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1  |  INTRODUC TION

The Artemisia capillaris Thunb is a traditional herbal medicine which 
possesses remarkable therapeutic and protective effects in hepatic 

diseases.1–3 A. capillaris contains coumarin and flavonoid compounds, 
which possess anti-oxidant, anti-inflammatory, anti-cancer and anti-
osteoporosis activities.4–8 Scoparone (6,7-dimethoxycoumarin) 
(SCOP), which is primarily found in Artemisia plant roots, is a 
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Abstract
Scoparone (SCOP), an active and efficient coumarin compound derived from Artemisia 
capillaris Thunb, has been used as a traditional Chinese herbal medicine. Herein, we 
investigated the effects of SCOP on the osteogenic processes using MC3T3-E1 pre-
osteoblasts in in vitro cell systems. SCOP (C11H10O4, > 99.17%) was purified and iden-
tified from A. capillaries. SCOP (0.1 to 100 μM concentrations) did not have cytotoxic 
effects in pre-osteoblasts; however, it promoted alkaline phosphatase (ALP) staining 
and activity, and mineralized nodule formation under early and late osteogenic in-
duction. SCOP elevated osteogenic signals through the bone morphogenetic protein 
2 (BMP2)-Smad1/5/8 pathway, leading to the increased expression of runt-related 
transcription factor 2 (RUNX2) with its target protein, matrix metallopeptidase 13 
(MMP13). SCOP also induced the non-canonical BMP2-MAPKs pathway, but not 
the Wnt3a-β-catenin pathway. Moreover, SCOP promoted autophagy, migration and 
adhesion under the osteogenic induction. Overall, the findings of this study dem-
onstrated that SCOP has osteogenic effects associated with cell differentiation, adhe-
sion, migration, autophagy and mineralization.
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coumarin compound and has pharmacological properties relating to 
vasorelaxation or immunosuppression.9,10 Recently, it has been dis-
covered that SCOP suppresses inflammatory responses by inhibiting 
PI3K-Akt signalling in chondrocytes, suggesting that SCOP may be 
a therapeutic compound in degenerative and bone diseases such as 
osteoarthritis.11

Mesenchymal stem cells (MSCs) and pre-osteoblasts differen-
tiate, adhere and migrate to specific regions, leading to the bone-
specific protein secretion and matrix mineralization.12–14 Osteoblast 
differentiation and maturation help multicellular organisms maintain 
bone tissue homeostasis and control skeletal development, for-
mation and remodelling.13,15 Osteoblast malfunction induces bone 
formation abnormalities, resulting in low bone mass and fragile frac-
tures in bone diseases.16 By regulating bone metabolism, anabolic 
drugs for bone diseases can improve osteoblast differentiation and 
bone formation; however, there are issues relating to drug safety 
and cost.16–20 Currently, osteogenic compounds are of increasing 
interest, as these compounds have relatively fewer side effects and 
may be used for a longer period of time than previously used drugs 
for bone diseases.21,22 Thus, it is worth investigating the identifica-
tion of osteogenic compounds and their pharmacological effects on 
osteoblast differentiation, migration, adhesion and mineralization.

The purpose of this study was to examine the osteogenic roles 
of SCOP of dry, aboveground A. capillaris tissue in differentiation, 
migration, adhesion, autophagy and mineralization in in vitro cell 
systems using MC3T3-E1 pre-osteoblasts that have been studied 
in osteoblast differentiation. Our findings demonstrated that SCOP 
has bone-forming activities, suggesting potential roles as an osteo-
genic compound.

2  |  METHODS

2.1  |  Plant material

Artemisia capillaris Thunb was purchased from Korean medicine 
Omniherb (www.omnis​hop.co.kr). The P149 voucher specimen was 
deposited in the Natural Products Bank (NIKOM). Column chroma-
tography (CC) was conducted using silica gel (Merck, Darmstadt, 
Germany). 13C Nuclear magnetic resonance (NMR) and 1H NMR 
spectra were analysed using JEOL ECX-500 spectrometer (JEOL 
Ltd.). Agilent 1260 series (Agilent Technologies) with a C18 column 
(Phenomenex, United States of America Synergi 10  μ Hydro-RP 
80A, 10 μm, 4.6 mm × 250 mm) was used for high-performance liquid 
chromatography (HPLC).

2.2  |  Culture and differentiation

MC3T3-E1 pre-osteoblasts (#CRL-2593) were obtained from the 
ATCC (Manassas, VA). Pre-osteoblasts were grown at 37°C, 5% CO2 
and 95% air under a humidified atmosphere in α-MEM without L-AA 

(WELGEME, Inc.) containing 10% foetal bovine serum (FBS) and 1× 
Gibco antibiotic-antimycotic (Thermo Fisher Scientific). OS contain-
ing 10% FBS, 1× Gibco antibiotic-antimycotic, 50 μg/ml L-AA (Sigma-
Aldrich) and 10 mM β-GP (Sigma-Aldrich) with SCOP was used to 
stimulate osteoblast differentiation. 0.1, 1, 5, 10, 20, 30, 40, 50 and 
100 mM SCOP stocks were prepared with 100% dimethyl sulfoxide 
(DMSO) and diluted to a final concentration (1:1000 dilution, 0.1% 
DMSO); 0.1% DMSO was treated as a control. During osteoblast dif-
ferentiation, OS was changed every 2 days as described previously.15

2.3  |  Cell viability

Cell viability was analysed using MTT solution (Sigma-Aldrich). 
Absorbance was detected at 540 nm using the Multiskan GO 
Microplate Spectrophotometer (Thermo Fisher Scientific) as de-
scribed previously.23

2.4  |  ALP staining and activity assays

For ALP staining assay, the ALP reaction solution was treated ac-
cording to the manufacturer's protocol (Takara Bio Inc., Japan), 
as described previously.24 For ALP activity assay, cell lysates 
were obtained using alkaline phosphatase activity colorimetric 
assay kit (Biovision). The activity was detected at 405 nm using 
the spectrophotometer (Thermo Fisher Scientific) as described 
previously.24

2.5  |  ARS staining assay

Cells were stained with 2% ARS solution (pH 4.2) (Sigma-Aldrich) for 
10 min. Stains were captured using a scanner, and absorbance was 
detected at 590 nm using the spectrophotometer (Thermo Fisher 
Scientific) as described previously.24

2.6  |  Western blot analysis

Osteogenic- and autophagic-protein levels were detected using 
Western blot analysis as described previously.24,25 The antibod-
ies used were: RUNX2 (1:2000, #12556), p-Smad1/5/8 (1:1000, 
#13820), p-p38 (1:2000, #9211S), p38 (1:2000, #9212), p-ERK1/2 
(1:3000, #9101), ERK1/2 (1:3000, #9102), p-JNK (1:2000, #9251), 
JNK (1:2000, #9252), GSK3β (1:1000, #12456), p-GSK3β (1:1000, 
#9336), β-catenin (1:1000), Wnt3a (1:1000, #2721), LC3A/B (1:1000, 
#12741), Beclin1 (1:1000, #3495) from Cell Signaling Technology 
(Beverly, MA, USA); BMP2 (1: 500, #CSB-PAO9419AORb) from 
CUSABIO (Houston); β-actin (1:2000, #sc-47,778) from Santa Cruz 
Biotechnology (Santa Cruz); HRP-secondary antibodies (1:20,000) 
from Jackson ImmunoResearch (West Grove).

http://www.omnishop.co.kr


4522  |    PARK et al.

F I G U R E  1  Isolation of scoparone (SCOP) from Artemisia capillaris. (A) Schematic of the method used to isolate and purify SCOP from A. 
capillaris. (B and C) 13C-NMR (125 MHz, CDCl3) (B) and 1H-NMR (500 MHz, CDCl3) (C) spectra of SCOP. (D) HPLC of purified SCOP (D), and 
its chemical structure, purity, and molecular formula ((D) inset)
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2.7  |  Immunofluorescence assay

Nuclear RUNX2 expression was analysed using immunofluores-
cence as described previously.24 The following antibodies were 
used: RUNX2 (1:400, #12556, Cell Signaling Technology), and 
secondary antibody (Alexa-Fluor 488, 1:500, Invitrogen). DAPI 
(4′,6-diamidino-2-phenylindole) solution was used (Sigma-Aldrich) 
for nucleus stains.

2.8  |  DAPGreen autophagy detection assay

Autophagy Detection Kit (Dojindo) was used for detecting au-
tophagosome formation as described previously.25

2.9  |  Cell adhesion assay

Adhesion was analysed using Matrigel-coated plates (Corning Life 
Sciences). The crystal violet-stained cells were monitored under a 
light microscope, and absorbance was detected at 540 nm using 
the spectrophotometer (Thermo Fisher Scientific) as described 
previously.15

2.10  |  Cell migration assay

Migration across ECM was carried out using Boyden chamber in 
Matrigel (Corning Life Sciences)-coated nuclear pore filters. The 
images obtained under a light microscope were quantified as previ-
ously described.26

2.11  |  Statistical analysis

Prism Version 5 program from GraphPad Software, Inc. was used for 
statistical analysis. Significance in p < 0.05 was analysed by using a one-
way anova with post hoc analysis, and the differences were assessed 
by the Bonferroni test. All values were reported as mean ± S.E.M.

3  |  RESULTS

3.1  |  Purification of SCOP from the extracts of 
A. capillaris dry aboveground part

The dry aboveground part of A.  capillaris Thunb (10  kg) was ex-
tracted in MeOH at room temperature for 3 days. The crude extract 

F I G U R E  2  Cytotoxic and osteogenic 
effects of SCOP on pre-osteoblasts. 
(A) Viability was detected using the 
MTT assay after treatment with SCOP 
(0.1 ~ 100 μM) for 24 h in pre-osteoblasts. 
(B and C) The early differentiation was 
detected at 7 days using the ALP staining 
(B) and activity (C) assays after incubation 
in OS with SCOP (1–10 μM). (D and E) 
The late differentiation was detected 
to analyse the mineralization using the 
ARS staining assay after incubation in 
OS with SCOP (1–10 μM) for 21 days 
(D), and the stains were quantitatively 
analysed using a spectrophotometer (E). 
Data are represented as mean ± S.E.M. 
*p < 0.05 and #p < 0.05 indicate statistical 
significance compared with the control 
and OS, respectively

(A)

(B) (C)

(D) (E)
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(629.08 g) was suspended in DW and organic solvents. EtOAc solu-
ble fraction (81.81 g) was subjected to silica gel CC, and fraction 1 
was subjected to silica gel CC eluted with mixtures of CHCl3-MeOH 
to afford compound 1 (SCOP, 100.0  mg) (Figure  1A). 125 MHz, 
CDCl3, 13C NMR: δ 160.5 (C-2), 152.5 (C-7), 149.4 (C-6), 145.8 (C-
9), 144.3 (C-4), 112.6 (C-10), 111.2 (C-3), 108.9 (C-5), 100.0 (C-8), 
56.2 (OMe), 55.9 (OMe) (Figure 1B). 500 MHz, CDCl3, 1H-NMR: δ 
7.94 (1H, d, J = 9.5 Hz, H-4), 7.24 (1H, s, H-5), 7.06 (1H, s, H-8), 6.29 
(1H, d, J = 9.5 Hz, H-3), 3.86 (3H, s, -OCH3), 3.80 (3H, s, -OCH3) 
(Figure 1C). Figure 1D displays SCOP's HPLC and structure (>99.17% 
purity; molecular formula: C11H10O4) (Figure 1D).

3.2  |  SCOP accelerates early and late osteoblast 
differentiation

Cell viability (%) was measured using the MTT assay to investi-
gate whether SCOP induces cytotoxicity after treating SCOP for 
24 h. As shown in Figure 2A, SCOP showed no cytotoxic effects 

against pre-osteoblasts at 0.1–100 μM (Figure  2A). Next, we in-
duced osteoblast differentiation using OS with SCOP (1–10  μM) 
for 24 h to examine whether SCOP possesses osteogenic effects. 
Alkaline phosphatase (ALP) staining was performed to detect 
pre-osteoblast early differentiation. ALP staining images were 
captured by a scanner, which revealed that SCOP elevated osteo-
blast differentiation at 7 days (Figure 2B). ALP enzymatic activity 
was detected by a spectrophotometer, which validated SCOP-
mediated osteoblast differentiation (Figure  2C). An Alizarin Red 
S (ARS) staining assay was used to explore whether SCOP modu-
lates matrix mineralization by the late osteoblast differentiation. 
We used a scanner to detect the matrix mineralization at 21 days 
after inducing osteoblast differentiation using OS with SCOP 
(110 μM). The matrix mineralization was generated, which showed 
that SCOP accelerated late osteoblast differentiation (Figure 2D). 
The osteogenic effects of SCOP on the differentiation were sta-
tistically validated by quantifying ARS staining (Figure  2E). In 
addition, we found that SCOP increased OPG/RANKL during os-
teoblast differentiation (Figure S1A).

F I G U R E  3  Effects of SCOP on 
canonical BMP2 signalling and RUNX2. 
(A) Western Blot analysis of BMP2, 
phospho-Smad1/5/8 (p-Smad1/5/8) and 
β-Actin levels. (B) Western Blot analysis 
of RUNX2, MMP13 and β-Actin levels. 
(C and D) Immunofluorescence assay to 
assess RUNX2 (green) levels in nucleus 
(blue). Images were detected using a 
fluorescence microscope. RUNX2 (%) 
was shown in a bar graph. (D). Data are 
mean ± S.E.M. *p < 0.05 and #p < 0.05 
indicate statistical significance compared 
with the control and OS, respectively

(A)

(C)

(D)

(B)
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3.3  |  SCOP promotes canonical BMP2-Samd1/5/8 
signalling and RUNX2 expression

We further examined the mechanism by which SCOP acts on osteo-
blast differentiation by detecting canonical BMP2 signalling using 
Western blot analysis. We observed that SCOP increased intracel-
lular and secreted BMP2 protein levels, and induced Smad1/5/8 
phosphorylation, which is a key canonical BMP2 signalling protein 
(Figure 3A and (Figure S1B). SCOP also promotes RUNX2 protein lev-
els, which is a core transcription factor induced by BMP2 signalling in 
osteoblast differentiation, followed by MMP13 protein expression, 
which is a RUNX2-target protein (Figure 3B). The increased RUNX2 
expression in the nucleus in response to SCOP was also validated 
using an immunofluorescence assay (Figure 3C). In addition, we vali-
dated that SCOP-stimulated early and late osteoblast differentiation 
was attenuated by a BMP2 inhibitor, Noggin (Figure S1C,D).

3.4  |  SCOP promotes non-canonical BMP2-MAPKs 
signalling and autophagosome formation

We subsequently examined whether SCOP affects the BMP2-
mediated non-canonical pathway. As shown in Figure  4A, SCOP 

activated the non-canonical pathway proteins, ERK, p38 and JNK 
(Figure 4A). We also investigated Wnt3a signalling, which revealed 
that SCOP did not noticeably affect the signalling proteins, including 
Wnt3a expression, GSK3β phosphorylation and β-catenin stabiliza-
tion (Figure 4B). Furthermore, autophagy signalling was investigated, 
and Western blot analysis revealed that Beclin1 and LC3A/B were 
increased by 10  μM SCOP, but not by 1  μM SCOP (Figure  4C). In 
addition, autophagy was observed by using a DAPGreen autophago-
some formation assay, which revealed that 10 μM SCOP increased 
autophagy through the increased formation of autophagic vacuoles 
(Figure 4D,E).

3.5  |  SCOP promotes osteoblast 
adhesion and migration

We finally explored whether SCOP influences osteoblast migration 
and adhesion in osteogenic processes. Adhesion experiments per-
formed using Matrigel-coated culture plates showed that SCOP mar-
ginally accelerated cell adhesion at 1 μM, and by a significant amount 
at 10 μM (Figure 5A,B). A Boyden chamber assay also showed that 
SCOP significantly increased osteoblast migration across the mem-
brane coated by Matrigel (Figure 5C,D).

F I G U R E  4  Effect of SCOP on non-
canonical BMP2 signalling, Wnt3a 
signalling and autophagy. (A) Western 
Blot analysis of phospho-p38 (P-P38), 
p38, phospho-JNK (p-JNK), JNK, 
phospho-ERK1/2 (p-ERK), ERK and 
β-Actin levels. (B) Western Blot analysis 
of Wnt3a, phospho-GSK3β (p-GSKβ), 
GSK3β, β-catenin and β-Actin levels. 
(C) Western Blot analysis of Beclin-1, 
LC3A/B and β-Actin levels. (D and 
E) Autophagosome formation was 
analysed and the DAPGreen-stained 
autophagosome intensity was shown in a 
bar graph (D), and images were detected 
using a fluorescence microscope (E). Data 
are mean ± S.E.M. *p < 0.05 and #p < 0.05 
indicate statistical significance compared 
with the control and OS, respectively

(A)

(C)

(E)

(D)

(B)
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4  |  DISCUSSION

Osteoblasts control bone tissue homeostasis throughout life, and 
the damage and loss of osteoblasts can lead to skeletal diseases.21,27 
Herein, we demonstrated the activities of SCOP on MC3T3E-1 pre-
osteoblasts, which are commonly utilized for researching in vitro 
osteogenic processes.28 Osteoblast differentiation increases ALP, 
while osteoblast maturation results in bone matrix mineralization, 
which are well-known early and late osteoblast differentiation mark-
ers, respectively.27,29,30 Herein, we found that SCOP enhances ALP 
and bone matrix mineralization during osteogenic processes. We 
also demonstrated that SCOP accelerates osteoblast adhesion and 
migration. Osteoblast differentiation, migration and adhesion to the 
blood, bone marrow, periosteum induce bone-specific protein secre-
tion and bone matrix mineralization to produce bone tissue.12–14 Our 
findings, based on the previous papers and present results, indicate 

that SCOP has osteogenic effects by promoting differentiation, ad-
hesion, migration and mineralization.

Osteogenic processes are tightly regulated through complex net-
works activated by distinct osteogenic signalling molecules. BMP2, 
a bone morphogenetic factor, stimulates the canonical Smad1/5/8 
and the non-canonical MAPKs pathways, which subsequently con-
trol the critical transcription factor RUNX2. These events result in 
the production of bone-forming proteins such as osterix, collagen 
and ALP for osteoblast differentiation.31–33 Herein, SCOP enhances 
BMP2 and activates Smad1/5/8, ERK, JNK and p38. SCOP also in-
creases RUNX2 expression and increases production of the target 
protein, MMP13, which is associated with calcification and degrada-
tion of extracellular matrix (ECM), as well as cell migration and adhe-
sion during osteoblast differentiation bone repair.34–36 In osteoblast 
differentiation, there is a close relationship between the BMP2 
and Wnt3a signalling pathways, including the effects of Wnt3a 

F I G U R E  5  Effect of SCOP on 
osteoblast adhesion and migration (A and 
B) Adhesion was analysed on ECM-coated 
plates, and images were detected using a 
light microscope. (A) Adhesion was shown 
in a bar graph (B). (C and D) Migration 
was analysed using Boyden chamber 
in ECM-coated membrane, and images 
were detected using a light microscope 
(C). Migration was shown in a bar graph 
(D). Data are mean ± S.E.M. *p < 0.05 and 
#p < 0.05 indicate statistical significance 
compared with the control and OS, 
respectively

(A)

(B)

(C)

(D)
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regulating BMP2 expression and its target proteins.37–41 However, 
we found that SCOP did not affect Wnt3a expression, GSK3β phos-
phorylation or β-catenin stabilization. Thus, our results suggest that 
SCOP accelerates differentiation and mineralization by promoting 
BMP2-mediated osteogenic signalling.

Autophagy is a self-degradative mechanism in which cells en-
gulf defective organelles and proteins, allowing metabolic balance 
to be maintained.42 Autophagy-related components play a role in 
bone metabolism and bone diseases by regulating the survival and 
function of bone tissue cells.43–47 There is increasing evidence that 
shows that osteoblast differentiation and maturation are stimulated 
by autophagic process.44,48 It was also reported that endoplasmic 
reticulum stress is induced by defective autophagy in osteoblasts, 
resulting in significant bone loss.49 Recently, natural compound-
induced autophagy has been shown to enhance osteoblast differ-
entiation and maturation, as well as ameliorate bone diseases.50–52 
Here, we demonstrate that high-dose SCOP elevates autophago-
some formation with increased Beclin-1 and LC3A/B levels. It was 
reported that BMP2 induces autophagy to facilitate stem cell dif-
ferentiation.53 MAPK-induced autophagy prevents MC3T3-E1 pre-
osteoblasts from entering apoptosis.54 Thus, our results suggest that 
SCOP-induced BMP2 signalling is also involved in the autophagy 
pathway in osteogenic processes.

In conclusion, the findings of this study show for the first time 
that SCOP extracted from A.  capillaris enhances the osteogenic 
processes—osteoblast differentiation, adhesion, migration, au-
tophagy and mineralization through the BMP2 signalling path-
ways. However, in future studies, it will be necessary to compare 
human and murine osteoblasts, as they may behave differently in 
different species. Our data suggest that SCOP is a potential cou-
marin for developing an anabolic medication to improve osteoblast 
differentiation.
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