
TECHNOLOGY AND CODE
published: 27 June 2022

doi: 10.3389/fninf.2022.884046

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 884046

Edited by:

Mike Hawrylycz,

Allen Institute for Brain Science,

United States

Reviewed by:

Daniele Linaro,

Politecnico di Milano, Italy

Mikael Djurfeldt,

Royal Institute of Technology, Sweden

*Correspondence:

Felix Schürmann

felix.schuermann@epfl.ch

†These authors share first authorship
‡These authors share senior

authorship

Received: 25 February 2022

Accepted: 26 May 2022

Published: 27 June 2022

Citation:

Awile O, Kumbhar P, Cornu N,

Dura-Bernal S, King JG, Lupton O,

Magkanaris I, McDougal RA,

Newton AJH, Pereira F, Săvulescu A,

Carnevale NT, Lytton WW, Hines ML

and Schürmann F (2022) Modernizing

the NEURON Simulator for

Sustainability, Portability, and

Performance.

Front. Neuroinform. 16:884046.

doi: 10.3389/fninf.2022.884046

Modernizing the NEURON Simulator
for Sustainability, Portability, and
Performance
Omar Awile 1†, Pramod Kumbhar 1†, Nicolas Cornu 1, Salvador Dura-Bernal 2,3,

James Gonzalo King 1, Olli Lupton 1, Ioannis Magkanaris 1, Robert A. McDougal 4,5,6,

Adam J. H. Newton 2,4, Fernando Pereira 1, Alexandru Săvulescu 1, Nicholas T. Carnevale 7‡,

William W. Lytton 3‡, Michael L. Hines 7‡ and Felix Schürmann 1*‡

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland, 2Department Physiology and

Pharmacology, SUNY Downstate, Brooklyn, NY, United States, 3Center for Biomedical Imaging and Neuromodulation,

Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States, 4Department of Biostatistics, Yale School of

Public Health, New Haven, CT, United States, 5 Program in Computational Biology and Bioinformatics, Yale University,

New Haven, CT, United States, 6 Yale Center for Medical Informatics, Yale University, New Haven, CT, United States,
7Department of Neuroscience, Yale University, New Haven, CT, United States

The need for reproducible, credible, multiscale biological modeling has led to the

development of standardized simulation platforms, such as the widely-used NEURON

environment for computational neuroscience. Developing and maintaining NEURON

over several decades has required attention to the competing needs of backwards

compatibility, evolving computer architectures, the addition of new scales and physical

processes, accessibility to new users, and efficiency and flexibility for specialists. In

order to meet these challenges, we have now substantially modernized NEURON,

providing continuous integration, an improved build system and release workflow, and

better documentation. With the help of a new source-to-source compiler of the NMODL

domain-specific language we have enhanced NEURON’s ability to run efficiently, via

the CoreNEURON simulation engine, on a variety of hardware platforms, including

GPUs. Through the implementation of an optimized in-memory transfer mechanism

this performance optimized backend is made easily accessible to users, providing

training and model-development paths from laptop to workstation to supercomputer and

cloud platform. Similarly, we have been able to accelerate NEURON’s reaction-diffusion

simulation performance through the use of just-in-time compilation. We show that these

efforts have led to a growing developer base, a simpler and more robust software

distribution, a wider range of supported computer architectures, a better integration of

NEURON with other scientific workflows, and substantially improved performance for the

simulation of biophysical and biochemical models.

Keywords: NEURON, simulation, neuronal networks, multiscale computer modeling, systems biology,

computational neuroscience

1. INTRODUCTION

NEURON is an open-source simulation environment that is particularly well suited for models of
individual neurons and networks of neurons in which biophysical and anatomical complexity have
important functional roles (Hines and Carnevale, 1997). Its development started in the laboratory
of John Moore at Duke University in the mid-1980s as a tool for studying spike initiation and

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.884046
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.884046&domain=pdf&date_stamp=2022-06-27
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:felix.schuermann@epfl.ch
https://doi.org/10.3389/fninf.2022.884046
https://www.frontiersin.org/articles/10.3389/fninf.2022.884046/full

Awile et al. Modernizing NEURON

propagation in squid axons. Subsequently it underwent massive
enhancements in features and performance and it is now used
for models that range in scale from subcellular (McDougal et al.,
2013) to large networks (Migliore et al., 2006). Today it is one
of the most widely used simulation environments for biologically
detailed neurosimulations (Tikidji-Hamburyan et al., 2017).

Einevoll et al. (2019) have argued that the central role of
simulation software in neuroscience is analogous to physical
infrastructure in other scientific domains, such as astronomical
observatories and particle accelerators, and that the resources
required to build and maintain software should be considered
in this context. The increasing importance of software in
science is, however, not specific to neuroscience. Crouch
et al. (2013) and Hettrick et al. (2014) found that there
is a general trend that science relies more and more on
software with the capability to automate complex processes and
perform quantitative calculations for prediction and analysis.
Unfortunately, this reliance on software also has inherent and
increasing risks (Miller, 2006). The need for better software
sustainability, correctness and reproducibility (McDougal et al.,
2016; Mulugeta et al., 2018) has prompted initiatives and
proposals suggesting better practices when developing scientific
software (Crouch et al., 2013; Erdemir et al., 2020) and when
publishing computational results (Heroux, 2015; Willenbring,
2015). In practice, however, it remains difficult to always have
the right training, resources and overall understanding to develop
good software and use it correctly. Bartlett et al. (2012) and
Gewaltig and Cannon (2014) further illustrate how productive
use of a software application can lead to development and use
beyond its original scope. This, in turn, increases its complexity
and can render a once-straightforward implementation unwieldy
and hard to maintain.

Another challenge is that of software portability. A user
may, rightfully, expect that a scientific software runs on
different operating systems and makes good use of all the
installed hardware, which in today’s systems often means a
combination of a multi-core CPU and a powerful graphics
processing unit (GPU). The number and diversity of these
hardware architectures is expected to continue to increase as
hardware architects seek to further exploit problem specificities
in their designs (Hennessy and Patterson, 2017). The increasing
difficulty in miniaturizing transistors will amplify the trend
toward architectural heterogeneity (Hennessy and Patterson,
2019). From a software point of view, maintaining portability for
this diversity of platforms is a fundamental challenge. The more
target platforms that need to be supported, the bigger the risk that
this leads to multiple redundant code segments with potentially
different programming syntax, compilation configurations, and
deployment mechanisms, which are error-prone and labor-
intensive to maintain. In the software development world,
mechanisms and paradigms have been found that facilitate
writing more portable software, such as programming paradigms
that support multiple architectures (Wolfe, 2021), and modern
continuous integration mechanisms (Meyer, 2014). If we want to
be able to keep benefiting from future hardware developments in
neuroscience, neurosimulator software will have to fully engage
with the portability challenge.

Another important challenge is running computational
models quickly and efficiently, including those of large size.
This requires understanding the computational nature of the
scientific problem, which computer system is best suited
(Cremonesi and Schürmann, 2020; Cremonesi et al., 2020),
and optimization of data structures and algorithms for specific
hardware architectures (Jordan et al., 2018; Kumbhar et al., 2019).
Given the multitude of computational models and diversity of
computer architectures, it has become necessary to use various
automated approaches to generate optimized versions of the
software. Examples includemodern compiler techniques for code
generation from domain specific languages (e.g., Blundell et al.,
2018; Akar et al., 2019; Kumbhar et al., 2020), or just in time
compilation (Lam et al., 2015), as well as the use of platform-
optimized libraries (e.g., Agullo et al., 2009; Carter Edwards et al.,
2014) and new abstraction layers that anticipate heterogeneous
architectures (Beckingsale et al., 2019).

A major confounding factor to the aforementioned challenges
is that popular scientific codes, such as NEURON (Hines and
Carnevale, 1997) or NEST (Gewaltig and Diesmann, 2007),
have often been developed over long periods and include
key source code that was written without the benefit of
modern development tools, libraries and software programming
practices. The necessity of modernizing scientific codes is
increasingly recognized (Neely et al., 2017; de Verdière, 2020)
and does not spare brain simulator software projects (Brette et al.,
2007). In the case of NEST these modernizations happened over
the past few years, spanning a wide range of both algorithmic
and technical improvements (Pronold et al., 2022). Others,
such as the Brian Simulator (Goodman, 2009), have decided
to rewrite their codes from scratch, taking the opportunity to
overcome limitations of their previous implementations, such as
allowing for flexibility in model specification while improving
simulator performance (Stimberg et al., 2019). It also prompted
the inception of new simulator projects, such as the Arbor
simulator (Akar et al., 2019), where the developers sought to
start from a design philosophy that prefers standard library
data structures, code generation, and which minimizes external
dependencies. The flip side of such a fresh start is that it is difficult
to maintain full backward compatibility with existing models.

Lastly, with more complex scientific workflows, the notion of
software being a single do-it-all tool is slowly waning and one
should rather think of it as a building block in a larger eco-system.
This trend can be seen in efforts like the EBRAINS research
infrastructure1, where multiple tools are combined into intricate
scientific workflows (Schirner et al., 2022). The Open Source
Brain (Gleeson et al., 2019) and tools such as NetPyNE (Dura-
Bernal et al., 2019), LFPy (Lindén et al., 2014), Bionet (Gratiy
et al., 2018) and BluePyOpt (Van Geit et al., 2016) use NEURON
as a library and augment it with additional features. As an
example, NetPyNE is a high-level Python interface to NEURON
that facilitates the development, parallel simulation, optimization
and analysis of multiscale neural circuit models.

Here, we report on our efforts to modernize the widely-used
NEURON simulator, improving its sustainability, portability,

1https://ebrains.eu/

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 884046

https://ebrains.eu/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

and performance. We have overhauled NEURON’s overall code
organization, testing, documentation and build system with the
aim of increasing the code’s sustainability. We have integrated
NEURON with an efficient and scalable simulation engine
(CoreNEURON) and a modern source-to-source compiler
(NMODL) capable of targeting both CPUs and GPUs. We
demonstrate the performance of several large-scale models using
different multi-CPU and multi-GPU configurations, including
running simulations on Google Cloud using NetPyNE. Finally,
we updatedNEURON’s reaction-diffusion simulation capabilities
with just-in-time compilation, more seamless integration with
the rest of NEURON, support for exporting to the SBML format,
and support for 3D intra- and extra-cellular simulation.

2. METHODS

Over the years the NEURON simulator has been developed
to accommodate new simulation use-cases, support community
tools and file formats, and adopt new programming paradigms
to benefit from emerging computing technologies. During this
process, various software components have been developed
and external libraries have been integrated into the codebase.
Like many scientific software packages, maintaining a codebase
developed over four decades poses a significant software
engineering challenge.

Since the 7.8 release the NEURON developer community has
launched a variety of initiatives to future-proof the simulator
codebase. Figure 1 summarizes the high-level functional
components of the NEURON simulator and the various changes
described in the rest of this section. These developments
happened since 2020 over the course of 2 years starting with the
refactoring of the build system and the introduction of a new
continuous integration (CI) system. While especially the latter
is an ongoing effort, both developments have allowed various
improvements to documentation, testing and packaging. The
tighter integration of CoreNEURON into NEURON and its
various performance and hardware portability improvements
were implemented in parallel and were able to quickly benefit
from the new build system and CI made available in NEURON.

2.1. Improving Software Sustainability
Through Code Modernization and Quality
Assurance
To address some of the shortcomings of NEURON’s codebase
accumulated over four decades of continued development,
we have implemented a number of far-reaching changes and
adopted a new modern development process with the aim
of streamlining the handling of code contributions, while at
the same time improving code quality and documentation.
First, we have replaced the legacy GNU Autotools based build
system with CMake. Second, this allowed us to introduce a
comprehensive automated build and CI system using GitHub
Actions. Third, these two changes allowed us to create a modern
binary release system based on Python wheels. Finally, we
have further extended these components to integrate a code
coverage monitoring service and automatically build user and
developer documentation.

2.1.1. Modern Build System Adoption
Until recently the build system of NEURON used GNU
Autotools. Autotools, the de-facto standard on Unix-like
systems, is a build system used to assist the various build
steps of software packages. CMake is a modern alternative to
Autotools that offers many advantages and features important for
the continued development of NEURON. First, it has extensive
support for customizing C and C++ builds, from language
standards, to fine-tuning compile and link-time arguments.
Furthermore, it supports build portability across hardware
platforms (i.e., x86_64, ARM, GPUs), operating systems (i.e.,
Linux, macOS, Windows) and compilers (GCC, Clang, Intel,
NVIDIA, etc.). It also allows a more robust integration
with external dependencies. Finally, CMake is being actively
developed and supported by a large community of open source
and industry developers.

We decided, therefore, to replace NEURON’s legacy Autotools
build system by CMake and reimplemented the entire configure
and build process using CMake for NEURON as well as its
libraries such as CoreNEURON and Interviews. The build-
system reimplementation allowed us to refactor large parts of
the auxiliary code used for configuring, packaging and installing
NEURON in order to make it more robust and maintainable.

Using CMake we are able to provide a build configuration that
goes far beyond GNU Autotools in several respects. For instance,
we have included the ability to automatically clone and integrate
other CMake based libraries like CoreNEURON and NMODL
using CMake options. The build is organized in various build
targets producing multiple shared libraries for the interpreter,
solvers, simulator, the native interfaces of the Python API, RxD,
CoreNEURON, and the main neuron executable, nrniv.

2.1.2. Continuous Integration and Build Automation
Continuous integration (CI) is crucial for the development
process of any software project. It allows the development
team to check the correctness of code changes over the course
of the project’s development life cycle. To support our work
in modernizing the NEURON codebase and opening up the
development process to a wider community it was, therefore,
important to first put a CI in place. Figure 2A gives an
overview of the CI workflow using GitHub Actions and Azure.
Every time a new Pull Request is opened on the NEURON
repository, CI pipelines for building and testing NEURON are
executed on Linux, Windows and macOS. These also rebuild
the documentation, executing all embedded code snippets and
generate test code coverage reports, which are provided to the
code reviewer to aid them in evaluating the proposed change
to the code. As part of the CI workflows, we also need to build
and test binary installers as well as python wheels for various
platforms. As Github Actions provides limited concurrent builds
for open source projects, we use Azure CI workflows for building
artifacts such as installers and python wheels. This helps us to
reduce overall CI turnaround time.

Using the Pull Request CI workflow, we ensure that the
proposed change will not introduce bugs or unintended side-
effect, by testing the majority of build options along with
different compiler versions. The jobs also build Python wheel
packages (see Section 2.1.4 for more details) and test the integrity

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 884046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 1 | NEURON Simulator Overview: At the top, the “Public API” layer shows NEURON’s three application programming interfaces exposed to end-users: the

legacy HOC scripting interface, the preferred Python interface, and the NMODL DSL for defining channel and synapse models. In the middle, the “Simulator

Component” layer shows the main three different software components and their interal sub-components: NEURON, the main modeling and simulation environment,

CoreNEURON, a compute engine for NEURON targetted at modern hardware architectures including GPUs, and NMODL, a modern compiler framework for the

NMODL DSL. At the bottom, supported hardware architectures are shown. Software components that are newly added or are deprecated are highlighted.

FIGURE 2 | (A) Pull Request CI workflow: Whenever a Pull Request is opened jobs are started to build and test NEURON on Linux, Windows and macOS. Several

combinations of build options and versions of dependencies are tested. Also, Python wheels are built, the documentation is regenerated, executing embedded code

snippets and code coverage metrics are determined. All CI job results are reported to the code reviewer. (B) Merge & Release CI workflow: Automated CI jobs are also

started after a PR has been merged, nightly or on a new version release. These jobs produce artifacts that are delivered into appropriate channels.

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 884046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

of the resulting packages by running NEURON’s unit and
integration test suites. These jobs are executed both on Linux
andmacOS systems. BecauseWindows is a substantially different
environment, we needed to develop a separate CI to build and
test the NEURON installer package using the MinGW compiler
and MSYS2 environment2.

Contrary to the Pull Request CI, the Merge & Release CI
(Figure 2B) is executed on the latest master branch of the
NEURON codebase or with a new release. Artifacts such as the
latest documentation, Python wheels, binary packages and the
Windows installer are built.

Once we had set up a robust build system and CI workflow,
we were able to extend the framework to offer additional features
both for the developer and the user community. First, as the
name suggests, the Docs CI builds a NEURON Python wheel
package and rebuilds the NEURON documentation (described
in more detail in Section 2.1.3). Second, we have added a code
coverage workflow, which builds NEURON with all features
enabled and runs all tests tracking code coverage using lcov and
pytest-cov.

2.1.3. Documentation Generation
NEURON’s documentation consists of a number of resources
covering the Interviews graphical interface, the HOC and
Python APIs, the NMODL domain specific language (DSL), and
development best practices.

As part of our effort to streamline the development process
and modernize the organization of NEURON, we consolidated
NEURON’s documentation sources into the main repository and
automated the documentation building. Additional resources,
such as tutorials, in the form of Jupyter notebooks, were also
gathered and integrated into the NEURON documentation.

We integrated documentation building into the CMake build
system and CI pipelines. In the CI pipelines, we start by
executing the Jupyter notebooks using a freshly built NEURON
wheel, ensuring that existing notebooks are compatible with
the latest code. Once the notebooks have been successfully
executed, they are then converted to HTML. Next, Doxygen
code documentation is generated. Finally, the manual and
developers guide are re-built with Sphinx, embedding the
previously generated Jupyter notebooks and Doxygen. This
documentation is then published on the ReadTheDocs3 where
we provide versioned documentation starting with the NEURON
8.0.0 release.

2.1.4. A Modern NEURON Python Package
NEURON was originally packaged as a traditional software
application, made available as a binary package for mainstream
operating systems and alternatively as a source tarball.
Alternatively, NEURON could also be installed as a Python
package through a laborious multistep process that lacked
flexibility and was error prone. With the introduction of
a standard, complete Python interface (Hines et al., 2009),
NEURON could be more readily used from a Python shell.

2https://www.msys2.org/
3https://readthedocs.org/

Thanks to the user friendliness and strong scientific ecosystem
of the Python language, this API quickly became popular in
the NEURON community. At the same time, the Python wheel
package format has become an extremely popular means of
distributing Python software packages, allowing the user to
install Python packages using pip install.

To provide the flexibility of pip-based installation, using
the CMake build system we implemented a new NEURON
Python package shown in Figure 3. This package is comprised
of C/C++ extensions providing the legacy hoc language, the
Python interface, reaction-diffusion module (rxd) with Cython
extension, and several pure Python modules. To build functional
Python extensions it is important to provide the build system
with the correct build flags and paths compatible with the
target Python framework. To achieve this we extended the
Extension class of setuptools.

One of the challenges faced when building the NEURON
Python package was distribution of binary executables and
support for compiling MOD files on the user’s machine. Python
extensions are typically built as shared libraries and automatically
placed in the correct location in the package path to be found
at runtime. However, compiled executables such as nrniv are
treated by setuptools as binary data and not installed into the
Python framework’s bin folder. Also, we needed to support the
nrnivmodl workflow where the user can compile mechanism
and synapse models from MOD files and load the corresponding
library at runtime. In order to support this, we created Python
shims that take the place of the actual NEURON executables in
the bin folder. These shims prepare the runtime environment
and call the homonymous NEURON binary executable via the
execv routine, which substitutes the shim process with the
NEURON executable.

2.2. Integration of CoreNEURON Within
NEURON
CoreNEURON (Kumbhar et al., 2019) is a simulation engine
for NEURON optimized for modern hardware architectures
including CPUs and GPUs. CoreNEURON is developed and
maintained in its own public repository on GitHub. Previously
it was up to the user to obtain API-compatible versions and build
NEURON and CoreNEURON from source separately. The use
of CoreNEURONwas also not straightforward as it had to be run
as a separate executable. To simplify the usage, CoreNEURON
and NEURON are now coupled more tightly in terms of code
organization, build system and implementation level.

First of all, we have integrated CoreNEURON (along with
NMODL) as git submodules of the nrn repository, allowing us to
build single software distribution packages containing optimized
CPU and GPU support via CoreNEURON. This also simplifies
tracking changes in the various repositories and making sure
that the correct code revisions are distributed and built together.
Secondly, we have integrated CoreNEURON and NMODL
building into NEURON’s CMake build system. This is possible
thanks to CMake’s robust support of subprojects that allow easy
popagation of build parameters across the various code bases.
Thirdly we have implemented an in-memory model transfer,

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 884046

https://www.msys2.org/
https://readthedocs.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 3 | Overview of the NEURON Python package. The package is comprised of pure Python modules and extension code. The main NEURON extension is

written in C/C++ and provides the API for the NEURON interpreter. Additionally, the rx3d modules are written in Cython providing the reaction-diffusion solvers of

NEURON.

improved GPU support in CoreNEURON, and integrated our
MOD file code generation pipelines. Some of the important
changes are discussed in the remainder of this section.

2.2.1. Transparent Execution via Coreneuron Using

In-memory Model Transfer
While CoreNEURON can be run as a standalone application, it
still requires the model created by NEURON as an input. This
model can be written to disk and transferred to CoreNEURON
via files. This approach has the advantage that a large model
can be constructed once by NEURON and stored to files, which
can be later run by CoreNEURON many times (for example for
ensemble runs). Also, this allows the models with huge memory
requirement to be constructed in smaller pieces by NEURON
before being executed simultaneously by CoreNEURON, thanks
to it having a 5 − 6× smaller memory footprint than NEURON.
However, we found that in practice this workflow is not flexible
enough for many users.

To address this we have now implemented two-way in-
memory data transfer between NEURON and CoreNEURON,
which greatly simplifies CoreNEURON usage. With this, it
is now possible to record cell or mechanism properties (e.g.,
voltage, current, variables of type STATE, PARAMETER,
RANGE, ASSIGNED defined in MOD files), unlike with the
file-transfer mode where only spikes can be recorded. In case
of NEURON, all of the data structures representing a model
are laid out in an Array-of-Structures (AoS) memory layout.
This allows easy manipulation of sections, channels and cells
at runtime, but it is not optimal for memory access and
Single Instruction Multiple Data (SIMD) execution on modern
CPU/GPU architectures. Hence, NEURON data structures are
serialized and transferred to CoreNEURON where they are

transposed into a Structure-of-Array (SoA) memory layout. This
allows efficient code vectorization and favors coalesced memory
access, which is important for runtime performance. In addition
to data structures representing cells and network connectivity,
event queues are now also copied back and forth between
NEURON and CoreNEURON, allowing simulations to be run
partly with NEURON and partly with CoreNEURON if desired.
For end users, all this functionality is now exposed via a new
Pythonmodule named coreneuron. The API and new options
are discussed in Section 3.3.

2.2.2. Enabling GPU Offloading in NEURON

Simulations
It is now possible to offload NEURON simulations transparently
to GPUs using CoreNEURON. This support is implemented
using the OpenACC programming model. When CoreNEURON
GPU support is enabled, all data structures representing
the model are copied to GPU memory when initializing
CoreNEURON. State variables for the Random123 (Salmon
et al., 2011) library are also allocated on the GPU using
CUDA unified memory. Once the data are transferred, they
reside in the GPU memory throughout the simulation. This
simplifies memory management and reduces expensive CPU-
GPU memory transfers.

All computationally intensive kernels of the main simulation
loop are offloaded to the GPU, including state and current
updates in MOD files, and the Hines solver (Hines, 1984). Even
though the spike detection kernels are not computationally
expensive, they are offloaded to GPU too, to benefit from data
locality and avoid additional data transfers. Only the spike events
generated on the GPU and user-requested state variables are
copied back to CPU. Similarly, the spikes communicated by

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 884046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

other processes are first queued on the CPU and then transferred
to GPU.

For some models the Hines solver can consume a significant
fraction of the total simulation time when running on GPUs. This
is often due to the limited parallelism and non-coalescedmemory
access arising from heterogeneous, branched tree structures in
neuron morphologies. As presented by Kumbhar et al. (2019),
two node ordering schemes (called cell permutations) were
developed to improve the parallelism and coalesced memory
accesses. We have further improved this implementation,
reducing solver execution time on GPU by an additional 15 −

−20%. Finally, simulations running on GPU can now utilize
multiple GPUs available on a compute node. The available GPUs
are uniformly distributed across MPI processes and threads.

2.2.3. Integration of Code Generation Pipelines
An integral part of NEURON’s modeling capability is provided
via the NMODL DSL. This allows the user to describe in their
models a wide range of membrane and intracellular submodels
such as voltage and ligand gated channels, ionic accumulation
and diffusion, and synapse models. Such models are written in
MOD files and then translated to lower level C or C++ code using
a source-to-source compiler (transpiler).

In order to support execution via both NEURON or
CoreNEURON, each MOD file is now translated twice: first into
C code for NEURON, and then into C++ for CoreNEURON.
This workflow is illustrated in Figure 4. nrnivmodl remains
our main tool for processing user provided MOD files. By default,
all inputMOD files are translated into C code byNEURON’s legacy
NOCMODL transpiler. These files are then compiled to create
a library for NEURON called libnrnmech. If a user provides
the -coreneuron CLI option then either the default MOD2C
or the new NMODL transpiler (Kumbhar et al., 2020) is used to
translate MOD files into C++ files. These files are then compiled to
create a library for CoreNEURON called libcorenrnmech.
The NMODL transpiler generates modern, optimized C++ code
that can be compiled efficiently on CPUs or GPUs. These two
libraries are finally linked into an executable called special.
When running on the CPU the user has the choice between
using python, nrniv or the special executable to launch
simulations.When running on a GPU, however, one must use the
special executable to launch simulations due to limitations of
the NVIDIA compiler toolchain when using OpenACC together
with shared libraries.

2.3. Modular NEURON: The Example of
NetPyNE
NetPyNE (Dura-Bernal et al., 2019) is a high-level declarative
NEURONwrapper used to develop a wide range of neural circuit
models (Metzner et al., 2020; Anwar et al., 2021; Bryson et al.,
2021; Pimentel et al., 2021; Ranieri et al., 2021; Romaro et al.,
2021; Volk et al., 2021; Borges et al., 2022; Dura-Bernal et al.,
2022a,b;Medlock et al., 2022)4, and also as a resource for teaching
neurobiology and computational neuroscience.

4http://netpyne.org/models

The core of NetPyNE consists of a standardized JSON-like
declarative language that allows the user to specify all aspects of
the model across different scales: cell morphology and biophysics
(including molecular reaction-diffusion), connectivity, inputs
and stimulation, and simulation parameters. The NetPyNE API
can then be used to automatically generate the corresponding
NEURON network, run parallel simulations, optimize and
explore network parameters through automated batch runs, and
visualize and analyze the results using a wide range of built-in
functions. NetPyNE can calculate local field potentials (LFPs)
recorded at arbitrary locations and has recently been extended
to calculate current dipoles and electroencephalogram (EEG)
signals using LFPykit (Hagen et al., 2018).

NetPyNE also facilitates model sharing by exporting to
and importing from the NeuroML and SONATA standardized
formats. All of this functionality is also available via a web-based
user interface5. Both Jupyter notebooks and graphical interfaces
are integrated and available via the Open Source Brain (Gleeson
et al., 2019) and the EBRAINS (Amunts et al., 2019) platforms.

Simulating large models in NEURON/NetPyNE is
computationally very expensive. Thus, enabling CoreNEURON
within NetPyNE is very attractive and may provide large
gains. Thanks to the tighter integration of CoreNEURON into
NEURON (see Section 2.2), we were able to easily integrate
CoreNEURON solver support into NetPyNE. We used the
coreneuron Python module provided by NEURON and
added three new configuration options in the simulation
configuration object of NetPyNE: coreneuron to enable
CoreNEURON execution, gpu to enable or disable GPU
support, and random123 in order to enable Random123-based
random number generators. Users can now enable these features
by simply setting the above options in their NetPyNE simulation
configuration file.

2.4. Enabling New Use-Cases With
Reaction-Diffusion Integration
The NEURON reaction-diffusion module (RxD, McDougal et al.,
2013) provides a consistent formalism for specifying, simulating,
and analyzing models incorporating both chemical signaling
(chemophysiology) and electrophysiology. Such models are
common in neuroscience as, for example, calcium concentration
in the cytosol affects the activity of calcium-gated potassium
channels. Before NEURON’s RxD module, these models
incorporated chemical effects in any of a variety of ways using
custom NMODL code; this variation unfortunately made some
such models incompatible with each other and posed challenges
when combining the custom code with NEURON’s built-in tools.
Due to the use of custom solutions, they also generally combined
simulation methodology with model description; NEURON’s
RxD module, by contrast, explicitly separates the two, allowing,
for example, the same model to be used for both 1D and
3D simulation. Recent enhancements to RxD have focused on
improving its domain of applicability and usability through
changes to the interface and redesigning the backend for more
flexibility and faster simulation.

5http://gui.netpyne.org

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 884046

http://netpyne.org/models
http://gui.netpyne.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 4 | nrnivmodl workflow where input MOD files are translated into C/C++ code for NEURON and CoreNEURON targeting different hardware platforms via

NOCMODL and NMODL. The output of this workflow is a special executable containing NEURON and CoreNEURON specific libraries.

A number of features have been implemented to expand
the ability of RxD to better represent a researcher’s conceptual
model. An Extracellular region type (Newton et al.,
2018) provides support for studying cellular interactions
through changes in the extracellular space (e.g., in ischemic
stroke or between neurons and astrocytes), simulated using
a macroscopic volume averaging approach. Three-dimensional
intracellular simulation (McDougal et al., 2022) allows study
of microdomains and the sensitivity to precise positioning of
synapses. Importantly, each of these extensions was designed
to fit within the broader RxD context; reaction and diffusion
rules are specified and interpreted in the same way for 1D
and 3D simulation and for intra- and extracellular simulation.
Current through NMODL-DSL-specified ion channels generates
a flux in the corresponding extracellular compartment and ionic
Nernst potentials are updated based on the 3D extracellular
concentration. Both 3D intra- and extra-cellular dynamics are
calculated using a parallelized adaptation of the Douglas-Gunn
alternating direction implicit method (Douglas and Gunn,
1964). For models not requiring full 3D simulation, it is
still sometimes advantageous to account for geometry changes
(e.g., in a model using nested shells to account for radial
variation, a spine most naturally connects to only the outer-
most shell); to allow modelers to address this connection,
we added a MultipleGeometry to explicitly bridge across
geometry changes.

Other interface enhancements focused on extending RxD’s
usability. We have worked to make existing NEURON tools
work directly with RxD objects. For example, h.distance
computes path distance between two points, whether they
are RxD nodes or segments. Likewise, the NEURON-specific
graph types (h.PlotShape and h.RangeVarPlot for
visualizing concentration across an image of the cell and
along a path) can plot traditional NEURON variables (e.g.,
v or cai) as well as RxD chemical Species in whatever
region (cytosol, ER, etc.) when using the graph’s matplotlib
or pyplot backends. We added a neuron.units submodule
with conversion factors to facilitate specifying models with
rate constants most naturally expressed in specific units

(e.g., circadian models involve protein concentrations that
change over hours whereas the gating variable on a sodium
channel may have a time constant of milliseconds). A new
rxd.v variable allows using the RxD infrastructure to include
dynamics driven by membrane potential, offering an alternative
to specifying ion channel kinetics through NMODL files.
To allow studying NEURON RxD models with other tools,
we introduced neuron.rxd.export.sbml which allows
exporting reaction dynamics at a point to SBML, a standard for
representing systems biology models (Keating et al., 2020).

Additionally, we modified the backend for h.SaveState
to introduce an extensible architecture for storing and restoring
new types of state variables. Python functions within theneuron
module allow registering SaveState extension types, which consist
of specifying a unique identifier, a function to call that serializes
the corresponding states, and a function that expands a serialized
representation. We implemented an RxD extension that registers
itself when RxD states are defined (in particular, importing
the module alone does not trigger the registration). When no
extensions (including RxD) are present in the model, the saved
file is bitwise identical to previous (NEURON 7.x) versions; when
extensions are present, the saved data includes a new version
identifier, is otherwise identical to the previous version, but
ends with binary encoded data representing the number of save
extensions used in the model, an identifier for each used save
extension, the length, and data to be passed to the extension.
In the case of the RxD SaveState extension, as the state data is
potentially voluminous, the serialized data is zlib compressed.

We redesigned the RxD backend to improve the flexibility of
interactive model specification and debugging. Region objects
now take an optional name argument that can be specified at
creation or after to help distinguish them during debugging.
For both intra- and extracellular 3D simulation, each Species,
State, and Parameter has its values stored in independent
memory locations accessed by a pointer to the corresponding
mesh. This architecture allows pointers to be preserved as new
Species, etc. are defined and old ones are removed. To
improve the portability of cells between models, we replaced the
requirement that a given species (e.g., calcium) could only be

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2022 | Volume 16 | Article 884046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

defined once with a requirement that there be no overlapping
versions of the same species. This change now allows each cell
object in NEURON to fully specify its kinetics, including the
reaction-diffusion aspects, thus allowing such cells to be reused
in other models without further code changes.

With successive releases of NEURON, we iteratively improved
the performance of RxD simulation. We moved all simulation
code to C++ and compile reaction specifications to eliminate
Python overhead. Reactions continue to be specified in Python as
before, but now contain a method that generates a corresponding
C file; this method is automatically called when first needed and
the corresponding file is compiled and dynamically loaded into
NEURON. We replaced the matrix solving algorithm used in
3D RxD simulations with one that exploits the decoupled nature
of the reaction-contribution to the Jacobian that arises from
reactions only happening between molecules at the same spatial
location. Multi-threading support was added to 3D simulations.
3D diffusion rates depend on the concentration at a node and
up to six of its neighbors. To minimize cache-miss latency
when accessing neighboring voxels when simulating extracellular
diffusion, __builtin_prefetch was used to move data
into a cache before accessing it. For extracellular diffusion,
prefetching provides a modest improvement depending of the
size of the simulation, e.g., 5% speed-up in a 1283 cube of voxels.
NEURON does not use prefetching with intracellular simulation,
as in practice we observed no comparable speedup. Finally, to
accelerate both the initialization and simulation of models with
reaction-diffusion dynamics to be studied in full 3D, we now
construct voxel based representations of each of its constituent
convex components (frusta and their joins) on a common mesh
and merge them together (McDougal et al., 2022), instead of
constructing a voxel-based representation of an entire neuron
morphology at once.

3. RESULTS

3.1. Sustainability Improvements Through
Modern Development Practices
3.1.1. Toward a Development Community
As described in Sections 2.1, 2.1.1, and 2.1.2, we have
radically updated NEURON’s development life cycle to be
a modern and collaborative process. First, new developers
are now able to quickly get started thanks to improved
documentation (Section 2.1.3). Users can access the latest release
documentation at https://nrn.readthedocs.io/en/latest/ and a
nightly documentation snapshot at https://neuronsimulator.
github.io/nrn/. Second, a modernized build system eases local
setup and testing of proposed code changes. A single repository,
https://github.com/neuronsimulator/nrn, now provides access to
all software components including Interviews, CoreNEURON,
NMODL, tutorials, and documentation. The integrated CMake
build system across these components provides a uniform
interface to build all components with ease. Third, code
contributions are automatically checked using a comprehensive
CI suite. This increases programmer confidence and helps
reviewers to more quickly evaluate proposed changes.

These improvements have directly led to the adoption of a
collaborative development process with a lively community. As
an example, Figure 5 depicts commits over time since the nrn
git repository was started in November 2007. We can see that
NEURON has been receiving more and more contributions from
new developers in the last 3 years.

3.1.2. Software Sustainability Through Development

Ecosystem Modernization
Build system modernization, removing obsolete dependencies,
and the introduction of CI pipelines have lead to a vastly
streamlined development process. First, using fewer external
dependencies sped up and simplified the build process and
reduced build times. Second, replacing the Autotools build
system with CMake has allowed us to more simply integrate
Interviews, CoreNEURON and NMODL in the build and has
made build system changes more maintainable. Third, the
removal of Autotools and support for legacy Python 2 has
simplified the overall code structure, and subsequent code
refactoring has become less complex. Finally, as a consequence of
the described build system improvements, the CI configuration
has been simplified as fewer build combinations need to be
tested, which in turn has enabled us to integrate additional
build jobs into the CI, such as automated Python wheel builds,
Windows installer builds, test code coverage and documentation
generation.

Thanks to having centralized documentation and automated
documentation building in the CI, developers are now able to
more easily find information on how to build, install, configure,
debug, profile, measure test code coverage, manage releases and
versioning, and build Python wheels. The user documentation
has also become more accessible and searchable, which makes
NEURONmore accessible to the community.

Since the introduction of test code coverage tracking we
were able to increase test coverage by almost 18%. For the
code components that are being maintained and developed by
the NEURON community, more than half the code is covered
by tests. Introducing systematic testing and coverage reports
has allowed us to keep track of our progress and facilitate
the refactoring and maintenance of the code. Up to date
code coverage reports are available at https://app.codecov.io/gh/
neuronsimulator/nrn.

3.2. Improved Software and Hardware
Portability
3.2.1. Streamlined NEURON Software Distributions
Building distributions (Windows and macOS installers, Debian
packages) and testing them reliably on different platforms against
different software toolchains has historically been a major hurdle
to NEURON releases. This had been extending release cycles and
delaying the introduction of new features. With the CI pipelines
described in Section 2.1.2 and a modernized CMake-based
build system, we are now able to automatically build portable
NEURON Python wheels for Linux and macOS (including Apple
M1) and an installer for Windows. With the infrastructure in
place we are able to offer both nightly wheels and installers,
containing the latest changes, as well as more rigorously tested,

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 884046

https://nrn.readthedocs.io/en/latest/
https://neuronsimulator.github.io/nrn/
https://neuronsimulator.github.io/nrn/
https://github.com/neuronsimulator/nrn
https://app.codecov.io/gh/neuronsimulator/nrn
https://app.codecov.io/gh/neuronsimulator/nrn
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 5 | An aligned commit series6 plot showing the top 16 contributors since the beginning of the git repository history. For better visibility the different time series

do not share y-axes. A clear trend toward collaborative development can be seen.

and hence stable, release builds. By simplifying, automating and
documenting the build steps, we have streamlined the process of
creating new NEURON releases.

Python’s dominance in scientific workflows and the
widespread use of Python-based data processing, analysis
and visualization tools in the scientific community can be
attributed to the ease-of-use and portability of these packages.
By distributing NEURON as a Python package we are embracing
this trend and making it easier to adopt NEURON. These Python
wheels, as well as binary installers, provide a full, portable
distribution of NEURON targeting desktop environments, cloud
instances and HPC clusters alike. Although we do not currently
provide a Python wheel for Windows, users can make use of the
Windows Installer or the Linux Python wheel using Windows
Subsystem for Linux (WSL). All these distributions have support
for dynamically loading MPI, Python, and Interviews graphics.
This ease of use has made distribution via Python wheels the
preferred way of installing NEURON. For Python wheels, we
currently see an average of around 3000 downloads/month, and
over 17,000 downloads in the last 6 months. Released wheels are
available via https://pypi.org/project/NEURON.

3.2.2. Improved Hardware Portability
Supporting a wide range of use-cases requires strong hardware
support for architectures ranging from laptops to cloud and HPC
platforms. Thanks to its updated and improved build system it
is straightforward to build NEURON and CoreNEURON for a
variety of hardware platforms including x86, ARM64, POWER
and NVIDIA PTX. The respective vendor compilers are able
to take advantage of CoreNEURON’s improved data-structures
and produce optimized code. In order to make CoreNEURON’s
GPU backend accessible to the wider user community we
have additionally created NEURON Python wheels with GPU
acceleration enabled. Currently these specialized wheels can only

6Adapted from https://github.com/src-d/hercules.

be used on environments with NVIDIA GPUs with compute
capability 6, 7 or 8 and the NVIDIA HPC SDK version 22.1 with
CUDA 11.5. These wheels can be downloaded from https://pypi.
org/project/NEURON-gpu.

3.3. Performance Improvements Through
Tighter Integration
As presented in Section 2.2, we have greatly improved the
integration between NEURON, CoreNEURON and NMODL
both on the level of the code organization and their ease of use at
runtime. CoreNEURON and NMODL are now git submodules
of the nrn repository, allowing us to build single software
distribution packages containing optimized CPU and GPU
support via CoreNEURON. This allows the user to transparently
take advantage of modern hardware platforms such as GPUs, and
recent hardware features such as AVX-512 on Intel CPUs. To
this end, CoreNEURON’s GPU implementation has been made
production-ready, allowing easy offloading to NVIDIA GPUs.
More importantly, the newly introduced in-memory transfer
mode allows CoreNEURON simulations to be directly called
from NEURON and the model state to be passed back and forth
between NEURON and CoreNEURON. The workflow to utilize
these new features is illustrated in Figure 6.

After constructing and initializing the model using
NEURON’s session file, simulation is first run in NEURON
with h.continuerun() and pc.psolve(). GPU support
via CoreNEURON is enabled using the newly introduced
coreneuron Python module. Having CoreNEURON enabled
will cause pc.psolve to use the CoreNEURON solver
instead of the default NEURON solver. All necessary model
state is automatically transferred to CoreNEURON before the
simulation is continued using the CoreNEURON solver. At
the end of the solver call, the model state is transferred back to
NEURON, allowing user to save necessary recording results.

With this tighter integration, it is now possible to easily switch
a large number of models, notably those using the fixed timestep

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2022 | Volume 16 | Article 884046

https://pypi.org/project/NEURON
https://github.com/src-d/hercules
https://pypi.org/project/NEURON-gpu
https://pypi.org/project/NEURON-gpu
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 6 | Diagram showing the NEURON and CoreNEURON execution workflow using the Python API: The Python code on the left demonstrates the

CoreNEURON Python API usage and interoperability between NEURON and CoreNEURON solvers. The different shaded areas in the code correspond to the boxes

of the same color on the right. First, the script sets up the model in NEURON and defines the entities to be recorded. In the following h.continuerun() statement

the script starts by running the simulation in NEURON for 0.5ms. Since the coreneuron and gpu options have not been enabled yet, the following call to

pc.psolve() advances the simulation for 0.5ms using NEURON. The call to pc.psolve() that is executed after enabling CoreNEURON, however, first copies the

model to CoreNEURON using the direct-mode transfer and then runs the simulation until the prescribed h.tstop using CoreNEURON on GPUs. After finishing the

CoreNEURON simulation step all variables and events are transferred back to NEURON.

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 884046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

TABLE 1 | Details of benchmarking systems: Blue Brain 5 (Phase 2)

supercomputer and Google Cloud Platform.

BB5 CPU 2x20 core Intel Xeon Gold Cascade Lake 6248 @ 2.5 GHz

GPU NVIDIA V100 16GB

Memory 768 GB DDR4 RAM

CPU compiler Intel C++ Compiler 19.1.2

GPU compiler NVHPC 21.2

CUDA 11.0.2

MPI HPE MPI (SGI MPT) 2.25

Python 3.8.3

Network InfiniBand 100G EDR

GCP CPU 2x20 core Intel Xeon Cascade Lake

GPU NVIDIA V100 16GB

Memory 320 GB DDR4 RAM

CPU compiler Intel C++ Compiler Classic 2022.0.2

GPU compiler NVHPC 21.2

CUDA 11.0.2

MPI Intel MPI 2021.5.0

Python 3.8.6

method, to use the optimized CoreNEURON solver. To quantify
the performance benefits, in this section we showcase three
different models that were ported to use CoreNEURON. We
will compare the performance of NEURON and CoreNEURON
running on CPU and GPU on the olfactory 3D bulb model 3.3.1,
the rat CA1 hippocampusmodel 3.3.2 and the rodentmotor (M1)
cortical model 3.3.3.

The benchmarking system, Blue Brain 5 (Phase 2), with its
hardware and software toolchains is summarized in Table 1. This
system is based on an HPE SGI 8600 platform (HPE, 2022)
and is housed at the Swiss National Supercomputing Center
(CSCS). TheGPUpartition of the system has compute nodes with
Intel Cascade Lake processors and NVIDIA Volta 100 GPUs.
We used vendor-provided compiler toolchains and MPI libraries
for the benchmarking. Unless otherwise specified, measurements
were performed using two compute nodes, providing a total
of 80 physical cores. We ran all CPU benchmarks in pure
MPI mode by pinning one MPI rank per core. For GPU
executions we reduced the number of MPI ranks to 16 (eight
ranks per node) in order to achieve better utilization, enabled
the CUDA Multi-Process Service (MPS) and used two or four
NVIDIA V100 GPUs on each node. For the CPU measurements,
NEURON and CoreNEURON were compiled using the Intel
C++ compiler, while for GPUmeasurements CoreNEURON was
compiled using the NVIDIA C++ compiler. All CoreNEURON
benchmarks were both performed using the legacy MOD2C
transpiler and the next-generation NMODL transpiler. All
reported speedups were averaged over ten runs.

3.3.1. Accelerating 3D Olfactory Bulb Model

Simulations via CoreNEURON
The olfactory bulb microcircuit developed by Migliore
et al. (2014), serves as a model for studying the functional

consequences of the laminar organization observed in cortical
systems. The model was developed using realistic three-
dimensional inputs, cell morphologies and network connectivity.
The original model uses Python 2 and is available on ModelDB;
we updated this model to use Python 3 and CoreNEURON to
run our benchmarks. The updated version is publicly available
from the GitHub repository of the Human Brain Project https://
github.com/HumanBrainProject/olfactory-bulb-3d. The full
model consists of 191,410 cells, 3,388,282 synapses and a total
of 9,118,745 compartments. We simulated the default model
configuration with a biological duration of 1050ms and a
timestep of 46.875µs.

Figure 7 shows the performance difference between
NEURON and CoreNEURON solvers when executing on
CPU and GPU hardware. As can be observed in Figure 7A,
the simulation using CoreNEURON on two full CPU nodes
is 3.5× faster than the baseline NEURON benchmark run on
the same hardware. The achieved acceleration is due to the
use of SIMD instructions, which is enabled by the efficient
internal data structures and the SoA (Structure of Array)
memory layout used by CoreNEURON. When GPU offloading
is enabled in CoreNEURON then with two GPUs per node
the speedup increases to 21.4× compared with the baseline
NEURON benchmark. Performance does not scale linearly
when doubling the number of GPUs per node to four, and we
see a maximum speedup of 30.4×. This is due to more time
spent in the communication between the eight GPUs and the
size of the model reaching the strong-scaling limit. In order to
understand the performance differences between CoreNEURON
executing on CPU and GPU Figure 7B shows a comparison of
the two runtime profiles broken down into the most relevant
execution regions. We have normalized the time of each region
with the total execution time of the simulation. On the one hand,
Figure 7B shows that the relative time spent in the most compute
intensive parts such as the Current calculation and the
State update is reduced significantly when executing on the
GPU. The Hines Matrix solver does not currently benefit
from GPU acceleration. This is due to data dependencies and
limited parallelism inherent to the algorithm. On the other hand,
we can see that the event delivery and CPU-GPU data transfer
incur an additional cost compared to the CPU execution. Also,
the spike exchange routines take a larger share in runtime on the
GPU than on the CPU. This shows that the highly parallelizable
compute operations are readily accelerated on the GPU while
data movement and code with higher execution divergence are
favored by the CPU.

3.3.2. Accelerating Rat CA1 Hippocampus

Simulations Using GPUs
Another interesting example of a NEURON based simulation is
the full-scale model of the rat hippocampus CA1 region built
as part of the European Human Brain Project (manuscript in
preparation). A recent draft of this model contains 456,378
neurons with 12 morphological types and 16 morpho-electrical
types. The CA1 neurons in this model employ up to 11 active
conductance classes, with up to 9 of those classes used in the
dendrites. This model is used for running various large scale

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 884046

https://github.com/HumanBrainProject/olfactory-bulb-3d
https://github.com/HumanBrainProject/olfactory-bulb-3d
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 7 | Olfactory 3D bulb model performance comparison: (A) Improvement in the simulation time using CoreNEURON on CPU and GPU, with respect to

NEURON running on CPU. We show the speedups using both MOD2C and NMODL transpilers. (B) Comparison of the two runtime profiles of the CoreNEURON run

on CPU and GPU. The relative time (normalized to the total execution time) of the different execution regions in one timestep is shown. All benchmarks were run on

two compute nodes with a total of 80 MPI ranks.

in-silico experiments on different European HPC systems. A
reduced but representative version of this model is used for and
available as part of the Hippocampus Microcircuit Massive Open
Online Course7 offered on edx.org.

Simulating the full rat CA1 hippocampus model is
computationally expensive and requires large-scale HPC
systems, due to its scale and biologically detailed nature. It
represents, therefore, an ideal showcase for the improvements
in hardware portability described above, most notably the
GPU support provided by CoreNEURON. For the purpose
of this showcase, we used aforementioned reduced model of
the CA1 hippocampus containing 18,198 cells with 11,401,920
compartments and 107,237,482 synapses. Furthermore, we
simulated a biological duration of 1000ms with a timestep
of 25µs. Finally, the runtime configuration for the GPU
benchmarks had to be adjusted so that 80 (instead of 16) MPI
ranks were used. This was necessary due to a technical limit on
the number of artificial cells of a given type that CoreNEURON
can simulate in a single MPI rank.

Figure 8A shows that using CoreNEURON yields a
performance improvement of 3 − 4× compared with NEURON
when executing on four Cascade Lake CPUs. When enabling
GPU offloading in CoreNEURON it is possible to achieve up
to 52× improvement compared with the NEURON baseline.
It is worth mentioning that the new NMODL transpiler shows
significant improvement in execution time over the legacy
MOD2C transpiler (i.e., a speedup of 52× vs. 42× when using
eight GPUs). This is due to NMODL’s analytic solver generation,
which is based on SymPy (Meurer et al., 2017) and the Eigen
library (Guennebaud and Jacob, 2010). The performance
improvement can be mainly attributed to the fact that State
update kernels represent the evaluation of DERIVATIVE

7https://www.edx.org/course/simulating-a-hippocampus-microcircuit

blocks in the MOD files, which contain ODEs that are now
efficiently solved by NMODL. It is apparent that due to the
computationally expensive nature of this model it scales linearly
from four to eight GPUs and executing on GPUs provides a
substantial benefit over the baseline NEURON benchmark.
Analogous to Figures 7B, 8B shows the relative breakdown of
the total execution time for the most relevant regions. In contrast
to the previous example, however, we see here that the current
calculation and state update remain dominant on the GPU, while
event delivery and CPU-GPU transfer play a smaller role. We
interpret this result as an indication that this simulation is better
suited for the strengths of the GPU hardware than the olfactory
bulb model.

3.3.3. Simulating Large-Scale Cortical Models With

NetPyNE
Here we report on the integration of NetPyNE with the
CoreNEURON solver, thus taking full advantage of modern
CPU/GPU architectures to reduce the simulation time. To
illustrate this, we compared the performance of a large-scale
and biologically realistic model of mouse motor (M1) cortical
circuit on Google Cloud Platform (GCP) as well as Blue Brain
5. The mouse M1 model simulates a 300µ m cylinder of
cortical tissue including 10651 neurons, of three excitatory and
four inhibitory types, and 38 million synapses, with 7000 spike
generators (NetStims) simulating long-range inputs from seven
thalamic and cortical regions. All model neuronal densities,
classes, morphologies, biophysics, and connectivity were derived
from experimental data. The model is being used to study neural
coding, learning mechanisms and brain disease in motor cortex
circuits (Sivagnanam et al., 2020; Dura-Bernal et al., 2022b).

GCP offers a wide variety of machine types tailored
to different applications. For our benchmarks we allocated
n2-standard-80 and nvidia-tesla-v100 nodes. The

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 884046

edx.org
https://www.edx.org/course/simulating-a-hippocampus-microcircuit
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 8 | Rat CA1 hippocampus model performance comparison: (A) Improvement in the simulation time using CoreNEURON on CPU and GPU, with respect to

NEURON running on CPU. NMODL shows a significant improvement compared to the legacy MOD2C transpiler, which is due to analytic solver support in NMODL.

(B) Comparison of the two runtime profiles of the CoreNEURON run on CPU and GPU. The relative time (normalized with the total execution time) of the different

execution regions in one timestep. All benchmarks were run on two compute nodes with a total of 80 MPI ranks.

n2-standard-80 are dual-socket Intel Cascade Lake based
nodes while nvidia-tesla-v100 compute nodes consist of
dual-socket Cascade Lake based systems with 8 NVIDIA V100
GPUs. NEURON and CoreNEURON CPU measurements of
the M1 NetPyNE benchmarks were run using 80 MPI ranks
evenly distributed over two n2-standard-80 nodes, while
GPU runs were performed with 16 MPI ranks on one node
pinning one MPI rank per core and distributing the ranks
evenly between 4 and 8 GPUs. To allow for a fairer comparison
between on-premise HPC hardware and cloud platforms we
adjusted the benchmark configuration accordingly on Blue Brain
5 running with 16MPI ranks for the GPU runs while maintaining
the 80 ranks for the CPU runs. Figure 9A shows benchmark
performance on Blue Brain 5. The CoreNEURON solver is 4×
faster compared to NEURON when executing on CPU only.
When GPU support is enabled then we achieve speedup of 26×
and 39× with four and eight GPUs, respectively. Similarly to
Section 3.3.1 the suboptimal scaling from four to eight GPUs
suggests that the model’s size and computational intensity do
not fully saturate the allocated hardware and do not fully
benefit from it. Figure 9B shows the performance improvements
achieved on GCP. The measured speedups compared with the
baseline NEURON CPU runs are 3.6×, 21×, and 30× for
CoreNEURON on CPU, on four and eight GPUs, respectively.
While the achieved speedups on GCP are slightly lower than
on Blue Brain 5, they still show a clear performance advantage
when using CoreNEURON with GPU support. Furthermore,
this shows that one can get improved performance in cloud
environments just as on traditional, on-premise cluster systems.
Finally, we note that the use of NEURON Python wheels with
their built-in GPU support drastically simplifies the efforts to
setup the NEURON simulator toolchain with GPU support in
cloud environments.

3.3.4. Improvements in RxD Performance
The developments described in Section 2.4 substantially
improved the performance and scalability of reaction-diffusion
simulations in NEURON both for 1D and 3D simulation. Using
the same model code to simulate pure diffusion in a 1D test
cylinder of length 200µ m and diameter 2µm, with 1,001
segments runs 4.2× faster in NEURON 8.0 than in NEURON
7.6.7. We note that “1D” is a slight misnomer here, as NEURON’s
version of 1D simulation uses the Hines algorithm (Hines,
1984) which provides O(n) scaling for implicit simulation and
supports an arbitrary tree-like morphology where multiple 1D
sections may connect at the same point. Likewise, a NEURON
implementation of the circadian model of Leloup et al. (1999),
a 10-species model with 21 reactions and no diffusion, ran 17.3×
faster in NEURON 8.0 than in 7.6.7 (Figure 10). In the NEURON
tutorial, we provide a version of this model that requires recent
versions of NEURON due to its use of the neuron.units
submodule to cleanly specify units appropriate for this model,
however theModelDB entry for this paper provides an equivalent
representation that runs in both older and recent versions
of NEURON.

Thanks to the improved voxelization method, the
construction of voxel representations is now significantly
faster. For example, the morphology (with voxel size 0.25µ m in
each dimension) of the soma and apical dendrite of a rat CA1
pyramidal neuron (Ascoli et al., 2007; Malik et al., 2016) within
70µ m of the soma completed in 69 s in NEURON 8.0 and 349 s
in NEURON 7.6.7, approximately a 5-fold speedup. The relative
volume error (computed by comparing to the volume calculated
as above vs. with voxel size 0.05µ m in each dimension) was
0.15% in NEURON 8.0 vs. 16% in NEURON 7.6.7, a reduction
made possibly by switching from including the full volume of
boundary voxels to a subsampled fractional volume.

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 884046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 9 | M1 cortical model performance comparison: (A) Improvement in simulation time running CoreNEURON on CPU and GPU on the Blue Brain 5

supercomputer with respect to NEURON running on CPU. CPU benchmarks were run with 80 MPI ranks evenly distributed over two nodes, one rank per core. GPU

benchmarks used 16 MPI ranks evenly distributed over two nodes. (B) Improvement in simulation time running CoreNEURON on CPU and GPU on Google Cloud

Platform compute resources. The same configuration was used, except for GPU benchmarks being executed on one node.

FIGURE 10 | RxD performance improvements for the Circadian Rhythm

reaction model with just-in-time compilation, 3D morphology voxelization and

intracellular diffusion using the DG-ADI method. The speedup was measured

between NEURON 7.6.7 and NEURON 8.0. Inset shows the morphology used

for voxelization and 3D diffusion.

3D simulation times are likewise reduced in NEURON 8.0,
through the combined effects of eliminating Python from the
simulation-time code, compilation of reaction specifications, and
the replacement of the simulation algorithm (7.6.7 used SciPy’s
Virtanen et al., 2020 Biconjugate Gradient Stabilized iterative
solver for matrix inversion; 8.0 uses a threaded Douglas-Gunn
Alternating Direction Implicit method). Pure diffusion over 1 s
of simulated time on the cell volume described above with initial
conditions of 1 mM in a section of the apical dendrites and 0 mM
elsewhere required 18,349 s of real time in NEURON 7.6.7, 1,442
s of real time in NEURON 8.0 with 1 thread (a 12.7× speedup),
and only 426 s in NEURON 8.0 when using 16 threads (a 45.4×
speedup). (We specify the initial conditions here as the iterative

solver used in 7.6.7 would potentially require a different number
of iterations depending on the initial conditions; the solver used
in 8.0 performs the same calculations each time regardless of
the concentrations).

4. DISCUSSION

4.1. Sustainability of the NEURON
Simulator
Over the years, the scientific community has used NEURON to
study a wide range of biophysical questions across various spatial
and temporal scales, with over 2500 publications reporting such
usage 8. More than 750 published NEURON model source codes
are available through SenseLab’s ModelDB repository (McDougal
et al., 2017), which provides curated metadata describing the
biological assumptions. It is fair to say that for biophysically
detailed models of neurons and networks, NEURON has become
the de facto standard in the community. In light of this, it is
quite obvious that continuity of the NEURON project is of great
importance to the community.

However, for the majority of its more than 35 years of
history, NEURON has been developed under what Gewaltig and
Cannon (2014) dubbed a “heroic development model.” While
open source from its inception, until recently, the majority of
contributions to the NEURON software came from its original
author, Michael Hines, and a small group of collaborators from
Duke and Yale University. We have now established a radically
updated development model and life cycle of the NEURON
software toward a modern and collaborative process, facilitating
the contribution of modifications from other developers. In the
language of Gewaltig and Cannon (2014) we were able to evolve

8https://www.neuron.yale.edu/neuron/publications/neuron-bibliography

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 884046

https://www.neuron.yale.edu/neuron/publications/neuron-bibliography
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

NEURON’s “heroic development model” to a “collaborative
development model” with community engagement.

Sustainability of a software project, or its continued
development, is of course not a goal in and of itself. A software
with the history of NEURON should maintain as much backward
compatibility with previously publishedmodels as possible, while
catering for new use cases. In this respect, we demonstrated how
it is possible to process the widely used NMODL language with
a modern, compiler-based approach capable of producing highly
optimized code, while keeping maximal backward compatibility.

4.2. From Desktop to Supercomputers
For first time users, NEURON is often introduced through
interactive explorations on a desktop or laptop, combining small
bits of Python with NEURON’s built-in graphical user interface
(GUI). This usage remains common in practice, with roughly
one-third of NEURON models on ModelDB (McDougal et al.,
2017) containing a .ses file generated from NEURON’s GUI.
Our improved continuous integration and build automation
caters to this demand and produces pre-compiled binaries
for the most common consumer computing architectures
(Windows, macOS, and Linux), which allows users to easily
install NEURON, including its graphical interface, on their
personal systems.

With increasing use, it is common to complement or replace
GUI-based use with the power and flexibility of scripting.
This allows for easy handling of more diverse models and
settings, parameter sweeps, or the evaluation of model variants
to establish distributions and robustness of results. Over the
last decade, Python has become the language of choice in
the practice of computational science, and neurosimulations
have been no different (Muller et al., 2015). Since this early
integration, both neurosimulators and Python, have evolved
substantially, as has their usage pattern. This requires that
we express the functionality of NEURON in a Pythonic style
and enable simple installation of platform-specific NEURON
modules. Here, the adoption of modern Python wheels has
dramatically simplified the use of NEURON and user-specific
extensions in the Python environment.

As models and simulations become bigger, it is important that
the simulator can optimally use the available hardware. In these
cases it is particularly useful to be able to rely on NEURON
binaries tailored to the computer architecture. This can be
achieved through specialized pre-built NEURON binaries or
through compiling NEURON with platform-specific parameters,
including the support of the CPU’s vector instructions, multiple
threads or the use of GPUs (see also Section 4.4).

While there is already a wide range of computer architectures
in use today, it is to be expected that the diversity will
further increase. This general trend is driven by the challenges
of further miniaturizing transistors and performance gains
of future computer architectures in part will have to come
from specialization (Hennessy and Patterson, 2019), already
prominently visible in the field of machine learning (Reuther
et al., 2019). Not all of these specializations will necessarily be
useful for neurosimulations, but the better we understand the
computational costs of our models in neuroscience (Cremonesi

and Schürmann, 2020; Cremonesi et al., 2020), the more we may
be interested in adopting some of those platforms for specific
applications. Here, our work on translating the computationally
intensive parts of a neuron model described in the NMODL
language into source code that can be compiled for a wide
range of computer hardware, in combination with the reduced
memory footprint of CoreNEURON, is a major step forward
to leverage these developments in the computer industry for
neuroscience purposes.

With pre-compiled binaries for all major operating systems
(Windows, macOS, Linux), Python scriptability, and built-
in support for serial, threaded, MPI, and GPU accelerated
calculations, NEURON can readily be used in many computing
environments. The new NMODL framework furthermore can
be extended to support future computer architectures without
having to compromise performance on other platforms.

These efforts for efficiently using today’s computer
architectures, are complemented with NEURON’s ability to
run on large number of networked nodes, so-called clusters. In
previously published work (Hines et al., 2011b), NEURON has
run simulations with up to 128,000 processes catering even to the
largest models. Nowadays, many universities maintain their own
high performance computing environments for such purposes
and a growing number of e-infrastructure providers offer
high performance computing. For example, smaller numbers
of computing resources are freely available for neuroscience
simulation with NEURON and other simulators through a
Neuroscience Gateway account (Sivagnanam et al., 2013). The
EBRAINS research infrastructure provides large supercomputer
allocations with preinstalled NEURON and even models for
approved research projects.

4.3. NEURON as a Building Block for
Scientific Workflows
Cloud-based Jupyter notebook providers have recently become
another accessible way to use NEURON. EBRAINS, developed
through the Human Brain Project, provides a Jupyter notebook
cloud environment with NEURON and other simulator software
pre-installed. Additionally, many public Jupyter servers,
including Google Colab, allow installation of Python packages
including NEURON via pip. Using NEURON through a cloud-
based Jupyter server makes it accessible through any computing
device with a modern browser, including phones and tablets,
and facilitates sharing and collaborating on whole models and
examples. To increase NEURON’s usability in Jupyter notebooks,
we have added built-in support for Python graphics (including
via Plotly and Matplotlib) to NEURON’s ShapePlot and
RangeVarPlot classes, which provide, respectively, a 3D
false-color view of the cell and a plot of state values along a path.

Building on top of the modular structure and APIs of
NEURON, there are various community tools that have
incorporated NEURON as a building block to develop higher
level tools. For example, the Human Neocortical Neurosolver
(Neymotin et al., 2020) provides its own graphical interface
and launches NEURON in a separate process to simulate
the underlying neocortical model. NetPyNE’s online graphical

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2022 | Volume 16 | Article 884046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

interface launches virtual machines with NEURON on demand
in the cloud and uses NEURON or CoreNEURON to run
simulations. The example of the M1 model demonstrates that
in this setting we observe performance increases when switching
the simulator from NEURON to CoreNEURON (4× on a tightly
coupled cluster, and 3.6× on a cloud instance). Also, we see good
scaling when using multiple GPUs both for the tightly coupled
cluster and the cloud; see the next section for a more detailed
analysis. These results show that we can tap into the performance
improvements of NEURON when invoking it from other tools.
Thus, the same improvements in packaging and platform specific
optimization that were demonstrated above will benefit also other
tools, such as LFPy (Lindén et al., 2014) and BluePyOpt (Van Geit
et al., 2016), which rely on NEURON’s simulation capability.

4.4. Increased Performance for Tackling
New Scientific Questions
In recent years, several large-scale and biophysically detailed
models have been developed (Markram et al., 2015; Casali et al.,
2019; Billeh et al., 2020; Hjorth et al., 2020; Borges et al., 2022;
Dura-Bernal et al., 2022a,b). Some of these models are no longer
only models of networks and their signal processing but are
actually biophysical models of the tissue itself (Markram et al.,
2015), capturing a diverse set of properties of the modeled brain
region, also referred to as “digital twins.” Such models have
proved useful to bridge anatomy and physiology across multiple
spatial and time scales (Reimann et al., 2017; Newton et al., 2021).

These types of models have become possible because of more
quantitative data, new computational approaches to predicting
and inferring missing parameters, and the increase in computer
performance. In fact, a large number of improvements to
the NEURON software over the last decade were motivated
by these types of models: a major common theme in these
developments was functionality to support parallel execution
on multiple compute nodes (Migliore et al., 2006; Hines
et al., 2008a,b, 2011a; Lytton et al., 2016), complemented by
platform-specific optimizations (Ewart et al., 2015; Kumbhar
et al., 2016). In particular, the platform-specific optimizations
underwent a disturbing trend: optimizations of NEURON for
the first vector computers had been discontinued in favor of
memory optimizations for out-of-order CPUs with intricate
cache hierarchies, only to return to SIMD analogous structure-of-
array memory layouts for today’s CPUs/GPUs with wide vector
units. Previously, this led to special code versions with significant
development efforts to adapt the code for different generations of
hardware platforms and programming models.

Our work on CoreNEURON (Kumbhar et al., 2019) and
NMODL (Kumbhar et al., 2020) has made it possible to contain
the platform specific optimizations in the code generation
framework, requiring less platform specific code in NEURON
and allowing models to remain comparatively free of platform-
specific details. Here, we introduced two recent advances. First,
NMODL and CoreNEURON are now able to automatically
generate code not only for CPUs but also GPUs. Second, the
transparent integration with NEURON makes it possible to
leverage this capability simply as an accelerator for simulations

on a user’s desktop, or to dramatically speed up large-scale
simulations on supercomputers.

We compared running three different large scale models
with NEURON and CoreNEURON in different hardware
configurations. Compared to the baseline running with
NEURON, transparently offloading to CoreNEURON achieves
a four-fold speed-up on the same CPU hardware. This
performance increase is mostly due to the better utilization of
the vector units, a more cache efficient memory layout, and less
data transfer between the CPU and main memory (Kumbhar
et al., 2019). We furthermore demonstrate that it is now also
possible to seamlessly make use of NVIDIA GPU hardware.
We demonstrated a speed-up of 30×, 39× and 52× when
using eight GPUs for the olfactory bulb model, the cortical M1
model and the hippocampus CA1 model, respectively, compared
to four full CPUs. For the hippocampus CA1 model, we see
ideal scaling up to 52× when doubling the GPU number. Both
the thalamocortical M1 model and the olfactory bulb model
show suboptimal scaling when moving from four to eight
GPUs (39× and 30×, respectively), which we attribute to their
lower computational cost compared with the hippocampus
CA1 model, leading to lower utilization of the GPUs, and
an overall lower compute-to-communicate ratio seen in the
relatively longer time spent in event delivery and CPU-GPU
data transfers.

These numbers should not be used for comparing the CPU’s
suitability for neurosimulations with that of a GPU. As the two
architectures have wildly different characteristics in terms of total
floating point performance and memory bandwidth, a deeper
analysis is required to establish the efficiency of the simulations
on the respective platforms (Lee et al., 2010). However, what
can clearly be demonstrated with these numbers is that it is now
possible for any user to readily make use of NVIDIA GPUs if they
are installed.

4.5. Simulations in the Cloud
Low-cost virtual machines or dedicated servers are now also
available from commercial providers billed by the second—
typically referred to as “the cloud.” Using NEURON in these
environments requires that one can quickly configure NEURON
there. In these environments, it is furthermore desirable to
save intermediate results in a database to allow examining the
results mid-calculation and to facilitate resuming in the event
of timeouts and other issues, which can be readily done with
database functionality integrated in Python (such as SQLite3).
This is where our work on a straightforward pip install
for NEURON is particularly useful, as more generally described
in Sivagnanam et al. (2020) as a practical approach for both
small sets of simulations and very large ones. Not only could
we demonstrate the feasibility of running in the cloud using the
Google Compute Cloud and NetPyNE with CoreNEURON as
the compute backend, but we could also demonstrate that the
achievable performance on a moderate set of nodes (moderate
when compared to clusters and supercomputers) is on par
with that of bare metal simulations on dedicated cluster. Using
CoreNEURON showed a speedup that is comparable (3.6× vs.
4.0×) with the one achieved on a dedicated cluster. Using GPU

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2022 | Volume 16 | Article 884046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

offloading with CoreNEURON offered a 30× speedup compared
with the baseline NEURON simulation. These results should
be put in the context of simple on-demand access to such
compute resources, NEURON’s integration in an ecosystem of
computational neuroscience, data processing and analysis tools.

4.6. Efficiently Integrating Subcellular and
Extracellular Detail Into Neurosimulations
Some of the greatest health challenges of our time like stroke
(the #2 cause of death worldwide) and dementia (#7 cause of
death worldwide) are driven by the interaction of effects spanning
from the sub-cellular level to neuron, network, and organism
levels. These scales have often been addressed separately using
different techniques with computational neuroscientists focusing
on the neuron and network level while systems biologists study
the protein interactions and systems-level questions, but this
split has long been viewed as artificial and possibly problematic
(see e.g., De Schutter, 2008). Exporting point dynamics to SBML
for exploration with systems biology tools is an explicit bridge
across this divide, but we believe that within NEURON the
recent enhancements to NEURON’s reaction-diffusion (RxD)
support provide a conceptual bridge, supporting studies that
were previously impractical. Faster simulations in both 1D and
3D are more than just a convenience for the modeler: they
allow more detailed dynamics to be simulated in the same
amount of time featuring a more complete representation of
molecular interactions. They allow parameter sweeps at a higher
resolution of detail, and they allow building more detailed
training sets for machine-learning powered approximations of
complex biophysics (e.g., Pham et al., 2021). The recently added
ability to use NEURON’s SaveState class with RxD models will
facilitate running multiple experiments from a complex initial
state and investigating steady state dependence on parameter
values. New NEURON features like 3D extracellular simulation
allow exploring how detailed cell models interact with each other
through the extracellular environment and provide opportunities
to include the effects of astrocytes (associated with multiple
neurological diseases including Alzheimer’s and Parkinson’s),
blood vessels, and other considerations historically under-studied
by computational neuroscience.

4.7. Outlook
The updated development model, improved build system and
enhanced software testing regime presented in this study
provide the foundations for further modernization and re-
engineering of NEURON. These improvements will enable more
complex changes to be made while maintaining correctness and
performance. The performance improvements reported here,
coupled with the ease-of-use of the newly released Python
wheels, show that CoreNEURON could soon become the
default simulation engine for NEURON models, and that the
improved integration between NEURON and CoreNEURON
that we have presented is just the starting point. Further
integration will require more migration of NEURON code to
C++ and the development of modern data structures that can
be exchanged betweenNEURON and CoreNEURONmore easily

and efficiently. The next-generation NMODL framework source-
to-source compiler is able to parse the entire NMODL language
and generate efficient and portable code for most existing MOD
files. By further extending its code generation capabilities we
will be able to replace the legacy NOCMODL and MOD2C DSL
translators entirely. Ultimately this will allow the neuroscience
community to use NEURON to simulate increasingly complex
brain models in more accessible ways on systems ranging from
desktops to supercomputers.

DATA AVAILABILITY STATEMENT

The NEURON simulator, with all the features and improvements
described in this paper, is available as version 8.1 in the NEURON
GitHub repository9. NetPyNE with CoreNEURON support is
released as version 1.0.1 and available in the NetPyNE GitHub
repository10. From the performance benchmarking studies in
Section 3.3, the 3D Olfactory bulb model is available in
the Human Brain Project GitHub repository11, the Rat CA1
Hippocampus model is available as part of the Hippocampus
Microcircuit Massive Open Online Course12 offered on edx.org,
and the M1 cortical circuit is available in the SUNY Downstate
Medical Center GitHub repository13. All the benchmarking
scripts, performance measurement data and figures are available
in the NEURON GitHub repository14.

AUTHOR CONTRIBUTIONS

NTC, WL, MH, and FS conceptualized and led the study. MH
and PK led the overall software development on NEURON,
CoreNEURON, and NMODL. OA, PK, NC, JK, OL, IM, FP, AS,
and MH contributed to aspects of NEURON, CoreNEURON,
and NMODL software development. OL and IM led GPU
support integration and performance improvements. AS and NC
led software engineering efforts including refactoring, CI and
testing. FP implemented support for portable Python wheels for
CPU and GPU platforms. IM and SD-B performed and validated
the NetPyNE benchmarks. IM, OL, PK, and OA performed and
validated the 3D olfactory bulb and Hippocampus benchmarks.
RM and AN led and performed software development on
RxD. OA, PK, and FS wrote the manuscript. NC, SD-
B, JK, OL, IM, RM, AN, FP, AS, NTC, WL, and MH
contributed to the manuscript. All authors gave feedback to
the manuscript.

FUNDING

Research reported in this publication was supported by the
National Institute for Neurological Disorders and Stroke, the
National Institute for Mental Health, and the National Institute

9https://github.com/neuronsimulator/nrn
10https://github.com/suny-downstate-medical-center/netpyne
11https://github.com/HumanBrainProject/olfactory-bulb-3d
12https://www.edx.org/course/simulating-a-hippocampus-microcircuit
13https://github.com/suny-downstate-medical-center/M1_NEURON_paper/
14https://github.com/neuronsimulator/neuron_frontiers_2022_artifacts

Frontiers in Neuroinformatics | www.frontiersin.org 18 June 2022 | Volume 16 | Article 884046

https://github.com/neuronsimulator/nrn
https://github.com/suny-downstate-medical-center/netpyne
https://github.com/HumanBrainProject/olfactory-bulb-3d
https://www.edx.org/course/simulating-a-hippocampus-microcircuit
https://github.com/suny-downstate-medical-center/M1_NEURON_paper/
https://github.com/neuronsimulator/neuron_frontiers_2022_artifacts
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

of Biomedical Imaging and Bioengineering of the National
Institutes of Health under award numbers R01NS011613,
R01MH086638, andU24EB028998, National Science Foundation
1904444-1042C, New York State Spinal Cord Injury Research
Board (SCIRB) DOH01-C32250GG-3450000, funding to the
Blue Brain Project, a research center of the École Polytechnique
Fédérale de Lausanne (EPFL), from the Swiss government’s ETH
Board of the Swiss Federal Institutes of Technology, the European
Union’s Horizon 2020 Framework Programme for Research and
Innovation under the Specific Grant Agreement Nos. 785907 and
945539 (Human Brain Project SGA2 and SGA3).

ACKNOWLEDGMENTS

We thank Alessandro Cattabiani, Christos Kotsalos, and
Tristan Carel for improving AST visitors and solver support
in NMODL. We thank Jorge Blanco Alonso and Christos
Kotsalos for improving the reports interface and GPU solver
performance in CoreNEURON, respectively. We thank Evan
Blasy, Lia Eggleston, and Cameron Conte for their respective
contributions in SBML export, 3D voxelization, and 3D
simulation functionalities in RxD.We thankMicheleMigliore for
providing the Olfactory bulb model.

REFERENCES

Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., et al.
(2009). Numerical linear algebra on emerging architectures: the PLASMA
and MAGMA projects. J. Phys. 180, 012037. doi: 10.1088/1742-6596/180/1/0
12037

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor–a morphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia), 274–282.
Amunts, K., Knoll, A. C., Lippert, T., Pennartz, C. M., Ryvlin, P., Destexhe,

A., et al. (2019). The human brain project–synergy between neuroscience,
computing, informatics, and brain-inspired technologies. PLoS Biol. 17,
e3000344. doi: 10.1371/journal.pbio.3000344

Anwar, H., Caby, S., Dura-Bernal, S., D’Onofrio, D., Hasegan, D., Deible, M.,
et al. (2021). Training a spiking neuronal network model of visual-motor
cortex to play a virtual racket-ball game using reinforcement learning. bioRxiv.
doi: 10.1101/2021.07.29.454361

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org:
a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251.
doi: 10.1523/JNEUROSCI.2055-07.2007

Bartlett, R. A., Heroux, M. A., and Willenbring, J. M. (2012). “Overview
of the TriBITS lifecycle model: a Lean/Agile software lifecycle model
for research-based computational science and engineering software,” in
2012 IEEE 8th International Conference on E-Science (Chicago, IL: IEEE),
1–8.

Beckingsale, D. A., Burmark, J., Hornung, R., Jones, H., Killian, W., Kunen, A. J.,
et al. (2019). “Raja: Portable performance for large-scale scientific applications,”
in 2019 IEEE/ACM International Workshop on Performance, Portability and

Productivity in HPC (P3HPC) (Denver, CO: IEEE), 71–81.
Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., et al.

(2020). Systematic integration of structural and functional data into multi-
scale models of mouse primary visual cortex. Neuron 106, 388.e18–403.e18.
doi: 10.1016/j.neuron.2020.01.040

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.
(2018). Code generation in computational neuroscience: a review of tools and
techniques. Front. Neuroinform. 12, 68. doi: 10.3389/fninf.2018.00068

Borges, F., d,. S., Moreira, J. V., Takarabe, L. M., Lytton, W. W., and Dura-
Bernal, S. (2022). Large-scale biophysically detailed model of somatosensory
thalamocortical circuits in NetPyNE. bioRxiv. doi: 10.1101/2022.02.03.
479029

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
et al. (2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Bryson, A., Berkovic, S. F., Petrou, S., and Grayden, D. B. (2021). State transitions
through inhibitory interneurons in a cortical network model. PLoS Comput.

Biol. 17, e1009521. doi: 10.1371/journal.pcbi.1009521
Carter Edwards, H., Trott, C. R., and Sunderland, D. (2014). Kokkos:

Enabling manycore performance portability through polymorphic
memory access patterns. J. Parallel Distribut. Comput. 74, 3202–3216.
doi: 10.1016/j.jpdc.2014.07.003

Casali, S., Marenzi, E., Medini, C., Casellato, C., and D’Angelo, E. (2019).
Reconstruction and simulation of a scaffold model of the cerebellar network.
Front. Neuroinform. 13, 37. doi: 10.3389/fninf.2019.00037

Cremonesi, F., Hager, G., Wellein, G., and Schürmann, F. (2020). Analytic
performance modeling and analysis of detailed neuron simulations. Int.

J. High Perform. Comput. Appl. 34, 428–449. doi: 10.1177/10943420209
12528

Cremonesi, F., and Schürmann, F. (2020). Understanding computational costs of
cellular-level brain tissue simulations through analytical performance models.
Neuroinformatics 18, 407–428. doi: 10.1007/s12021-019-09451-w

Crouch, S., Hong, N. C., Hettrick, S., Jackson, M., Pawlik, A., Sufi, S., et al. (2013).
The software sustainability institute: changing research software attitudes and
practices. Comput. Sci. Eng. 15, 74–80. doi: 10.1109/MCSE.2013.133

De Schutter, E. (2008). Why are computational neuroscience and systems biology
so separate? PLoS Comput. Biol. 4, e1000078. doi: 10.1371/journal.pcbi.1000078

de Verdière, G. C. (2020). Recommendations of the “Extreme Data and

Computing Initiative-2” Project, Assessment for Legacy Code and Software

Modernisation. Available online at: https://exdci.eu/sites/default/files/public/
files/d4.5f.pdf (accessed September 14, 2021).

Douglas, J., and Gunn, J. E. (1964). A general formulation of alternating direction
methods. Numerische mathematik 6, 428–453. doi: 10.1007/BF01386093

Dura-Bernal, S., Griffith, E. Y., Barczak, A., O’Connell, M. N., McGinnis, T.,
Schroeder, C. E., et al. (2022a). Data-driven multiscale model of macaque
auditory thalamocortical circuits reproduces in vivo dynamics. bioRxiv.
doi: 10.1101/2022.02.03.479036

Dura-Bernal, S., Neymotin, S. A., Suter, B. A., Dacre, J., Schiemann, J.,
Duguid, I., et al. (2022b). Multiscale model of primary motor cortex circuits
reproduces in vivo cell type-specific dynamics associated with behavior.
bioRxiv. doi: 10.1101/2022.02.03.479040

Dura-Bernal, S., Suter, B. A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez,
F., et al. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain
circuits. Elife 8, e44494. doi: 10.7554/eLife.44494

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M.,
et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.
doi: 10.1016/j.neuron.2019.03.027

Erdemir, A., Mulugeta, L., Ku, J. P., Drach, A., Horner, M., Morrison, T. M.,
et al. (2020). Credible practice of modeling and simulation in healthcare:
ten rules from a multidisciplinary perspective. J. Transl. Med. 18, 369.
doi: 10.1186/s12967-020-02540-4

Ewart, T., Yates, S., Cremonesi, F., Kumbhar, P., Schürmann, F., and Delalondre, F.
(2015). “Performance evaluation of the IBM POWER8 architecture to support
computational neuroscientific application using morphologically detailed
neurons,” in Proceedings of the 6th International Workshop on Performance

Modeling, Benchmarking, and Simulation of High Performance Computing

Systems - PMBS ’15 (Austin, TX: ACM Press), 1–11.
Gewaltig, M., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430
Gewaltig, M.-O., and Cannon, R. (2014). Current practice in software development

for computational neuroscience and how to improve it. PLoS Comput. Biol. 10,
e1003376. doi: 10.1371/journal.pcbi.1003376

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,
et al. (2019). Open source brain: a collaborative resource for visualizing,

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2022 | Volume 16 | Article 884046

https://doi.org/10.1088/1742-6596/180/1/012037
https://doi.org/10.1371/journal.pbio.3000344
https://doi.org/10.1101/2021.07.29.454361
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1101/2022.02.03.479029
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1371/journal.pcbi.1009521
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.1177/1094342020912528
https://doi.org/10.1007/s12021-019-09451-w
https://doi.org/10.1109/MCSE.2013.133
https://doi.org/10.1371/journal.pcbi.1000078
https://exdci.eu/sites/default/files/public/files/d4.5f.pdf
https://exdci.eu/sites/default/files/public/files/d4.5f.pdf
https://doi.org/10.1007/BF01386093
https://doi.org/10.1101/2022.02.03.479036
https://doi.org/10.1101/2022.02.03.479040
https://doi.org/10.7554/eLife.44494
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1186/s12967-020-02540-4
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1003376
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

analyzing, simulating, and developing standardized models of neurons and
circuits. Neuron 103, 395–411. doi: 10.1016/j.neuron.2019.05.019

Goodman, D. F. M. (2009). The brian simulator. Front. Neurosci. 3, 192–197.
doi: 10.3389/neuro.01.026.2009

Gratiy, S. L., Billeh, Y. N., Dai, K., Mitelut, C., Feng, D., Gouwens, N. W., et al.
(2018). Bionet: a python interface to neuron for modeling large-scale networks.
PLoS ONE 13, e0201630. doi: 10.1371/journal.pone.0201630

Guennebaud, G., and Jacob, B.. (2010). Eigen v3. Available online at: http://eigen.
tuxfamily.org

Hagen, E., Næss, S., Ness, T. V., and Einevoll, G. T. (2018). Multimodal modeling
of neural network activity: computing lfp, ecog, eeg, and meg signals with lfpy
2.0. Front. Neuroinform. 12, 92. doi: 10.3389/fninf.2018.00092

Hennessy, J. L., and Patterson, D. A. (2017). Computer Architecture, Sixth Edition:

A Quantitative Approach, 6th Edn. San Francisco, CA: Morgan Kaufmann
Publishers Inc.

Hennessy, J. L., and Patterson, D. A. (2019). A new golden age for computer
architecture. Commun. ACM 62, 48–60. doi: 10.1145/3282307

Heroux, M. A. (2015). Editorial: ACM TOMS replicated computational results
initiative. ACM Trans. Math. Softw. 41, 1–5. doi: 10.1145/2743015

Hettrick, S., Antonioletti, M., Carr, L., Chue Hong, N., Crouch, S., De Roure, D.,
et al. (2014). Uk research software survey 2014. doi: 10.5281/zenodo.608046

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.
Biomed. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)90008-4

Hines, M., Davison, A., and Muller, E. (2009). NEURON and python. Front.
Neuroinform. 3, 1. doi: 10.3389/neuro.11.001.2009

Hines, M., Kumar, S., and Schürmann, F. (2011a). Comparison of neuronal spike
exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci.
5, 49. doi: 10.3389/fncom.2011.00049

Hines, M., Kumar, S., and Schürmann, F. (2011b). Comparison of neuronal spike
exchange methods on a blue gene/p supercomputer. Front. Comput. Neurosci.
5, 49. doi: 10.3389/fncom.2011.00049

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hines, M. L., Eichner, H., and Schürmann, F. (2008a). Neuron splitting in
compute-bound parallel network simulations enables runtime scaling
with twice as many processors. J. Comput. Neurosci. 25, 203–210.
doi: 10.1007/s10827-007-0073-3

Hines, M. L., Markram, H., and Schürmann, F. (2008b). Fully implicit
parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448.
doi: 10.1007/s10827-008-0087-5

Hjorth, J. J. J., Kozlov, A., Carannante, I., Frost Nylén, J., Lindroos, R., Johansson,
Y., et al. (2020). The microcircuits of striatum in silico. Proc. Natl. Acad. Sci.
U.S.A. 117, 9554–9565. doi: 10.1073/pnas.2000671117

HPE (2022). Hpe sgi 8600 System. Available online at: https://support.hpe.com/
hpesc/public/docDisplay?docId=emr_na-a00025339en_us (accessed January
05, 2022).

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops
to exascale computers. Front. Neuroinform. 12, 2. doi: 10.3389/fninf.2018.
00002

Keating, S. M., Waltemath, D., König, M., Zhang, F., Dräger, A., Chaouiya, C.,
et al. (2020). Sbml level 3: an extensible format for the exchange and reuse of
biological models.Mol. Syst. Biol. 16, e9110. doi: 10.15252/msb.20199110

Kumbhar, P., Awile, O., Keegan, L., Alonso, J. B., King, J., Hines, M., et al. (2020).
“An optimizing multi-platform source-to-source compiler framework for the
NEURONMODeling language,” inComputational Science—ICCS 2020, Lecture

Notes in Computer Science, eds V. V. Krzhizhanovskaya, G. Závodszky, M. H.
Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira (Cham: Springer
International Publishing), 45–58.

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F.,
et al. (2019). CoreNEURON : an optimized compute engine for the NEURON
simulator. Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D. A., King, J., Sainz, F., et al.
(2016). “Leveraging a cluster-booster architecture for brain-scale simulations,”
in High Performance Computing, Vol. 9697, eds J. M. Kunkel, P. Balaji, and J.
Dongarra (Cham: Springer International Publishing), 363–380.

Lam, S. K., Pitrou, A., and Seibert, S. (2015). “Numba: a llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC, LLVM ’15 (New York, NY: Association for Computing
Machinery).

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., et al.
(2010). Debunking the 100X GPU vs. CPU myth: an evaluation of throughput
computing on CPU and GPU. ACM Sigarch Comput. Arch. News 38, 451–460.
doi: 10.1145/1816038.1816021

Leloup, J.-C., Gonze, D., and Goldbeter, A. (1999). Limit cycle models for circadian
rhythms based on transcriptional regulation in drosophila and neurospora. J.
Biol. Rhythms 14, 433–448. doi: 10.1177/074873099129000948

Lindén, H., Hagen, E., Leski, S., Norheim, E. S., Pettersen, K. H., and
Einevoll, G. T. (2014). Lfpy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front. Neuroinform. 7, 41.
doi: 10.3389/fninf.2013.00041

Lytton, W. W., Seidenstein, A. H., Dura-Bernal, S., McDougal, R. A., Schürmann,
F., and Hines, M. L. (2016). Simulation neurotechnologies for advancing
brain research: parallelizing large networks in NEURON. Neural Comput. 28,
2063–2090. doi: 10.1162/NECO_a_00876

Malik, R., Dougherty, K. A., Parikh, K., Byrne, C., and Johnston, D. (2016).
Mapping the electrophysiological and morphological properties of ca 1
pyramidal neurons along the longitudinal hippocampal axis. Hippocampus 26,
341–361. doi: 10.1002/hipo.22526

Markram, H., Muller, E., Ramaswamy, S., Reimann, M., Abdellah, M., Sanchez, C.,
et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell
163, 456–492. doi: 10.1016/j.cell.2015.09.029

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility in
computational neuroscience models and simulations. IEEE Trans. Biomed. Eng.
63, 2021–2035. doi: 10.1109/TBME.2016.2539602

McDougal, R. A., Conte, C., Eggleston, L., Newton, A. J. H., and Galijasevic, H.
(2022). Efficient simulation of 3D reaction-diffusion in models of neurons and
networks. Front. Neuroinform. 16, 847108. doi: 10.3389/fninf.2022.847108

McDougal, R. A., Hines, M. L., and Lytton, W. W. (2013). Reaction-diffusion
in the neuron simulator. Front. Neuroinform. 7, 28. doi: 10.3389/fninf.2013.
00028

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore,
M., et al. (2017). Twenty years of ModelDB and beyond: building essential
modeling tools for the future of neuroscience. J. Comput. Neurosci. 42, 1–10.
doi: 10.1007/s10827-016-0623-7

Medlock, L., Sekiguchi, K., Hong, S., Dura-Bernal, S., Lytton, W. W., and Prescott,
S. A. (2022). Multi- scale computer model of the spinal dorsal horn reveals
changes in network processing associated with chronic pain. J. Neurosci. 42,
3133–3149. doi: 10.1523/JNEUROSCI.1199-21.2022

Metzner, C., Mäki-Marttunen, T., Karni, G., McMahon-Cole, H., and Steuber, V.
(2020). The effect of alterations of schizophrenia-associated genes on gamma
band oscillations. Schizophrenia 8, 46. doi: 10.1101/2020.09.28.316737

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M.,
et al. (2017). SymPy: symbolic computing in python. PeerJ Comput. Sci. 3, e103.
doi: 10.7717/peerj-cs.103

Meyer, M. (2014). Continuous integration and Its tools. IEEE Software 31, 14–16.
doi: 10.1109/MS.2014.58

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006).
Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–129.
doi: 10.1007/s10827-006-7949-5

Migliore, M., Cavarretta, F., Hines, M. L., and Shepherd, G. M. (2014).
Distributed organization of a brain microcircuit analyzed by three-
dimensional modeling: the olfactory bulb. Front. Comput. Neurosci. 8,
50. doi: 10.3389/fncom.2014.00050

Miller, G. (2006). A scientist’s nightmare: software problem leads to five retractions.
Science 314, 1856–1857. doi: 10.1126/science.314.5807.1856

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M., and
Davison, A. P. (2015). Python in neuroscience. Front. Neuroinform. 9, 11.
doi: 10.3389/fninf.2015.00011

Mulugeta, L., Drach, A., Erdemir, A., Hunt, C. A., Horner, M., Ku, J. P.,
et al. (2018). Credibility, replicability, and reproducibility in simulation for
biomedicine and clinical applications in neuroscience. Front. Neuroinform. 12,
18. doi: 10.3389/fninf.2018.00018

Neely, J., de Supinski, B. R., and Still, C. H. (2017). Application modernization
for the exascale era. Comput. Sci. Eng. 19, 6–8. doi: 10.1109/MCSE.2017.34
21548

Frontiers in Neuroinformatics | www.frontiersin.org 20 June 2022 | Volume 16 | Article 884046

https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1371/journal.pone.0201630
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.1145/3282307
https://doi.org/10.1145/2743015
https://doi.org/10.5281/zenodo.608046
https://doi.org/10.1016/0020-7101(84)90008-4
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.3389/fncom.2011.00049
https://doi.org/10.3389/fncom.2011.00049~
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1007/s10827-007-0073-3
https://doi.org/10.1007/s10827-008-0087-5
https://doi.org/10.1073/pnas.2000671117
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00025339en_us
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00025339en_us
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.15252/msb.20199110
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1177/074873099129000948
https://doi.org/10.3389/fninf.2013.00041
https://doi.org/10.1162/NECO_a_00876
https://doi.org/10.1002/hipo.22526
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.3389/fninf.2022.847108
https://doi.org/10.3389/fninf.2013.00028
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1523/JNEUROSCI.1199-21.2022
https://doi.org/10.1101/2020.09.28.316737
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.3389/fncom.2014.00050
https://doi.org/10.1126/science.314.5807.1856
https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.3389/fninf.2018.00018
https://doi.org/10.1109/MCSE.2017.3421548
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

Newton, A. J., McDougal, R. A., Hines, M. L., and Lytton, W. W. (2018).
Using neuron for reaction-diffusion modeling of extracellular dynamics. Front.
Neuroinform. 12, 41. doi: 10.3389/fninf.2018.00041

Newton, T. H., Reimann, M. W., Abdellah, M., Chevtchenko, G., Muller, E.
B., and Markram, H. (2021). In silico voltage-sensitive dye imaging reveals
the emergent dynamics of cortical populations. Nat. Commun. 12, 3630.
doi: 10.1038/s41467-021-23901-7

Neymotin, S. A., Daniels, D. S., Caldwell, B., McDougal, R. A., Carnevale, N. T., Jas,
M., et al. (2020). Human neocortical neurosolver (hnn), a new software tool for
interpreting the cellular and network origin of human meg/eeg data. Elife 9,
e51214. doi: 10.7554/eLife.51214

Pham, D.-T. J., Yu, G. J., Bouteiller, J.-M. C., and Berger, T. W. (2021). Bridging
hierarchies in multi-scale models of neural systems: look-up tables enable
computationally efficient simulations of non-linear synaptic dynamics. Front.
Comput. Neurosci. 88, 733155. doi: 10.3389/fncom.2021.733155

Pimentel, J. M., Moioli, R. C., de Araujo, M. F. P., Ranieri, C. M., Romero, R. A. F.,
Broz, F., et al. (2021). Neuro4PD: An initial neurorobotics model of parkinson’s
disease. Front. Neurorobot. 15, 640449. doi: 10.3389/fnbot.2021.640449

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and
Kunkel, S. (2022). Routing brain traffic through the von neumann
bottleneck: parallel sorting and refactoring. Front. Neuroinform. 15, 785068.
doi: 10.3389/fninf.2021.785068

Ranieri, C. M., Pimentel, J. M., Romano, M. R., Elias, L. A., Romero, R. A.
F., Lones, M. A., et al. (2021). A data-driven biophysical computational
model of parkinson’s disease based on marmoset monkeys. IEEE Access 9,
122548–122567. doi: 10.1109/ACCESS.2021.3108682

Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi,
G., et al. (2017). Cliques of neurons bound into cavities provide a missing
link between structure and function. Front. Comput. Neurosci. 11, 48.
doi: 10.3389/fncom.2017.00048

Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S., and Kepner, J.
(2019). “Survey and benchmarking of machine learning accelerators,” in 2019

IEEE High Performance Extreme Computing Conference (HPEC) (Waltham,
MA: IEEE), 1–9.

Romaro, C., Najman, F. A., Lytton, W. W., Roque, A. C., and Dura-
Bernal, S. (2021). NetPyNE implementation and scaling of the Potjans-
Diesmann cortical microcircuit model. Neural Comput. 33, 1993–2032.
doi: 10.1162/neco_a_01400

Salmon, J. K., Moraes, M. A., Dror, R. O., and Shaw, D. E. (2011). “Parallel random
numbers: as easy as 1, 2, 3,” in Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, SC ’11 (New
York, NY: Association for Computing Machinery), 1–12.

Schirner, M., Domide, L., Perdikis, D., Triebkorn, P., Stefanovski, L., Pai, R.,
et al. (2022). Brain simulation as a cloud service: the virtual brain on ebrains.
Neuroimage 251, 118973. doi: 10.1016/j.neuroimage.2022.118973

Sivagnanam, S., Gorman, W., Doherty, D., Neymotin, S. A., Fang, S.,
Hovhannisyan, H., et al. (2020). “Simulating large-scale models of brain
neuronal circuits using google cloud platform,” in Practice and Experience in

Advanced Research Computing, PEARC ’20 (New York, NY: Association for
Computing Machinery), 505–509.

Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A.
E., Martone, M. E., et al. (2013). “Introducing the neuroscience gateway,” in
IWSG (Zurich), 993.

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. Elife 8, e47314. doi: 10.7554/eLife.47314.028

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-
Ghazawi, T. A. (2017). Software for brain network simulations: a
comparative study. Front. Neuroinform. 11, 46. doi: 10.3389/fninf.2017.
00046

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller,
E. B., et al. (2016). BluePyOpt: leveraging open source software and
cloud infrastructure to optimise model parameters in neuroscience. Front.
Neuroinform. 10, 17. doi: 10.3389/fninf.2016.00017

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). Scipy 1.0: fundamental algorithms for scientific
computing in python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-
0686-2

Volk, V. L., Hamilton, L. D., Hume, D. R., Shelburne, K. B., and Fitzpatrick,
C. K. (2021). Integration of neural architecture within a finite element
framework for improved neuromusculoskeletal modeling. Sci. Rep. 11, 22983.
doi: 10.1038/s41598-021-02298-9

Willenbring, J. M. (2015). Replicated computational results (RCR) report for
“BLIS: a framework for rapidly instantiating BLAS functionality”. ACM Trans.

Math. Softw. 41, 1–4. doi: 10.1145/2738033
Wolfe, M. (2021). Performant, portable, and productive parallel

programming with standard languages. Comput. Sci. Eng. 23, 39–45.
doi: 10.1109/MCSE.2021.3097167

AuthorDisclaimer:The content is solely the responsibility of the authors and does
not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Awile, Kumbhar, Cornu, Dura-Bernal, King, Lupton, Magkanaris,

McDougal, Newton, Pereira, Săvulescu, Carnevale, Lytton, Hines and Schürmann.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 June 2022 | Volume 16 | Article 884046

https://doi.org/10.3389/fninf.2018.00041
https://doi.org/10.1038/s41467-021-23901-7
https://doi.org/10.7554/eLife.51214
https://doi.org/10.3389/fncom.2021.733155
https://doi.org/10.3389/fnbot.2021.640449
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.1109/ACCESS.2021.3108682
https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.1162/neco_a_01400
https://doi.org/10.1016/j.neuroimage.2022.118973
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.3389/fninf.2017.00046
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41598-021-02298-9
https://doi.org/10.1145/2738033
https://doi.org/10.1109/MCSE.2021.3097167
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Modernizing the NEURON Simulator for Sustainability, Portability, and Performance
	1. Introduction
	2. Methods
	2.1. Improving Software Sustainability Through Code Modernization and Quality Assurance
	2.1.1. Modern Build System Adoption
	2.1.2. Continuous Integration and Build Automation
	2.1.3. Documentation Generation
	2.1.4. A Modern NEURON Python Package

	2.2. Integration of CoreNEURON Within NEURON
	2.2.1. Transparent Execution via Coreneuron Using In-memory Model Transfer
	2.2.2. Enabling GPU Offloading in NEURON Simulations
	2.2.3. Integration of Code Generation Pipelines

	2.3. Modular NEURON: The Example of NetPyNE
	2.4. Enabling New Use-Cases With Reaction-Diffusion Integration

	3. Results
	3.1. Sustainability Improvements Through Modern Development Practices
	3.1.1. Toward a Development Community
	3.1.2. Software Sustainability Through Development Ecosystem Modernization

	3.2. Improved Software and Hardware Portability
	3.2.1. Streamlined NEURON Software Distributions
	3.2.2. Improved Hardware Portability

	3.3. Performance Improvements Through Tighter Integration
	3.3.1. Accelerating 3D Olfactory Bulb Model Simulations via CoreNEURON
	3.3.2. Accelerating Rat CA1 Hippocampus Simulations Using GPUs
	3.3.3. Simulating Large-Scale Cortical Models With NetPyNE
	3.3.4. Improvements in RxD Performance

	4. Discussion
	4.1. Sustainability of the NEURON Simulator
	4.2. From Desktop to Supercomputers
	4.3. NEURON as a Building Block for Scientific Workflows
	4.4. Increased Performance for Tackling New Scientific Questions
	4.5. Simulations in the Cloud
	4.6. Efficiently Integrating Subcellular and Extracellular Detail Into Neurosimulations
	4.7. Outlook

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

