(Hayes and Greenshaw, 2011). A major expectation of novel
optogenetic methods, that allow to specifically target, record,
activate and inhibit monoaminergic neurons, and to dissociate
them, for example from inhibitory GABAergic neurons, is to
provide evidence for 5-HT’s major physiological function which
then could be used to reconcile results of pharmacological
studies.

AFFERENTS OF THE SEROTONERGIC
SYSTEM

Given the relevance of serotonergic neuromodulation for
the development of anxiety or depression (Caspi et al.,
2003; Sachs et al., 2015), control of serotonergic signaling
is highly important. It has only recently become possible to
specifically trace inputs to identified serotonergic neurons,
differentiating them, for example, from afferent neurons
that synapse onto GABAergic cells. This can be done by
specifically targeting a tracer to genetically defined cell
populations (such as 5-HT neurons) that express a protein
required for the tracer to travel retrogradely under a specific
promoter active in the cell population. When targeting,
for example, the serotonin transporter promoter gene,
this technique provides a means to specifically localize
monosynaptic inputs to 5-HT neurons in mice. Studies
using this technique found that multiple brain regions project
monosynaptically to DRN 5-HT neurons (Ogawa et al.,
2014; Pollak Dorocic et al., 2014), demonstrating the high
level of control exerted over the serotonergic system. Input
to defined serotonergic DRN, but not MRN, and defined
dopaminergic VTA neurons is quantitatively and hodologically
similar (Watabe-Uchida et al., 2012; Ogawa et al., 2014),
compatible with strongly complementary functions in both
systems. Among these input regions are the PFC and the lateral
habenula (LHb), which both provide mainly excitatory input
to serotonergic as well as GABAergic neurons in the DRN
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(Pollak Dorocic et al., 2014; Weissbourd et al., 2014; Geddes
et al., 2016; Zhou et al., 2017). The net effect of such an input may
be excitatory or mediate feed-forward inhibition. Additionally,
another major input pathway to the raphe nuclei includes a
mainly GABAergic relay of DRN inputs from LHb via the
rostromedial tegmental nucleus (Jhou et al., 2009; Sego et al.,
2014).

Inputs from the PFC can modulate and shift the degree
of inhibition or excitation in the DRN (Geddes et al., 2016).
Functionally, stimulation of PFC neurons projecting to the DRN
was found to influence motivation: stimulation of this pathway
increased, whereas silencing decreased motivation in rats in
the forced-swim task (Warden et al., 2013). Subcortical areas
send both excitatory and inhibitory projections onto serotonergic
neurons, constituting a push-pull regulatory mechanism (Zhou
et al., 2017). The LHb has been suggested to mediate aversive
signals transmitted to the dopaminergic and serotonergic system
(Matsumoto and Hikosaka, 2007; Hikosaka, 2010). Electrical
stimulation of the LHb inhibits DRN cell firing (Wang and
Aghajanian, 1977) and LHb lesions increase DRN 5-HT levels
(Yang et al., 2008) in rats. This up-stream input to the
DRN could be integrated by GABAergic neurons that control
serotonergic neuronal activity. Functional relevance of this
interplay between GABAergic and serotonergic DRN neurons
has been demonstrated for the expression of avoidance following
social defeat stress in mice. Following repeated exposure
to dominant conspecifics, GABAergic neurons in the DRN
increased in excitability which led to decreased 5-HT activity
(Challis et al., 2013). Optogenetic silencing of GABAergic DRN
neurons prevented expression of behavioral avoidance, indicative
of a causative influence of GABAergic DRN neurons on the
development of stress-related avoidance behavior. Furthermore,
pharmacogenetically specific inactivation of LHb ameliorated
the consequences of social defeat stress in an antidepressant
like fashion even in mice in which SSRI were not effective due
to a lack of 5-HT synthesis (Sachs et al., 2015), compatible
with the idea that the LHb DRN pathway exerts strong
control over DRN signaling where 5-HT itself is only one
part of the whole picture. However, an additional debate exists
as to the actual valence of serotonergic signaling along the
reward axis.

VALENCE AND SEROTONIN

An influential hypothesis holds that 5-HT controls behavioral
inhibition in an aversive context (Soubrié, 1986) such as
punishment, monetary losses or omitted rewards, thus ascribing
opposite functions to DA and 5-HT (Daw et al., 2002). Vice versa,
many studies have shown that 5-HT influences processing of
rewards (Kranz et al., 2010), suggesting rather complementary
roles for both systems.

Overall, pharmacological manipulations of serotonergic
neurotransmission in humans provided striking evidence for
an involvement of 5-HT in punishment processing (Evers
et al., 2005; Chamberlain et al., 2006; Crockett et al., 2009;
Geurts et al., 2013; Macoveanu et al., 2013). Dietary lowering
of serotonergic activity abolished reaction slowing induced

by punishments (Crockett et al., 2012), whereas acute SSRI
administration as well as genetically determined higher 5-HT
levels are associated with increased reaction slowing following
errors (Fischer et al., 2015b). Similarly, ATD disturbed the
association of past actions with punishments, but not rewards
(Tanaka et al., 2009), which would suggest that 5-HT levels
positively covary with the ability to memorize and utilize aversive
events. However, ATD increased participants’ ability to predict
negative outcomes of observed choices (Cools et al., 2008b;
Robinson et al., 2012) and increased the BOLD response to
errors in fMRI in the pre-frontal cortex (Evers et al., 2005).
On the other hand, the suggestion that 5-HT mediates reward
processing (Kranz et al., 2010; Luo et al., 2016) has likewise
received considerable empirical support (Rogers et al., 2002;
Cools et al., 2005; Del-Ben et al., 2005; Roiser et al., 2006;
Tanaka et al., 2007; Seymour et al., 2012), while other studies
support both punishment as well as reward processing (McCabe
et al., 2010; Palminteri et al., 2012; Worbe et al., 2016; Scholl
et al., 2017). Thus, manipulations of serotonergic tone affect
reward and punishment processing, but the net effect, an
impairment or facilitation, is not entirely consistent across
studies.

Comparable to human studies, animal research has
demonstrated involvement of the serotonergic system in
processing both punishments and rewards. Using a reversal
learning task with both rewards (juice) and punishments (noise)
in marmosets, Rygula et al. (2015) found that local depletion of
5-HT in the amygdala or frontal cortex reduced overall feedback
sensitivity, independent of valence. Similarly, rodent studies
found that the overall effect of 5-HT manipulations can affect
punishment or reward sensitivity, depending on method (SSRI,
ATD, 5-HT depletion), dosage and duration of treatment (Bari
et al., 2010). SSRI and genetically increased 5-HT levels were
found to reduce appetitive operant responses (Sanders et al.,
2007) but increased win-stay behavior during reversal learning
in mice (Brown et al., 2012). Strong depletion of 5-HT decreased
instrumental reward-based reinforcement-learning in rats
(Izquierdo et al., 2012). Similarly, 5-HT depletion in the frontal
cortex of marmosets disrupted acquisition of responding to
appetitive conditioned reinforcement but not extinction (Walker
et al., 2009). Akin to human studies, overall manipulations
of serotonergic tone in animals sometimes affect reward and
sometimes punishment processing. Overall, this suggests the
need to extend the scope of one neuromodulatory system to its
anatomical and neurochemical context.

IS SEROTONIN OR DRN ACTIVITY
REWARDING?

The DRN has since long been identified as one of the
primary brain areas that promote self stimulation that strongly
reinforces behavior via the dopaminergic system (Rompre and
Miliaressis, 1985). However, it was until recently unclear if
this mechanism actually relied upon cells originating within
the DRN or if stimulation activated passing fibers, as well
as if mediating cells are truly serotonergic. The structural
connectivity between VTA and DRN has recently been described
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considerably more precisely by novel cell-type specific tracing
techniques. It was found that dopaminergic VTA neurons
in mice receive both the densest projections, as well as
the second most numerous, after striatal projections, from
the DRN (Watabe-Uchida et al., 2012). This projection was
found to be mainly glutamatergic, but additionally contains
5-HT co-releasing neurons (McDevitt et al., 2014; Qi et al.,
2014). This pathway drives self-stimulation and conditioned
place preference via asymmetrical synapses to mesostriatal
VTA DA neurons (Qi et al., 2014). Both blockade of striatal
D1 receptors as well as blockade of glutamatergic signals
in the VTA, abolishes these effects. Additionally, inhibitory
GABAergic projections from VTA and striatum regulate 5-HT
activity, forming a feedback-loop that intertwines DA and 5-HT
systems in the reward circuitry (Pollak Dorocic et al., 2014),
although tracing studies suggest that 5-HT is in a stronger
position to control DA activity than vice versa (Ogawa et al.,
2014).

Single-neuron recording studies suggested that DRNneurons,
that putatively contain 5-HT, process reward. In rats and
monkeys, these DRN neurons were found to reflect the
magnitude of delivered liquid rewards as well as overall reward
likelihood (Nakamura et al., 2008; Bromberg-Martin et al., 2010;
Inaba et al., 2013). Using calcium imaging and fiber photometry,
a method to observe activity in specifically targeted neuronal
populations, it was recently shown that serotonin transporter
positive (SERT+) DRN 5-HT neurons displayed strong reward-
but not aversion-related activity modulations in freely behaving
mice (Li et al., 2016). These neurons increased activity during
consumption of primary reinforcers (sugar, sex), and while
animals waited for delivery of rewards. This confirms a series of
previous experiments which suggested 5-HT to mediate impulse
control whilst anticipating a future reward (Miyazaki K.W. et al.,
2012; Miyazaki K. et al., 2012; Miyazaki et al., 2014), and speaks
towards involvement of SERT+ 5-HT neurons in primary reward
processing. Interestingly, activity of putative (Inaba et al., 2013;
Hayashi et al., 2015) and optogenetically defined 5-HT neurons
display value-related signals on different time scales (Cohen et al.,
2015). In head-restrained mice, Cohen et al. (2015) found that
serotonergic neurons display very brief responses to rewards
and punishments, but sustained activity possibly reflecting the
‘‘beneficialness’’ (Luo et al., 2016) of the current environment,
or the motivational state, for periods of up to 10 s (Cohen
et al., 2015). These long-lasting changes are reflected in rather
low changes in firing rates in the range of 1–2 spikes/s, which
nonetheless might exert significant influences in serotonergic
innervation on target structures especially given the low baseline
firing rate observed in most 5-HT neurons.

Optogenetic stimulation provided new insights in the
functional effects of activation of specific DRN neurons. Liu
et al. (2014) expressed a light sensitive ion channel in DRN
neurons targeted via an enhancer region coupled to the Pet-1
gene, which is selectively (yet not exclusively) expressed in
serotonergic neurons (Scott et al., 2005). Stimulation of Pet-1+

neurons was found to be highly rewarding, inducing conditioned
place preference outlasting the stimulation period, instrumental
learning and favorable competition against a natural reinforcer

(Liu et al., 2014). These effects mostly depended on co-release
of glutamate and were reduced, yet not absent, in mice
lacking VGluT3. Consistently, direct targeting of VGluT3+

neurons projecting from DRN to VTA, out of which only
some contain 5-HT, drove vigorous self stimulation (Qi et al.,
2014), indicating that DRN neurons can induce burst firing
in VTA DA neurons which drives behavioral reinforcement
(Grace et al., 2007). Another study found that orbitofrontal
cortex neurons whose activity reflected prospective natural
reinforcers also coded the prospective intensity of Pet-1+ DRN
stimulation (Zhou et al., 2015), indicating similarity between
natural reinforcers and artificial DRN stimulation. However, a
very similar stimulation protocol again targeting Pet-1+ DRN
neurons did not replicate the rewarding effects reported before
(McDevitt et al., 2014).

Another targeting approach for 5-HT neurons within the
DRN for optogenetic activation, is genetic tagging of the
SERT. Targeting SERT is hypothesized to reduce overlap with
glutamatergic populations (Luo et al., 2015), yet additional
empirical validation for this assumption is needed. As a
caveat, targeting 5-HT neurons via SERT requires heterozygous
knock-in, effectively de-activating one SERT allele, which
in itself alters serotonergic activity (Mathews et al., 2004).
In this line of research, rewarding effects of DRN 5-HT
neuron stimulation could not be replicated. Stimulation was
neither found to induce sustained place preference, nor
reinforce behavior (Fonseca et al., 2015; Correia et al.,
2017). Additionally, when 5-HT neurons were targeted via
the regulatory elements of the rate-limiting enzyme in 5-HT
synthesis, TpH2, no directly rewarding effects of stimulation
were observed (Miyazaki et al., 2014). Recently, Correia et al.
(2017) found that short-term activation of SERT+ DRN neurons
led to behavioral slowing again in the absence of rewarding
effects, which however did not interfere with motivated
behavior.

Another core feature that ties reward processing to learning
and behavioral adaptation is the computation of teaching signals
in the form of reward or punishment prediction errors (PE),
which has been ascribed as a central function of the DA
system. Recently, it was found that different subpopulations of
dopaminergic neurons with specific projection regions respond
differentially to reward, novelty and aversiveness. Projection
neurons to the ventral striatum reflect reward, but appear
insensitive to aversive events and novelty (Eshel et al., 2016;
Menegas et al., 2017), which additionally can be modulated
by reward context (Matsumoto et al., 2016). On the contrary,
other VTA neurons (Matsumoto and Hikosaka, 2009), as well
as defined dopaminergic neurons (Cohen et al., 2012), reflect
aversive stimuli and novelty, but these seem to project to
more caudal striatal regions (Menegas et al., 2017). Some
recent studies investigated coding of reward PEs in defined
serotonergic neurons. Matias et al. (2017) reported that SERT+

5-HT neurons in DRN on population level reflect positive
reward PEs, consistent with several other studies (Nakamura
et al., 2008; Inaba et al., 2013; Cohen et al., 2015; Hayashi
et al., 2015) and very similar to DA neurons in VTA. However,
while reward PE coding DA neurons decreased firing rates
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when an expected reward was omitted or replaced with likely
aversive events (an air puff targeted to the eye), constituting
a signed PE signal, 5-HT neurons reflected mainly unsigned
PEs, or surprise. Interestingly, 5-HT neurons were slower to
adapt to expectancy changes, causing a shift in putative relative
availability of 5-HT and DA during the learning of reward
expectations. This leads to a situation in which, for example in
reversal learning tasks, a switch from a previously good to a
now bad stimulus is accompanied by an early decline in DA
activity, but a longer lasting 5-HT signal that only later on
adapts to the new expected level of reward. This may explain
why 5-HT has in many cases been ascribed a mainly aversive
role opponent to DA (Daw et al., 2002). It remains an open
question if GABAergic neurons in DRN represent expected
value, similar to the role of GABAergic neurons in VTA in
dopaminergic reward PE calculation (Cohen et al., 2012; Eshel
et al., 2015).

An interesting observation is that optogenetically defined
serotonergic neurons were found to respond earlier, although less
vigorously, to reward predicting cues than DA neurons (Cohen
et al., 2015), yet later than some cortical reward related signals
(Ullsperger et al., 2014). This may indicate that DRN reward
related activity represents a high level modulatory control of
the brain’s reward system, depending on input from upstream
cortical areas involved in reward processing.

Overall, it appears that serotonergic neurons code reward
signals consistent across different species, yet their optogenetic
activation is only rewarding when either glutamate is co-released
or glutamatergic DRN neurons are targeted. These glutamatergic
cells project strongly to VTA and are able to recruit
the dopaminergic reward circuitry. Aversive events are not
consistently (Li et al., 2016) coded by serotonergic neurons in
animal studies. This may be explained by the fact that in most
of these studies animals were head-restrained (Cohen, 2015;
Matias et al., 2017). Restrainment itself might be a stressor
interfering with physiological neuronal activity patterns of a
neural modulator thought to be involved in reward processing
and mood.

THE ROLE OF 5-HT IN DRUG-INDUCED
EUPHORIA AND CONTROLLING REWARD
SEEKING BEHAVIOR

Low levels of 5-HT are a known diathesis for the development
of anxiety disorders, depression (Jacobsen et al., 2012; Sachs
et al., 2015), but also drug addiction (Ducci and Goldman,
2012). Additionally, most addictive drugs either cause increased
5-HT release or directly agonize 5-HT receptors. Two essential
components of reward can be defined as ‘‘liking’’, reflecting
a pleasurable subjective state, and ‘‘wanting’’, reflecting the
reinforcing properties of a situation or substance (Berridge
et al., 2009). Assessing liking in animal models mostly relies
on facial expression studies, for example in mice, where it was
demonstrated that DA, while reinforcing behavior, does not
induce liking (Wyvell and Berridge, 2000; Leyton et al., 2002;
Berridge and Robinson, 2003). On the other hand, subjective
drug effects reported in humans can be informative about

underlying neurotransmitter systems and how they mediate
effects.

The group of monoamine releasers, which increase
DA, 5-HT and norepinephrine (NE), and their most
commonly abused variants such as cocaine, amphetamine
and Methylenedioxymethamphetamine (MDMA or ecstasy)
are, after cannabis, the most widely abused illegal drugs1.
Contrary to initial assumptions, potency to release NE does
not seem to significantly alter addictive potency of these
substances (Banks et al., 2014), but the relative potential to
release 5-HT over DA has been found to affect both a drug’s
euphoric, as well as addictive properties. Interestingly, the
potency of drugs to release 5-HT, even when effects on DA
and NE release are comparable, negatively correlates with
its potency as a behavioral reinforcer (Wee et al., 2005).
This was demonstrated using various amphetamine derivates
in monkeys with comparable NE- and DA-, yet different
5-HT-releasing properties. Furthermore, individual monkeys
with more pronounced 5-HT release induced by MDMA
consistently self-administered the drug less than individuals
with lower release. Addition of the serotonin releasing agent
fenfluramine to self-administered amphetamine also decreased
self-administration (Wee and Woolverton, 2006). Consistently,
destruction of the serotonergic system using the selective
neurotoxin 5,7-DHT increased MDMA self-administration
rate and acquisition speed in rats (Bradbury et al., 2013). This
suggests that 5-HT balances the behaviorally reinforcing effects
of DA.

Another way to assess behavioral control over reward
behavior in laboratory settings is to combine intracranial self
stimulation (ICSS) of rewarding areas (often the medium
forebrain bundle) with administration of drugs. DA releasing
agents have been shown in this setting to increase self
stimulation, which is interpreted as a context dependent
facilitation of addictive behavior. Interestingly, selective 5-HT
releasers inhibit ICSS (Olds and Yuwiler, 1992), and moreover
the relative specificity to release 5-HT compared with DA
negatively covaries with ICSS facilitation (Bauer et al., 2013).
However, this general inhibitory influence of 5-HT over
ICSS is simplified, and other studies indicate that the
overall effect of 5-HT on brain stimulation depends, among
other factors, on the locus of 5-HT application (Kranz
et al., 2010). Although addictive behavior evolves over a
longer time scale and includes complex adaptations in the
serotonergic system (Müller and Homberg, 2014), there is
evidence from animal studies suggesting that integrity of the
serotonergic system and higher 5-HT release, reduces drug
self-administration.

Human studies that combine pharmacological manipulations
of the 5-HT system and imaging techniques, have not yielded
an unambiguous picture (Macoveanu, 2014), in part due to the
difficulty to capture brainstem signals related to DRN or MRN
activity. Tanaka et al. (2004) found increased activity overlapping
with the DRN, when participants had to endure short-term losses
to obtain long-term rewards, akin to effects observed in the dorsal

1www.globaldrugsurvey.com
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striatum. This striatal signal was modulated by manipulations of
5-HT levels in human participants, and the covariation between
dorsal striatum and long-term rewards was positively dependent
on 5-HT levels (Tanaka et al., 2007). Furthermore, ATD in
humans was found to reduce the impact of previous rewards on
current choices, and increased the tendency to repeat previous
choices in a dynamically changing reinforcement learning task
(Seymour et al., 2012).

These findings translate to human abuse behavior
and also appear to dissect a drug’s rewarding properties,
mapping wanting to DA and speculatively liking to 5-HT,
in an additive manner. Epidemiological data suggest that
MDMA has a significantly lower abuse rate compared
to monoamine releasers with less serotonergic action, like
amphetamines (Degenhardt et al., 2010). On the other hand,
even compared to high doses of amphetamine, MDMA is
subjectively experienced as more pleasurable, positive mood
inducing and euphorizing (Camí et al., 2000; Tancer and
Johanson, 2003; Carhart-Harris et al., 2015). More selective
5-HT releasers that spare DA, surprisingly, are neither
reinforcing (Woods and Tessel, 1974), nor experienced as
pleasurable by humans. In fact, the selective 5-HT releaser
m-chlorophenylpiperazine (mCPP) was found to reduce positive
mood and euphoria (Tancer and Johanson, 2003), and acute
intravenous administration of an SSRI in healthy participants,
increased self rated sadness and incompetence (Fischer
et al., 2015a). This suggests that 5-HT under physiological
circumstances balances reinforcing effects of DA while itself
being neither reinforcing nor rewarding, yet may be essential
to inhibit reinforced behavior in order to promote behavioral
flexibility (Branchi, 2011; Fischer et al., 2015b; Matias et al.,
2017).

In short, consistent with subjective drug effects, positive
reward may be reflected by a combination of DA and 5-HT,
whereas punishment could be reflected by 5-HT and absence, or
reduction, of DA (Cohen et al., 2015).

METHODOLOGICAL CONSIDERATIONS

We put effort in this review to include especially findings
from studies employing recent state-of-the art methods, such
as optogenetics. These promised to resolve many contradictions
regarding the 5-HT system by unequivocally identifying and
interfering with specific neural populations, for which thus far
identification was relatively unspecific using mostly either firing
patterns or receptor dependent changes in activity. However,
even these specific methods yield contradictory results. For
example, doubtlessly direct DRN stimulation is rewarding, as
known from self stimulation studies (Miliaressis et al., 1975;
Van Der Kooy et al., 1978; Rompre and Miliaressis, 1985),
and confirmed by optogenetic stimulation of either mostly
glutamatergic non-serotonergic DRN output neurons (McDevitt
et al., 2014) or 5-HT and glutamate co-releasing neurons (Liu
et al., 2014; Qi et al., 2014). A more 5-HT specific stimulation
profile, targeting SERT+ or TpH2+ neurons, on the other hand,
does not reproduce rewarding effects (Miyazaki et al., 2014;
Fonseca et al., 2015; Correia et al., 2017), possibly due to a

lack of glutamatergic signaling, and acute SSRI administration
is rarely reported as rewarding (Fischer et al., 2015a). An
interpretation of this absence of effects appears complicated if
such stimulation differs from physiological activity. It is currently
unknown whether physiological inputs from specific regions
to the DRN asymmetrically synapse onto purely serotonergic,
glutamatergic, co-releasing, or other, e.g., GABAergic neurons.
Thus, optogenetic stimulationmay in some cases be over-specific
in the sense of evoking an unphysiological signal that may
not induce the same behavioral effects as normally occurring
activation of serotonergic pathways by stimulating neurons that
would usually fire independently.

On the other hand, it is well established that the group
of raphe nuclei is involved in different physiological functions
depending on their topography (Hale and Lowry, 2011).
Moreover, distinct afferent projection profiles have been
demonstrated. While PFC and LHb project bilaterally to the
DRN, other regions such as amygdala and hypothalamus,
asymmetrically synapse to ipsilateral parts (Zhou et al., 2017).
Recently, it was found that optogenetic stimulation of SERT+

DRN projection neurons to the bed nucleus of the stria
terminalis induces fear and anxiety (Marcinkiewcz et al.,
2016), whereas the same stimulation of SERT+ neurons in
the DRN itself, does not display this effect (Correia et al.,
2017). This raises the question whether: (a) isolated stimulation
of single pathways may be over-specific; or (b) activation of
neuronal populations within a region may still not be specific
enough.

Furthermore, it is crucial to incorporate the possibility
of co-release of other neurotransmitters from monoaminergic
neurons, which can lead to very different effects when comparing
drug studies, e.g., employing agonists or releasers, which
circumvent co-release, with stimulation studies, which induce
co-release depending on the exact method used to target specific
neurons (Hu, 2016). Considering such co-release-dependent
discrepancies may explain puzzling effects of drugs, which
often do not align with physiological hypotheses (Fischer et al.,
2015c).

CONCLUSION

Afferent and efferent projections, hodological properties, the
time course of individual neural activity bridging short latency
and longer lasting activity modulations, all position the
serotonergic system ideally to extract motivationally salient
information and induce focused attention to guide goal oriented
actions towards rewards. Human and animal studies that
manipulated 5-HT levels strongly support serotonin’s role
in affective processing, but the direction of association and
specificity for aversive or rewarding events remains controversial.
Optogenetic studies in rodents suggest that DA and 5-HT
jointly guide learning by positive coding of reward PE signals,
whereas absence of DA and presence of 5-HT is associated
with reward omission, and possibly punishment PE signals.
Furthermore, the DRN controls release of 5-HT to many
projection regions and can recruit dopaminergic reward circuits
via glutamate. Activation of purely serotonergic cells was found
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to be mostly non-rewarding or purely inhibitory. Taken together,
this could be interpreted such that manipulations increasing
5-HT signals without a consecutive DA increase, mimics aversive
events. On the other hand, direct DRN stimulation, specific
stimulation of glutamate-releasing and co-releasing DRN cells,
induces rewarding effects comparable to direct VTA stimulation
(McDevitt et al., 2014). It therefore appears that specific DRN
neuronal populations control DA-related reward behavior via
glutamate release and co-release. Thus, reward appears most
likely mediated via glutamatergic excitation of DA neurons, at
least in part, by input from DRN (Liu et al., 2014; McDevitt
et al., 2014; Qi et al., 2014) and parallel release of 5-HT. In
accordance with this, subjective self-reports of human subjects
suggest that a singular increase in 5-HT or DA release is
not experienced as pleasurable, but the conjoint increase is
highly pleasurable. An interesting additional possibility is that
5-HT neurons may furthermore integrate DA effects over time
into longer-lasting affective signals conveyed in a tonic fashion
(Cohen et al., 2015). This is compatible with the idea that
5-HT encodes beneficialness (Luo et al., 2016), and may signal
motivation to either maintain or switch current behavior, for
example displayed by 5-HT’s role in facilitating patience for
future rewards (Miyazaki et al., 2014). Combinedwith the finding
that 5-HT levels via immediate release or pretreatment bivalently
modulate the potency of highly addictive substances such as
amphetamines or cocaine (Wee et al., 2005; Cunningham and
Anastasio, 2014), it may be that it functionally orchestrates the
brains reward systems via parallel fast activation and slow longer-
lasting inhibition. Thus, 5-HT additionally appears to control
motivationally rewarding effects of DA as evidenced via drug
addiction.

Highly specific methods to stimulate neuromodulatory
systems reveal the complexity and entanglement between
neuromodulatory systems on multiple levels, but do not provide
simple answers. As more data is collected, it appears that
judging the effect of one neuromodulatory system alone is
unphysiological. However, converging between pharmacological
effects in humans and optogenetic stimulation in animals,
DA and 5-HT combined provide signals that interdependently
are sufficient to guide reward related behavioral adaptations,
and induce subjective reward. This complexity has direct
consequences for the interpretation of pharmacological, genetic,
and correlational studies in humans and indicates that DA
and 5-HT do not have opposing functions (Daw et al., 2002),
but rather could in concert provide a combined reward signal,
whereas its dissociation may encode punishment.
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