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Abstract: Electron-rich, nitrogenous heteroaromatic compounds interact more with biological/cellular
components than their non-nitrogenous counterparts. The strong intermolecular interactions with
proteins, enzymes, and receptors confer significant biological and therapeutic properties to the imida-
zole derivatives, giving rise to a well-known and extensively used range of therapeutic drugs used
for infections, inflammation, and cancer, to name a few. The current study investigates the anti-cancer
properties of fourteen previously synthesized nitrogenous heterocycles, derivatives of imidazole and
oxazolone, on a panel of cancer cell lines and, in addition, predicts the molecular interactions, pharma-
cokinetic and safety profiles of these compounds. Method: The MTT and CellTiter-Glo® assays were
used to screen the imidazole and oxazolone derivatives on six cancer cell lines: HL60, MDA-MB-321,
KAIMRC1, KMIRC2, MCF-10A, and HCT8. Subsequently, in vitro tubulin staining and imaging were
performed, and the level of apoptosis was measured using the Promega ApoTox-Glo® triplex assay.
Furthermore, several computational tools were utilized to investigate the pharmacokinetics and safety
profile, including PASS Online, SEA Search, the QikProp tool, SwissADME, ProTox-II, and an in silico
molecular docking study on tubulin to identify the critical molecular interactions. Results: In vitro
analysis identified compounds 8 and 9 to possess the most significant potent cytotoxic activity on the
HL60 and MDA-MB-231 cell lines, supported by PASS Online anti-cancer predictions with pa scores
of 0.413 and 0.434, respectively. In addition, compound 9 induced caspase 3/7 dependent-apoptosis
and interfered with tubulin polymerization in the MDA-MB-231 cell line, consistent with in silico
docking results, identifying binding similarity to the native ligand colchicine. All the derivatives,
including compounds 8 and 9, had acceptable pharmacokinetics; however, the safety profile was
suboptimal for all the tested derivates except compound 4. Conclusion: The imidazole derivative
compound 9 is a promising anti-cancer agent that switches on caspase-dependent apoptotic cell
death and modulates microtubule function. Therefore, it could be a lead compound for further drug
optimization and development.

Keywords: Imidazole; oxazolone; ADME; target prediction; anti-cancer; tubulin inhibitors

1. Introduction

N-heterocyclic aromatic molecules [1] exist as a five-membered ring containing three
carbon and two nitrogen atoms (imidazolone) or nitrogen and oxygen in a five-membered
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ring (oxazolone). Previous studies of imidazolone and oxazolone [2], with their partially or
fully saturated derivatives, highlighted such compounds as highly useful heterocycles [3],
with applications in the chemical, biological, material, and pharmaceutical industries [4].
Imidazolone and oxazolone are an important class of heterocycles that are broad in their
variety and application, and most are substances of interest due to their chemical and
biological properties [5]. They are part of many highly significant biomolecules, such as the
essential amino acid histidine and related compounds, biotin, and imidazole alkaloids [5].

In medicinal chemistry and as part of the drug delivery process, strategies to make
active synthetic compounds are continually being developed. One particularly well-known
method is to insert an imidazolone or oxazolone nucleus [6]. Imidazolone-based drugs
have broad applications in many areas of clinical medicine [7]. One of the examples is
cancer, which is the predominant driver of mortality rates, with the annual number of
new cases estimated to reach 27.5 million annually by 2040 [7]. Presently, most current
treatments include the combination of a chemotherapeutic agent, radiotherapy, surgery, or
hormonal therapy [8]. Several chemotherapeutic agents possess imidazolone or oxazolone
nuclei, such as the drug methotrexate (Figure 1), a well-known and therapeutic imidazole
derivative acting as an inhibitor of DNA synthesis by preventing folate metabolism [9].
Methotrexate is clinically used to treat several neoplasms, such as acute lymphoblastic
leukemia, acute myeloid leukemia, non-Hodgkin’s lymphoma, breast cancer, and bladder
cancer [10,11]. Imidazolone is a highly polar and amphoteric species, having acid and
base-like properties, causing it to be readily soluble in an aqueous environment, and the
fact that it possesses an electron-rich core means it can easily accept and donate electrons,
allowing strong biochemical interactions with a broad range of targets within a cell with
greater affinity [12]. In addition, imidazoles have some structural similarities to purine
and pyrimidine bases and other naturally occurring biologically active molecules. Such
similarities allow these compounds to be used pharmacologically as active anti-metabolites
and cytotoxic drugs, targeting viral, bacterial, and fungal infections and cancer [12,13].
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Indeed, adding or conjugating imidazoles to other compounds is common to increase
solubility, bioavailability, and interaction sites [14] and for selective targeting [15]. In
addition, imidazolone derivatives are used to produce coordination complexes, as in plat-
inum, where cisplatin is a therapeutic cancer treatment that acts similarly to the alkylating
agents [16]. One particular study showed that a chalcone-imidazolone conjugate had
cytotoxic properties, inducing apoptosis through DNA damage [17]. Moreover, oxazolone
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is primarily employed to treat antimicrobial-resistant Gram-positive bacterial infections
caused by methicillin-resistant staphylococci, vancomycin-resistant enterococci, and penicillin-
resistant pneumococci [18]. In addition, linezolid is also used to treat multidrug-resistant
Mycobacterium tuberculosis. Jadomycin B® (Figure 1) has cytotoxic and antibacterial proper-
ties, while deflazacort® contains an oxazolone scaffold derived from prednisone, having
anti-inflammatory and immunosuppressive effects [19]. The detailed biological activities
of imidazole and oxazolone compounds have been reported previously [20,21].

Fourteen new imidazolone (Figure 2) and oxazolone derivatives were synthesized and
chemically characterized without investigating their biological activities [22,23]. Therefore,
this study focused on exploring the compounds’ in vitro and in silico anti-cancer activities
to identify any lead candidate that may be further developed to provide an efficacious and
potent selective anti-cancer drug therapy.
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2. Results and Discussion
2.1. The Effect of Nitrogen-Based Heterocyclic Derivatives on Cytotoxicity

In vitro anti-proliferation assays are commonly used to evaluate the cytotoxicity
of molecules against selected cell lines [24]. The MTT assay and CellTiter-Glo® Assay
(Promega™, Madison, WI, USA) were utilized as functional assays for evaluating the cyto-
toxic efficacy and potency (IC50) of test compounds against the selected cell lines [25]. The
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MTT assay was the first rapid colorimetric assay developed in the 1980s for high-throughput
cell viability screening in a 96-well format and is still considered a gold standard [24,26].
However, the MTT assay has limitations, such as chemical interference, toxicity, and lack
of sensitivity [27]. In addition, it is an endpoint assay that can only detect viable cells
at a fixed time point. Consequently, the CellTiter-Glo® assay was used to validate the
anti-proliferative effects of the investigated compounds.

2.1.1. Cell Viability and Proliferation Analysis

To establish the cytotoxic effect of the nitrogenous derivatives, cells were treated with
various concentrations of the drugs ranging from 0 to 250 µM. Following a 24 h incubation
period, cell viability was assessed using the MTT assay. Mitoxantrone served as a positive
control to evaluate growth inhibition. Since heterogeneity is a hallmark of cancer, the study
included cell lines with diverse genomic and proteomic profiles. MDA-MB-231(triple-negative
breast cancer) demonstrated a great sensitivity towards compounds 8 and 9, with an IC50
of 4.7 µM and 17.02 µM, respectively (Figure 3a). Meanwhile, the non-malignant breast
epithelial cell line (MCF-10A) showed reduced sensitivity towards compound 8 (Figure 3b).
The IC50 was six-fold higher than that observed in the MDA-MB231 cells, indicating cytotoxic
selectivity, a promising feature needed in any therapeutic anti-neoplastic agent. Compound 9,
however, displayed a potent anti-proliferative effect in MCF-10A cells (IC50 = 9.516 µM). In this
regard, further optimization would be required to increase the selective therapeutic potential
of compound 9. To determine whether the anti-proliferative effect of the nitrogen derivatives
could be translated to other malignancies, we tested the cytotoxic effect on the HCT8 (colorectal
cancer) cell line. HCT8 is an adenocarcinoma driven by the Kirsten Rat Sarcoma (KRAS)
mutation, unlike MCF-10A [28]. However, the cytotoxic effects were comparable to that
observed in the MCF-10A (Figure 3c), indicating that the mechanism of the anti-proliferative
effect of compounds 8 and 9 in HCT8 could be unrelated to the KRAS pathway. Data are
summarized in Table 1.
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Figure 3. MTT assay of the fourteen (14) synthetic compounds against (a) MDA−MB−321 cancer
cell lines, (b) MCF10A cell lines, (c) HCT8 cancer cell lines.

2.1.2. Cytotoxicity Evaluation of Nitrogen-based Derivatives using CellTiter-Glo Assay

To validate the anti-proliferative activity of the imidazole derivatives, the compounds
were tested against several cancer cell lines, which included breast cancer (MDA-MB-231,
KAIMRC1, and KAIMRC2), colorectal cancer (HCT8), and acute promyelocytic leukemia
cells (HL60). KAIMRC1 was isolated from an Arab woman with stage II-B breast cancer
and is ER+/PR+ and HER2-. In comparison, KAIMRC2 was isolated from a 34-year-old
woman with metastasized breast cancer and is a triple-negative (ER-/PR-, and HER2-)
tumor cell line [29,30].

Corroborating the MTT assay results, compounds 8 and 9 displayed a significant anti-
proliferative effect after a 24 h treatment in MDA-MB-231 cells, with an IC50 of 18.97 µM
and 39.19 µM, respectively (Figure 4). The KAIMRC1 cells demonstrated an increased
sensitivity to compounds 8 and 9, with an IC50 of 10.20 µM and 22.18 µM, respectively.
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Meanwhile, KAIMRC2 also was sensitive to compound 9, with an IC50 of 27.11 µM. Both
KAIMRC cell lines displayed differing proteomic phosphorylation statuses compared
with MDA-MB-231, featuring constitutive activation of an Akt enzyme that is a protein
kinase B (PKB), also known as (AKT), a type of serine/threonine-protein kinase, in a
ligand-independent manner [29,30]. Phosphorylated AKT (pATK) plays a crucial role in
cell survival and proliferation, cell cycles, and cellular invasion. It may be possible that
nitrogen-based derivatives disrupt the AKT / mTOR pathway, which is overexpressed and
activated in KAIMRC1 and KAIMRC2. Furthermore, the HL60 cells showed the greatest
sensitivity to compounds 8 and 9, with an IC50 of 9.23 µM and 8.63 µM, respectively. These
results are summarized in Table 2.
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Figure 4. CellTiter-Glo assay against the following cell lines: (a) CellTiter-Glo assay against HCT8
cancer cell lines., (b) CellTiter-Glo assay against HL60 cancer cell lines., (c) CellTiter-Glo assay against
KAIMRC1 cancer cell lines, (d) CellTiter-Glo assay against KAIMRC2 cancer cell lines, (e) CellTiter-Glo
assay against MDA MB 231 cancer cell lines, and (f) CellTiter-Glo assay of mitoxantrone positive control.
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Table 1. The IC50 (µM) of nitrogen-based derivatives against cancer cell lines using MTT assay.

Compound Names Breast Cancer Non-Malignant Breast
Epithelial Cells Colorectal Cancer

(MDA-MB-231) (MCF-10A) (HCT8)

1 22.88 N/A 51.15
2 43.55 65.5 72.22
3 39.95 NA N/A
4 69.44 NA N/A
5 39.56 34.20 39.06
6 50.65 50.38 70.83
7 22.96 62.99 73.55
8 4.759 30.66 29.53
9 17.02 9.516 13.20

10 56.02 N/A N/A
11 57.15 N/A N/A
12 50.75 N/A N/A
13 78.46 N/A N/A
14 138.7 N/A N/A

Mitoxantrone 3.171 2.898 0.7113

N/A: not applicable.

Table 2. The IC50 (µM) of nitrogen-based derivatives against five cancer cell lines obtained using the
CellTiter-Glo assay.

Compound. Leukemia Breast Cancer Colorectal Cancer
HL60 MDA-MB-231 KAIMRC1 KAIMRC2 HCT8

1 N/A N/A 62.21 59.21 N/A
2 N/A N/A 103.6 120.6 121.3
3 N/A N/A 58.56 64.32 N/A
4 N/A N/A N/A N/A N/A
5 17.86 52.13 28.64 30.30 63.70
6 NA N/A N/A N/A N/A
7 67.43 60.91 39.18 87.93 91.22
8 9.237 18.97 10.20 31.64 33.11
9 8.632 39.19 22.18 27.11 22.05

10 N/A N/A N/A N/A N/A
11 20.92 45.42 24.81 32.16 40.35
12 N/A N/A N/A N/A N/A
13 N/A N/A N/A N/A N/A
14 N/A 242.7 243.4 161.2 N/A

Mitoxantrone 0.1252 1.936 1.713 0.8008 5.618

N/A: not applicable.

2.1.3. High-Content Imaging (HCI)

We performed high content imaging on these cells since the HL60 cells were previously
shown to exhibit the greatest sensitivity to compounds 8 and 9. Figure 5A depicts a dose-
dependent increase in cell shrinkage/condensing, and necrotic cells are also visible. Treatment
with increasing concentrations of compounds 8 or 9 led to apoptosis compared with control.
Furthermore, even at the lowest concentration, 31.25 µM, compound 9 was more efficacious
than compound 8 since there appeared to be fewer healthy cells (blue and green staining) and
a greater level of shrinkage. Moreover, Figure 5B depicts the HCI Cell Health determined
by means of digital analysis, displaying the HL60 percentage cell viability as a function of
increasing drug concentrations. Together, these results identified both compounds 8 and 9 to
be cytotoxic and to induce apoptosis; however, compound 9 was more efficacious and potent
than compound 8.
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Figure 5. HCI-based apoptosis assay. (A) HL60 cells were treated with three concentrations (31.25 µM,
62.5 µM, and 125 µM) of compounds # 8 (a–c), # 9 (d–f), and PBS for the negative control (g) for
48 h. The nucleus (blue) was stained with HOECHST 33342, the cytoplasm (Green) was stained with
Calcein AM, and dead cells (Red) were stained with Propidium Iodide (PI). Compound # 9 was more
potent than compound 8, indicated by the presence of dead cells (red) and diminished Calcein AM
(Green) staining. (B) HCI Cell Health Digital Analysis MetaXpress software generated the graph
quantifying the cell viability, seen in B, as a percentage of HL60 cells treated with the compounds. At
low concentrations of 31.25 µM, compound 9 displayed approximately 20% cytotoxic efficacy and
approximately 54% cytotoxicity at 62.5 µM concentrations.

2.1.4. Effects of Compounds 8 and 9 on Microtubular Networks

An established cytotoxic mechanism of action of some nitrogenous heteroaromatic
compounds is through the inhibition of tubulin. Normal microtubule function is essential
during mitosis for mitotic spindle formation to allow chromatid separation, without which
cell replication would cease. In addition, microtubules are critical for maintaining the
cytoskeletal integrity of normal cells. Currently used cytotoxic anti-neoplastic classes of
drugs such as the taxanes and vinca alkaloids also either inhibit microtubule assembly or
disassembly, thus preventing mitosis from occurring. Therefore, we investigated the effects
of compounds 8 and 9 on the modulation of microtubule function by assessing their effect
on tubulin. As shown in Figure 6, compound 9 interfered with the microtubular network at
the tested concentrations, 15.6 and 31 µM. Furthermore, at 31 µM, compound 9 exerted a
nearly complete microtubule inhibition, comparable to the positive control, mitoxantrone.
Surprisingly, compound 8 had no effect on tubulin at the concentrations tested; therefore,
the cytotoxic mode of action of compound 8 was distinct from that of compound 9.

Several clinically utilized anti-cancer medications, such as paclitaxel, vinblastine, and
vincristine, are imidazole derivatives and directly inhibit tubulin function [31,32]. Additionally,
the colchicine-binding-site inhibitors (CBSI) are generally more flexible to modifications than
other tubulin inhibitor types due to their structural simplicity [33]. A study investigated
a panel of imidazole derivatives as tubulin polymerization inhibitors and identified that
compounds targeting the colchicine-binding site were amongst the most efficacious cytotoxic
agents, displaying dose-dependent effects causing cell cycle arrest at the G2/M phase [33,34].
Furthermore, the current study also demonstrated compound 9 to have cytotoxic effects via
the inhibition of tubulin polymerization. Thus, we provided further supporting evidence
from computational predictions using SEA Search and a tubulin docking study to identify the
most probable binding mode of compound 9 to tubulin and compared it to that of the native
ligand, colchicine.

MDA- MB 231 cells were treated with compounds 8 and 9 at two concentrations,
15.6 and 31.25 µM, for 48 h. The cells were stained with tubulin tracker™ Green (Cat
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#T34075) in HBSS for 30 min and nucleus stain HOECHST33342 (blue) for 5 min. The
samples were imaged with Zeiss laser-scanning 780 microscopes.
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2.1.5. Apoptosis

The ApoTox-Glo® triplex assay was utilized to further evaluate the effect of compound
9 on the MDA-MB-231 cancer cell viability, cytotoxicity, and apoptosis. This assay employs
a luminogenic peptide substrate for caspase 3/7 to measure caspase activity, which is used
as a marker for apoptosis within the cells. Treatment with compound 9 induced caspase
3-/7-mediated apoptosis in a dose-dependent manner in MDA-MB-231 cancer cell lines
and inversely affected the viability of the cells, as expected (shown in Figure 7A). However,
since this assay was time-dependent, the level of cytotoxicity (Figure 7B) determined, in this
case, was not a true representative of the compound’s cytotoxic potential; it is reasonable to
say that at the endpoint of apoptosis (Figure 7C), a heightened level of cytotoxicity would
be observed.
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One particular study evaluated the apoptosis induced by tri-substituted-imidazole in
human breast cancer cells. The investigation probed the effect of 2-chloro-3-(4, 5-diphenyl-1H-
imidazole-2-yl)-pyridine on procaspase-3 and found a substantial decline in the expression of
cyclin D1, VEGF, survivin, and Bcl-2 proteins in a time-dependent manner [28,35], indicating
a commitment to the apoptotic pathway. Likewise, imidazole’s induction of apoptosis in
HL60 cells was associated with intracellular acidification, caspase-3 activation, and DFF-45
cleavage, which demonstrated the induction of caspase-dependent cell death [29,36], which is
in agreement with the observations seen with compound 9 in our study.

2.2. Computational Studies
2.2.1. Anti-Cancer Activity and Molecular Target Prediction

The PASS Online web server was used to predict the anti-cancer activity of the 14 com-
pounds. As shown in Table 3, compounds 8–11, 13, and 14 demonstrated the highest probability
as potential anti-cancer agents, while the rest showed low-to-inactive activity predictions. More-
over, the potential molecular targets for the synthesized compounds were predicted using
the SEA Search. A higher similarity score (maxTC) with a lower significance score (p-value)
indicates a higher probability that the protein is a potential target. This study focused on tubu-
lin as a potential target since earlier reports identified imidazole-based derivatives as tubulin
polymerization inhibitors [37–40]. Table 3 shows that compounds 8 and 9 possessed a high
maxTC score (0.32 and 0.34, respectively) with a low p-value (1.544 × 10−6 and 1.137 × 10−6,
respectively), indicating potential interference with microtubule-associated protein tau, which
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stabilizes the microtubule bundles and modulates the microtubule network assembly [41].
Compounds 11 and 13 were also predicted to have anti-cancer activity. However, the in vitro
studies demonstrated that these compounds were far less potent than compounds 8 and 9.

Table 3. Anticancer activity and molecular target predictions obtained using the PASS Online and
SEA Search webservers.

Compound
PASS Online SEA Search Server

Anticancer Microtubule-Associated Protein Tau
Pa Pi p Value MaxTC

1 Inactive Inactive Inactive
2 Inactive Inactive 9.42 × 10−7 0.37
3 0.258 0.180 Inactive
4 0.242 0.192 1.864 × 10−38 0.43
5 0.224 0.208 Inactive
6 0.364 0.119 2.801 × 10−33 0.44
7 Inactive Inactive Inactive
8 0.413 0.099 1.544 × 10−6 0.32
9 0.434 0.092 1.137 × 10−6 0.34
10 0.411 0.100 Inactive
11 0.498 0.072 3.343 × 10−26 0.36
12 Inactive Inactive Inactive
13 0.495 0.073 7.011 × 10−10 0.34
14 0.493 0.074 Inactive

2.2.2. Molecular Docking and Dynamic Simulation with Tubulin Crystal Structure

Compounds 8 and 9 were selected for the docking study to investigate the molecular
binding interaction with the tubulin crystal structure. The rationale behind our selection
was to understand the influence of structural differences between compounds 8 and 9 that
affected the results observed in the in vitro tubulin experiment. A methoxy group in com-
pound 9 appeared to be the only source of the variance observed in these compounds’
inhibition of tubulin polymerization, where compound 9 successfully inhibited tubulin
polymerization, while compound 8 did not. Thus, the Glide Schrodinger software was
utilized to perform the molecular docking and binding free energy calculations for the
docked complexes (results summarized in Table 4). Our results showed that both com-
pounds occupied similar binding pockets to the native ligand (Colchicine) and positive
control (mitoxantrone, Figure 8A); however, the interactions between compounds 8 and
9 were distinct. Compound 9 maintained hydrogen bond interactions with Cys 241 and
VAL238 (via bridging water, Figure 8B), which were comparable to the native ligand and
positive control. However, this was not the case for compound 8, which lacked these two
significant interactions due to the absence of the methoxy group (Figure 8C). The docking
results suggest that the presence of the methoxy group is critical for inhibiting tubulin poly-
merization, explaining why the interaction with tubulin was different for both compounds,
although both demonstrated potent cytotoxic activities. Moreover, the binding free energy
calculations for the docked poses demonstrated a comparable binding free energy score
for compound 9 and mitoxantrone were −42.35 and −42.31, indicating a stronger binding
with tubulin (Table 4) and confirming the above-mentioned experimental results.

Table 4. The Glide docking scores and prime MM-GBSA energy properties.

Compound Name Docking Scores (Kcal/mol) MMGBSA dG Bind (Kcal/mol)

Colchicine −10.10 −88.61
Mitoxantrone −10.42 −42.31
Compound 8 −7.56 −22.47
Compound 9 −7.40 −42.35
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Figure 8. The molecular docking interactions for compounds 8 and 9 with tubulin crystal structure
using Glide Maestro software. (A) Colchicine (blue), mitoxantrone (green), and compounds 8 (faded
orange) and 9 (faded plum) superimposed onto the β-tubulin chain to highlight the similar binding
site. (B) The molecular interactions of compound 9 (faded plum) with tubulin amino acid residues
via H-bonds and Pi–Pi interactions. (C) Overlay of compounds 8 (faded orange) and 9 at the tubulin-
binding site.

To evaluate the stability of the molecular interactions, a molecular dynamic simulation
run was performed for compound 9 in complex with the tubulin crystal structure (docked
pose) for a timescale of 100 ns. The results identified that the ligand-protein complex was
stable over the simulation run as there were no fluctuations in the RMSD values (Figure 9A).
Moreover, the interaction contacts maintained for more than 50% of the simulation time
were Cys 241, Gln 247, Leu 248, Leu 255, and Ala 354 (Figure 9B). In addition, the ligand
interaction diagram showed that the ligand-amino acid contacts were consistent with our
docking results, where the methoxy group in compound 9 maintained the interaction with
Cys 241 and Val 238 via bridging water (Figure 9C), further confirming the importance of
having a methoxy group for the inhibition of tubulin polymerization.
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Figure 9. The simulation interaction diagram for compound 9 with the tubulin crystal structure over
100 ns. (a) the RMSD values for compound 9 with tubulin for a timescale of 100 ns, (b) the amino acid
interactions of compound 9 with tubulin for a timescale of 100 ns, and (c) the ligand-protein contacts
between compound 9 and tubulin crystal structure for a timescale of 100 ns.
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2.2.3. Predictions of ADME Properties

Pharmacokinetic ADME properties are crucial for successful drug development and
lead optimization. ADME parameters can influence the pharmacodynamics of a drug; for
instance, the most common cause of low oral absorption is low solubility and permeabil-
ity. Similarly, introducing hydrogen bond acceptors in the structure of a drug enhances
the solubility and bioavailability of that compound [42,43]. Therefore, we utilized the
SwissADME and Qikprop computational tools to make ADME predictions for the 14 com-
pounds. As shown in Table 5, most compounds demonstrated high GI absorption, except
for compounds 9–12 that possessed intermediate GI absorption (>80% is high, 80 to 25 is
intermediate, and <25% is poor). The BBB penetration and CNS activity were predicted
using a –2 (inactive) to +2 (active) QikProp scale. Compounds 8 to 12 demonstrated no
CNS activity or BBB penetration, while the remaining compounds may potentially have
intermediate effects. Additionally, all the compounds were inactive as P-glycoprotein
(P-gp) substrates, suggesting none of the compounds would be effluxed out of the cancer
cells upon treatment [44]. Moreover, the lipophilicity and solubility parameters for all the
compounds were within the acceptable range required for orally bioavailable drugs (Log P
is –2.0 to 6.5, and Log S is –6.5 to 0.5).

Table 5. Predictions of the ADME properties for the 14 N-heterocycle derivatives using SwissADME
and QikProp computational tools.

Compound
GI Absorption BBB Penetration P-gp Substrate Log Po/w Log S

SwissADME Qikprop
(% Absorption) SwissADME Qikprop SwissADME Qikprop SwissADME Qikprop SwissADME Qikprop

1 High 100 Yes 0 No N/A 2.54 2.87 −5.44 −3.529
2 N/A 100 N/A 0 N/A N/A 3.10 3.586 N/A −4.385
3 High 100 Yes 0 No N/A 2.55 2.869 −5.56 −3.383
4 High 100 Yes 0 No N/A 2.61 3.249 −5.54 −4.305
5 High 92.21 Yes −1 No N/A 2.25 2.81 −4.86 −3.657
6 High 91.67 Yes −1 No N/A 2.26 2.459 −4.98 −3.721
7 High 100 Yes 0 No N/A 2.13 2.105 −4.66 −2.525
8 Low 80.14 No −2 No N/A 3.10 3.049 −6.26 −5.222
9 Low 67.92 No −2 No N/A 3.11 3.174 −6.35 −5.164

10 Low 52.27 No −2 No N/A 2.80 2.607 −5.67 −5.677
11 Low 55.65 No −2 No N/A 2.81 2.520 −5.76 −4.877
12 Low 62.87 No −2 No N/A 2.69 2.382 −5.48 −4.231
13 High 95.79 Yes −1 No N/A 1.33 2.452 −4.79 −3.936
14 High 96.06 Yes 0 No N/A 1.32 2.501 −4.68 −3.766

N/A: not applicable (the software did not provide any prediction).

2.2.4. Safety Profile Analysis—CYP P450 Enzyme Inhibition

Cytochrome P450 enzymes, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, and
CYP3A4, are the most predominant and crucial enzymes for metabolizing ninety percent
of all known drugs [45]. Therefore, it is essential to assess and evaluate the effects of the
14 compounds on the CYP enzyme activity. The results summarized in Table 6 show that
most of the compounds were predicted to inhibit CYP 1A2, 2C19, and 2C9, while only a
few inhibited CYP 2D6 or CYP 3A4, including compound 9.

2.2.5. Organ and Endpoint Toxicity Analysis

ProTox-II webserver provides the toxicological pathways and toxicity targets that
predict the possible molecular mechanism behind the toxic response [46]. The lethal dose
(LD50), organ toxicity, toxicity endpoints (carcinogenicity, mutagenicity, and immune-
toxicity), Tox21 Nuclear receptor signaling pathways (Aromatase, Estrogen Receptor Alpha
(ER), and Estrogen Receptor Ligand-Binding Domain (ER-LBD)), and Tox21 Stress response
pathways (Mitochondrial Membrane Potential (MMP)) were predicted for the 14 synthe-
sized compounds. As summarized in Table 7, the oral toxicity prediction findings showed
that the majority of the compounds were categorized as class 4 (Harmful if swallowed
(300 < LD50 ≤ 2000)), except for compounds 2, 4, 5, and 7, which were in class 5 (May
be harmful if swallowed (2000 < LD50 ≤ 5000)) indicating a lower oral toxicity potential.
Moreover, most of the compounds were potentially hepatotoxic, with probabilities ranging
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from 0.55 to 0.69 except compound 4, which was inactive. In contrast, all compounds
were non-immunotoxic except compounds 9 and 10. Furthermore, compounds 8–13 were
mutagenic with probability values ranging from 0.51 to 0.82, except for compound 14,
which was classified as non-mutagenic. Among the compounds investigated, 13 out of the
14 compounds were predicted to be carcinogenic, with probability values ranging from
0.54 to 0.73. Compound 1 showed the highest toxic probability of 0.99 for Estrogen Recep-
tor Alpha (ER) and 1 for both Aromatase and Estrogen Receptor Ligand-Binding Domain
(ER-LBD). Thus, most of the compounds may be harmful when taken orally, including
compounds 8 and 9, and they are all predicted to cause organ and endpoint toxicity except
compound 4. Despite this, there is scope for further structural optimization to achieve safer
oral compounds that cause minimal organ and endpoint toxicity.

Table 6. The CYP enzyme-inhibition profile for the 14 N-heterocycle Derivatives using the SWIS-
SADME webserver.

Compound CYP 1A2 CYP 2C19 CYP 2C9 CYP 2D6 CYP 3A4

1 Yes Yes Yes No No
2 N/A N/A N/A N/A N/A
3 Yes Yes Yes No No
4 Yes Yes Yes No No
5 Yes No No No No
6 Yes Yes Yes No Yes
7 Yes Yes No No No
8 No Yes Yes No No
9 No Yes Yes No Yes
10 No Yes Yes No No
11 No Yes Yes No Yes
12 No Yes Yes No Yes
13 Yes No No No No
14 Yes No No No No

N/A: not applicable.

Table 7. In silico toxicity analysis of the 14 synthesized compounds using the ProTox-II webserver
together with their color key.

Compound
Oral Toxicity

Prediction of Active Organ Toxicity
and Toxicity Endpoints

ProbabilityPredicted LD50
(mg/kg)

Predicted
Toxicity Class

1 1190 4

Hepatotoxicity 0.69

Immunotoxicity 0.96
Aromatase 1.0

Estrogen Receptor Alpha (ER) 0.99
Estrogen Receptor Ligand-Binding

Domain (ER-LBD) 1.0

2 3700 5
Hepatotoxicity 0.59

Carcinogenicity 0.56

3 1400 4
Hepatotoxicity 0.55

Carcinogenicity 0.57
4 5000 5 Inactive -

5 3700 5
Hepatotoxicity 0.61

Carcinogenicity 0.58

6 978 4
Hepatotoxicity 0.56

Carcinogenicity 0.57
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Table 7. Cont.

Compound
Oral Toxicity

Prediction of Active Organ Toxicity
and Toxicity Endpoints

ProbabilityPredicted LD50
(mg/kg)

Predicted
Toxicity Class

7 3500 5
Hepatotoxicity 0.59

Carcinogenicity 0.54

8 600 4

Hepatotoxicity 0.63

Carcinogenicity 0.68
Mutagenicity 0.82

9 600 4

Hepatotoxicity 0.62

Carcinogenicity 0.55
Immunotoxicity 0.62

Mutagenicity 0.78
Mitochondrial Membrane Potential

(MMP) 0.57

10 600 4

Hepatotoxicity 0.63

Carcinogenicity 0.55
Mutagenicity 0.80

Mitochondrial Membrane Potential
(MMP) 0.55

11 600 4

Hepatotoxicity 0.64

Carcinogenicity 0.54
Immunotoxicity 0.70

Mutagenicity 0.77
Mitochondrial Membrane Potential

(MMP) 0.55

12 600 4

Hepatotoxicity 0.64

Carcinogenicity 0.73
Mutagenicity 0.83

Mitochondrial Membrane Potential
(MMP) 0.57

13 800 4
Hepatotoxicity 0.66

Carcinogenicity 0.58
Mutagenicity 0.51

14 800 4
Hepatotoxicity 0.67

Carcinogenicity 0.71

Color key

Class 4: Harmful if swallowed (300 < LD50 ≤ 2000)

Class 5: It may be harmful if swallowed (2000 < LD50 ≤ 5000)

3. Materials and Methods
3.1. Nitrogenous Heterocycle Samples

The fourteen (14) nitrogenous heterocycle samples were gifted by Prof. Dr. Ahmed
Elsadig Mohammed Saeed from the college of chemistry, at Sudan University of Sci-ence
and Technology. The detailed chemical synthesis of the samples together with their purity
determination measures were conducted using TLC, UV-Vis, IR, and H1NMR. The complete



Molecules 2022, 27, 2409 17 of 22

filing of these information was explained in detail in the master thesis of Mr Ibrahim Khalifa
Idriss Frah [23].

3.2. Anti-Cancer Activity Investigation
3.2.1. MTT Assay

The MTT assay was utilized to examine the imidazole derivatives’ anti-proliferative
activity against MCF-10A, MDA-MB-231, and HCT8 cell lines, purchased from ATCC,
USA [47]. Firstly, 5 × 103 cells/well were seeded in a 96-well plate in 100 µL of growth
medium and were subsequently cultured overnight with various concentrations of each
compound ranging from 0 to 250 µM [48]. The media was aspirated, and 50 µL of serum-
free media and 50 µL of MTT solution were added to each well. Next, cells were incubated
at 37 ◦C for 3 h, then 150 µL of MTT solvent was added into each well. After that, plates
were wrapped in foil and agitated for 15 min on an orbital shaker. Finally, the absorbance
was measured within 1 h at OD590 nm. Half-maximal inhibitory concentration IC50 values
(µM) were calculated for each compound from the dose–response curve. Experiments were
performed in triplicates.

3.2.2. CellTiter-Glo Assay

The CellTiter-Glo assay (Promega™, Madison, WI, USA) was used to evaluate imi-
dazole and oxazolone derivatives cytotoxicity against various cancer cell lines; MCF-10A,
HL60, MDA-MB-231, and HCT8, purchased from ATCC, USA, except KAIMRC1 and
KAIMRC2, which were isolated, established, and characterized in the core laboratory
facility KAIMRC, Riyadh, Saudi Arabia. The cells were seeded in white 96-well plates at a
density of 5 × 103 cells/well in a 100 µL of growth medium with various concentrations of
each compound ranging from 0 to 250 µM. Cells were incubated at 37 ◦C for 24 h. Plates
were equilibrated at RT for 30 min. A quantity of 100 µL of CellTiter-Glo reagent was added
to each well and mixed for 2 min on an orbital shaker. Plates were incubated for 10 min
at RT before measuring the luminescence using an Envision plate reader (Perkin Elmer).
Half-maximal inhibitory concentration IC50 values (µM) were calculated for each imida-
zole derivative from the dose–response curve [49]. The cytotoxic effect at a concentration
<10 µM was considered strongly active and from 11 to 100 µM was considered moderately
active, whereas above 100 µM was deemed non-active. Mitoxantrone was utilized as a
positive control. Experiments were performed in triplicates [50].

3.3. High Content Imaging

HL60 cells were seeded in a 96-well plate at a density of 20,000 cells per well. The cells
were treated with compounds 8 and 9 and negative control (PBS) for 48 h. Three graded
concentrations were used for the treatment, 31.25 µM, 62.5 µM, and 125 µM. After the
treatment, the cells were stained with Calcein AM (2 µg/mL), HOECHST33342 (2.5 µg/mL),
and Propidium Iodide (2.5 µg/mL) for 45 min at 37 ◦C and 5% CO2. Plates were imaged on a
Molecular Devices ImageXpress® Microsystem, and the acquired image data were analyzed
using MetaXpress® software, Molecular Devices, Downingtown, PA, USA. The Cell Health
module available in the MetaXpress software was used to measure the percentage viability
of live and dead cells. Experiments were performed in triplicates.

3.4. Tubulin Staining and Imaging

Following the standard protocol, tubulin and microtubule-associated proteins (MAPs)
were developed, accompanied by two cycles of polymerization and depolymerization [41].
MDA-MB231 cells were treated with compounds 8 and 9 at concentrations of 31.25 and
15.6 µM for 48 h. Subsequently, the media was replaced with HBSS, and the MDA-MB231 cells
were stained with tubulin tracker™ Green 51(Cat #T34075) for 30 min and HOECHST33342
for 5 min. The Zeiss laser-scanning 780 microscope was used for imaging [51].
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3.5. Apoptosis

The Promega ApoTox-Glo® triplex assay was conducted as described by the man-
ufacturer. Briefly, the cells were incubated at 37 ◦C for 12 h and then treated for 24 h
with various concentrations of compound 9 [29,30]. Next, 100 µL of the Viability and
Cytotoxicity Reagent was added to each well and briefly mixed on an orbital shaker. Plates
were incubated at 37 ◦C for 30 min, and the fluorescence was measured at the following
two-wavelength sets—400Ex/505Em (Viability) and 485Ex/520 Em (Cytotoxicity)—using
the Envision plate reader (Perkin Elmer). Subsequently, the Caspase-Glo® 3/7 Reagent
(100 µL/well) was added, plates were briefly mixed on an orbital shaker (300 to 500 rpm
for ~30 s), followed by an extra 30 min incubation at RT. Finally, to determine the level of
apoptosis, the luminescence associated with caspase 3/7 activation was measured using an
Envision plate reader (Perkin Elmer) [52,53].

3.6. Computational Methods:
3.6.1. Anti-Cancer Activity Prediction

The anti-cancer activity of the synthesized compounds was predicted using the online
webserver, prediction of activity spectra for substances (PASS), which utilizes a known ac-
tives database (http://way2drug.com/passonline/) (accessed on 22 November 2021) [54].

3.6.2. Molecular Target Predictions

A similarity ensemble approach (SEA) search web server (https://sea.bkslab.org/)
(accessed on 30 November 2021) was used to investigate the potential molecular targets
for the synthesized compounds, focusing on tubulin as a potential target. The webserver
utilizes a quantitative classification and target association according to the chemical simi-
larity of protein-related ligands. It creates a list of Max Tanimoto coefficients (MaxTc), and
E-values used to interpret results [55].

3.6.3. Molecular Docking and MM-GBSA Binding Free-Energy Calculations with Tubulin
Crystal Structure

The molecular interactions between compounds 8 and 9 and tubulin were investigated.
Molecular docking was performed using the tubulin crystal structure (PDB: 4O2B), and
Maestro Schroödinger software (Schrödinger Release 2021-4) as previously described [56].
The ligands were prepared using the LigPrep tool (LigPrep, Schrödinger, LLC, New York,
NY, USA, 2021), and the protein was minimized and optimized using the Protein Prepa-
ration Wizard (Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, USA,
2021). After grid generation, the derivatives were docked into the colchicine-binding site,
and post-docking analysis was performed for the docked compounds using the Glide tool
(Glide, Schrödinger, LLC, New York, NY, USA, 2021). Moreover, the binding free energy
calculations were conducted for the docked complexes using Prime MM-GBSA, VSGB as
the solvation model, and an OPLS4 force field.

3.6.4. Molecular Dynamic Simulation with Tubulin Crystal Structure

To investigate the stability of the docking interactions, we performed a molecular
dynamic simulation run for the best docking pose for tubulin and compound 9. Desmond
was utilized to run the simulation, and the TIP4P water molecules were added to the
complex (21206 water molecules). The system was neutralized by adding 28 Na+, and the
NPT ensemble was utilized to run the simulation. The complex was relaxed before the
production run, and the timescale for the simulation run was 100 ns. Several simulation
frames and simulation interaction diagrams (SID) were utilized for the analysis.

3.6.5. Prediction of ADME/T Properties

Two computational tools were utilized to predict the absorption, distribution, metabolism,
and excretion (ADME) of the synthesized compounds, SWISSADME (http://www.swissadme.
ch/) (accessed on 14 November 2021) [57] and QikProp (QikProp, Schrödinger, LLC, New York,

http://way2drug.com/passonline/
https://sea.bkslab.org/
http://www.swissadme.ch/
http://www.swissadme.ch/
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NY, 2021). The important pharmaceutical properties that were selected for evaluation were
gastrointestinal (GI) absorption, blood–brain barrier (BBB) permeability, P-glycoprotein (P-gp)
substrate, lipophilicity (log Po/w), and solubility (Log S).

3.6.6. Safety Profile Analysis
CYP P450 Enzyme Inhibition

The SWISSADME server was used to conduct cytochrome (CYP) P450 enzyme-
inhibition prediction for each compound against several CYP enzymes: CYP1A2, CYP2C19,
CYP2C9, CYP2D6, and CYP3A4 57.

Organ and Endpoint Toxicity Analysis

The ProTox-II online tool toxicity prediction test was used to examine the safety profile
for the synthesized compounds [46]. This server categorized compounds into six toxicity
classes (1–6) with a prediction of the lethal dose (LD50) (mg/kg) and toxicity class based
on available online databases. Class one possesses lethal toxicity with an estimated lethal
dosage (LD50) of 5, and class six demonstrates an LD50 > 5000, indicating the compound
is less toxic. Moreover, the webserver also determines each evaluated ligand’s organ and
endpoint toxicity (https://tox-new.charite.de/protox_II/) (accessed on 3 November 2021).

4. Conclusions and Future Direction

The current study illustrates the in vitro anti-cancer activity of several nitrogenous
heteroaromatic compound derivatives of imidazole and oxazolone. Compounds 8 and
9 provided potent cytotoxic activity in various cancer cell lines via distinct mechanisms.
Compound 9 acted as a ligand for tubulin that was similar to colchicine, inhibiting micro-
tubule function and subsequently preventing mitosis and inducing apoptosis through a
caspase-dependent pathway, unlike compound 8. Molecular docking and simulation stud-
ies identified that the methoxy group in compound 9 was responsible for tubulin inhibition.
Other computational studies helped identify compounds for lead-optimization based on
ADME and safety profiles, including CYP enzyme inhibition and oral and organ toxicity.
Our results revealed that compound 9 demonstrated an acceptable pharmacokinetic ADME
profile based on Lipinski’s rule of five (ROF), although optimization would be necessary
to improve this lead’s safety and ADME profile. Moreover, we believe post-safety and
ADME optimization translation into an in vivo system would better reflect the therapeutic
potential of this lead drug in a human biological system.
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Abbreviations

ATCC American Type Culture Collection
ATP Adenosine triphosphate
BBB Blood–brain barrier
BCI-2 B-cell lymphoma 2
CBSI Colchicine-binding-site inhibitors
Log P Lipophilicity
Log S Solubility
MAPS Microtubule-associated proteins
MaxTc Max Tanimoto coefficients
MCF-10A Human breast epithelial cell line
MDA-MB-321 Human breast adenocarcinoma cell line
MMP Mitochondrial Membrane Potential
NA Not applicable
Pa Probability of being active
PASS Plan for Achieving Self Support
Pi Probability of being inactive
PRa Progesterone receptor alpha
RMSD Root-mean-square deviation
SEA Similarity ensemble approach
SP Standard precision
VEGF Vascular endothelial growth factor
XP Extra precision
3D Three dimensional
ABC ATP-binding cassette
ADME Absorption, Distribution, Metabolism, and Excretion.
AKT-PI3 protein kinase B/Phosphoinositide 3-kinase
CYP Cytochrome P450
DFF-45 DNA fragmentation factor 45
ER-LBD Estrogen Receptor Ligand-Binding Domain
Era Estrogen receptor alpha
HBSS Hank’s Balanced Salt Solution
HCI High content imagining
HCT8 Human ileocecal adenocarcinoma cell line
HL60 Human leukemia cell line
HTS High-throughput screening
IC50 Half-maximal inhibitory concentration
JAK-STAT Janus Kinase/Signal Transducer and Activator of Transcription.
KAIMRC1 King Abdullah international medical research center 1 cell line
KAIMRC2 King Abdullah international medical research center 1 cell line
LD Lethal dose
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