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ABSTRACT
Objective: To utilize publicly reported, state-level data to identify factors associated with the
frequency of cases, tests, and mortality in the USA.
Materials and methods: Retrospective study using publicly reported data collected included
the number of COVID-19 cases, tests and mortality from March 14th through April 30th. Publicly
available state-level data was collected which included: demographics comorbidities, state char-
acteristics and environmental factors. Univariate and multivariate regression analyses were per-
formed to identify the significantly associated factors with percent mortality, case and testing
frequency. All analyses were state-level analyses and not patient-level analyses.
Results: A total of 1,090,500 COVID-19 cases were reported during the study period. The calcu-
lated case and testing frequency were 3332 and 19,193 per 1,000,000 patients. There were
63,642 deaths during this period which resulted in a mortality of 5.8%. Factors including to but
not limited to population density (beta coefficient 7.5, p< .01), transportation volume (beta
coefficient 0.1, p< .01), tourism index (beta coefficient �0.1, p¼ .02) and older age (beta coeffi-
cient 0.2, p¼ .01) are associated with case frequency and percent mortality.
Conclusions: There were wide variations in testing and case frequencies of COVID-19 among
different states in the US. States with higher population density had a higher case and testing
rate. States with larger population of elderly and higher tourism had a higher mortality.

KEY MESSAGES

� There were wide variations in testing and case frequencies of COVID-19 among different
states in the USA.

� States with higher population density had a higher case and testing rate.
� States with larger population of elderly and higher tourism had a higher mortality.
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Introduction

The coronavirus disease 2019 (COVID-19) has spread

worldwide after its onset in Wuhan, China, reaching

over three million cases [1]. In the United States (US),

over seven million tests have been performed with

over one million tests resulting positive. This disease

has resulted in over 70,000 deaths in the US and a

case fatality rate at approximately 6.2%. Recent reports

have shown differences in case and fatality rates

between nearby localities and thought to be likely

due to differences in demographic and socioeconomic

factors [2]. Furthermore, differences in climate, access

to healthcare and adherence to social distancing have
also been hypothesized to affect these rates [3–5].
However, factors mediating the differences in case fre-
quency and testing frequency between the states in
the USA have not been formally assessed. The aim of
this study is to use publicly available, state-level data
to determine the factors associated with COVID-19
percent mortality and case and testing frequency.

Materials and methods

This study utilized publicly available, deidentified,
state-level data and so no institutional review board
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approval was required or sought. The study was per-
formed in accordance with Declaration of Helsinki.

Variable identification and data collection

Absolute counts for COVID-19 cases, tests and mortal-
ity were obtained from Worldometer [6]. Data were
collected from March 13th, 2020 through April 30th,
2020. These dates were selected as March 13th was
the first day when these data were publicly reported,
and April 30th was the last full day prior to data col-
lection. The number of cases and tests were then nor-
malized to the specific state’s population to develop a
frequency per 1,000,000 population. Any reference in
this manuscript to “case frequency” or “testing
frequency” refers to the normalized values in this
manner, unless explicitly stated otherwise.

Next, data were collected at a state-wide level to
help characterize the population, environment, and
infrastructure in the state. The data sources are listed
in Supplementary file 1. The selected variables were
identified by a literature review of the factors that
impact the frequency and severity of viral illnesses,
including COVID-19. The following variables were col-
lected: age, gender, underinsured population, ethni-
city, influenza vaccination status, population density
(persons per square mile), urban air quality rank (lower
number signifying better air quality), drinking water
quality rank (lower number signifying better drinking
water quality), ultraviolet index, precipitation (in
inches), temperature (in degree Fahrenheit), average
household income (in US$), per capita spending on
healthcare (in US$) and high school graduation rate.
To capture comorbid conditions, the prevalence of
obesity, prevalence of smoking, prevalence of cocaine
abuse, prevalence of marijuana abuse, alcohol con-
sumption (gallons per person per year), prevalence of
asthma, prevalence of diabetes, prevalence of chronic
obstructive pulmonary disease, prevalence of myocar-
dial infarction, prevalence of coronary artery disease,
prevalence of hypertension, prevalence of hyperlipid-
aemia and presence of inactivity were collected. To
capture immunosuppressed states, the annual inci-
dence of new cancer and HIV cases per 100,000 popu-
lation were collected. Finally, the social distancing
score by global positioning satellite data, public trans-
portation volume, number of incarcerated inmates,
number of nursing home residents, and tourism rank
(lower number implies more tourists) were collected.
Of these, ultraviolet index, temperature and precipita-
tion were averages for March and April of 2020,
whereas the remainder of data were collected from

the most recent iteration for each state. Much of the
data was collected from government sources, such as
the Centres for Disease Control and the complete list
of sources is provided

The collected data represents state-level and not
patient-level data. The endpoints were divided
amongst the authors and collected by everyone. The
data for each endpoint was then verified by another
author who did not primarily collect the data. Finally,
values in the top and bottom 10th percentile were
identified and verified by a third author.

Statistical analyses

As the data was collected for each state and intended
for state-level analyses, the absolute number of
COVID-19 cases, tests, and mortality were converted to
a frequency using the state population. The frequen-
cies for all the endpoints were calculated per
1,000,000 population. The case frequencies were then
used as the dependent variables in a series of single-
independent variable linear regressions to determine
the univariate association between case frequency and
the other variables previously defined and served as
the univariate analyses. Next, a stepwise multivariate
regression was conducted with p-value of .05 or less
required for inclusion into the final model. Of the
resulting models, the one with the highest R-squared
value was selected as the final model. The same pro-
cess was repeated for testing frequency and percent
mortality as the dependent variable. Collinearity analy-
ses were run with all multivariate regressions.

All statistical analyses were done using the user-coded,
syntax-based interface of SPSS Version 23.0. A p-value of
.05 or less was considered was considered statistically sig-
nificant. The use of the word significant throughout the
manuscript refers to “statistically significant” unless expli-
citly specified otherwise. All statistical analyses were done
at the state-level with state-level data. Analyses were not
conducted at a patient-level with patient-level data. The
subjects here were the 50 states. The age, gender and
comorbidity prevalence are not based on patient-specific
data but rather the state prevalence.

Results

COVID-19 cases, testing and mortality

A total of 1,090,500 COVID-19 cases were reported in
the study period. This resulted in a case frequency of
approximately 3332 per 1,000,000 patients (3.3%). In
the same period, 6,299,143 tests were done, resulting
in a testing frequency 19,193 per 1,000,000 patients
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out of which 17.3% were reported positive. There
were 63,642 deaths during this period which resulted
in a mortality of 5.8%. Figures 1 and 2 demonstrate
the case frequency and the percent mortality by state.

COVID-19 case frequency, univariate analyses

The following factors were associated with greater
case frequency on univariate linear regression

analyses: female gender (beta-coefficient 1,095.8,
p¼ .03), higher population density (beta-coefficient
8.9, p< .01), lower ultraviolet index (beta coefficient
�825.3, p¼ .03), lower prevalence of obesity (beta
coefficient �248.3, p¼ .03), lower prevalence of unin-
sured (beta coefficient �298.6, p¼ .01), higher fre-
quency of other race (beta coefficient 38,638.7,
p¼ .01), lower prevalence of current smokers (beta
coefficient �294.5, p ¼ .02), higher per capita health

Figure 1. Cases per million in the United States divides by state.

Figure 2. Percent mortality in the United States divides by state.
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care spending (beta coefficient 1.0, p< .01), higher
public transportation volume (beta coefficient 0.1,
p< .01), number of residents in nursing home facilities
(beta coefficient 0.1, p< .01) and lower number for
tourism ranking and thus more tourists (beta coeffi-
cient �79.8, p¼ .01) (Table 1 shows full univariate
data and Table 2 shows univariate results).

COVID-19 case frequency, multivariate analyses

The following factors were associated with greater
case frequency on multivariable analyses: higher popu-
lation density (beta coefficient 7.5, p< .01) and
increased public transportation volume (beta coeffi-
cient 0.1, p< .01). The R-square for this model was
0.78. Collinearity analyses did not demonstrate any
significant collinearity (Table 2 shows multivari-
ate analyses).

COVID-19 testing frequency, univariate analyses

The following factors were associated with greater
testing frequency on univariate linear regression analy-
ses: higher population density (beta coefficient 19.2,
p< .01), lower prevalence of uninsured (beta coeffi-
cient �900.9, p¼ .02), higher per capita health-care
spending (beta coefficient 3.68, p< .01), and higher
public transportation volume (beta coefficient
0.1, p¼ .01).

COVID-19 testing frequency, multivariate analyses

The following factors were associated greater testing
frequency on multivariable analyses: higher population
density (beta coefficient 19.9, p< .01). The R-square
for this model was 0.27. Collinearity analyses did not
demonstrate any significant collinearity.

Table 1. Univariate analyses for factors associated with COVID-19 illness in the United States.
Cases per million Tests per million Mortality percent

Age 194.0 (�185.8 to 573.9, p¼ .31) �61.7 (�1,292.3 to 1,168.9, p¼ .92) 0.2 (0.1 to 0.4, p¼ .01)�
Gender 1095.8 (57.4 to 2,134.3, p¼ .03)� 1065.2 (�2,401.5 to 4,532.1, p¼ .54) 0.5 (�0.1 to 1.1, p¼ .05)
Race, White �4,715.4 (�11,765.1 to 2,334.2, p¼ .18) �8,401.8 (�31,287.3 to 14,483.6, p¼ .46) �1.6 (�5.8 to 2.4, p¼ .41)
Race, Black 7,312.7 (�2,051.3 to 16,676.9, p¼ .12) �1,715.4 (�32,483.3 to 29,052.3, p¼ .91) 4.3 (�1.0 to 9.7, p¼ .11)
Race, Native American �23,515 (�54,374.7 to 7,342.9, p¼ .13) 28,602.2 (�72,344.9 to 129,549.3, p¼ .57) �16.6 (�34.2 to 0.9, p¼ .06)
Race, Asian 6,237.8 (�10,201.4 to 22,677.1, p¼ .44) 15,722.4 (�37,084.8 to 68,529.6, p¼ .55) 1.0 (�8.5 to 10.6, p¼ .82)
Race, Islander �30,422.1 (�94,071.5 to 33,227.3, p¼ .34) 20,730.6 (�185,121.7 to 226,583.0, p¼ .84)�20.5 (�57.2 to 16.1, p¼ .26)
Race, other race 38,638.7 (8,221.4 to 69,056.1, p¼ .01)� 87,436.9 (�13,313.1 to 188,186.9, p¼ .08) 9.4 (�9.0 to 28.0, p¼ .30)
Race, multiple race �13,133.5 (�41,037.2 to 14,770.1, p¼ .34) 5,794.8 (�84,447.0 to 96,036.7, p¼ .89) �4.6 (�20.8 to 11.6, p¼ .57)
Uninsured �298.6 (�544.2 to �52.9, p¼ .01)� �900.9 (�1,693.8 to �107.9, p¼ .02)� �0.1 (�0.3 to �0.1, p¼ .02)�
Obesity �248.3 (�477.1 to �19.6, p¼ .03)� �577.5 (�1,327.6 to 172.5, p¼ .40) �0.1 (�0.2 to 0.1, p¼ .39)
Asthma 94.2 (�665.3 to 853.8, p¼ .80) 1,845.9 (�530.2 to 4,222.2, p¼ .12) 0.4 (�0.1 to 0.8, p¼ .04)
Diabetes �143.6 (�623.5 to 336.2, p¼ .55) �394.9 (�1,934.5 to 1,144.6, p¼ .60) 0.1 (�0.2 to 0.3, p¼ .69)
Chronic obstructive pulmonary

disease (COPD)
�254.7 (�665.7 to 156.2, p¼ .21) �557.3 (�1,885.9 to 771.2, p¼ .40) 0.1 (�0.1 to 0.3, p¼ .60)

Myocardial infarction (MI) �586.2 (�1,427.6 to 255.1, p¼ .16) �827.7 (�3,568.2 to 1,912.8, p¼ .54) �0.1 (�0.5 to 0.4, p¼ .80)
Coronary artery disease (CAD) �517.2 (�1,336.5 to 302.0, p¼ .21) �1,566.3 (�4,196.7 to 1,064.1, p¼ .54) 0.1 (�0.3 to 0.6, p¼ .80)
Hypertension �77.1 (�296.6 to 142.4, p¼ .48) �223.8 (�928.2 to 480.4, p¼ .52) 0.1 (�0.1 to 0.2, p¼ .82)
Hyperlipidaemia �1.9 (�347.0 to 343.1, p¼ .99) �372.6 (�1,473.3 to 728.1, p¼ .49) 0.1 (�0.1 to 0.3, p¼ .24)
Cancer 23.1 (�3.5 to 49.8, p¼ .08) 7.3 (�80.8 to 95.4, p¼ .86) 0.1 (�0.1 to 0.2, p¼ .16)
Stroke �846.5 (�1.921.7 to 228.6, p¼ .12) �2,146.2 (�5,625.6 to 1,333.1, p¼ .22) �0.1 (�0.6 to 0.6, p¼ .94)
Human immunodeficiency virus (HIV) 114.5 (�24.2 to 253.2, p¼ .10) 19.4 (�437.7 to 476.6, p¼ .93) 0.1 (�0.1 to 0.2, p¼ .11)
Physical inactivity �58.6 (�410.0 to 292.8, p¼ .73) �102.1 (�1,229.3 to 1,025.0, p¼ .85) �0.1 (�0.2 to 0.1, p¼ .80)
Received influenza vaccination �56.7, (�229.0 to 115.4, p¼ .51) �397.0 (�939.4 to 145.2, p¼ .14) 0.1 (�0.1 to 0.2, p¼ .70)
State population density 8.9 (6.5 to 11.2, p < .01)� 19.2 (9.5 to 29.0, p < .01)� 0.1 (0.1 to 0.2, p¼ .02)�
Urban air quality rank (Lower number

is better quality)
22.4 (�42.5 to 87.3, p¼ .49) 5.1 (�204.7 to 214.9, p¼ .96) 0.1 (�0.1 to 0.1, p¼ .97)

Drinking water quality rank (lower
number is better quality)

�50.4 (�114.9 to 13.9, p¼ .12) �50.8 (�262.9 to 161.2, p¼ .63) �0.1 (�0.1 to 0.1, p¼ .57)

UV index �825.3 (�1,580.7 to �70.0, p¼ .03)� �1,429.2 (�3.951.7 to 1,093.3, p¼ .26) �0.3 (�0.7 to 0.1, p¼ .09)
Precipitation 103.7 (�444.8 to 652.2, p¼ .70) �199.6 (�1,975.1 to 1,575.8, p¼ .82) 0.1 (�0.1 to 0.4, p¼ .46)
Average temperature �12.3 (�96.0 to 71.3, p¼ .76) �159.7 (�425.4 to 106.9, p¼ .23) �0.1 (�0.1 to 0.1, p¼ .88)
Average household income 0.1 (0.1 to 0.2, p < .01)� 0.1 (�0.1 to 0.2, p¼ .08) 0.1 (�0.1 to 0.1, p¼ .09)
High school grad percent �82.5 (�381.6 to 216.5, p¼ .58) �75.1 (�1,036.5 to 886.2, p¼ .87) �0.1 (�0.2 to 0.1, p¼ .52)
Social distancing score 442.3 (�1,146.3 to 2,030.9, p¼ .57) 1,986.2 (�3,104.0 to 7,076.4, p¼ .43) 0.1 (�0.7 to 1.0, p¼ .77)
Alcohol consumption �189.2 (�1,924.8 to 1,446.3, p¼ .81) 251.7 (�4,992.5 to 5,496.0, p¼ .92) �0.1 (�1.1 to 0.7, p¼ .68)
Current cigarette smoker �294.5 (�556.9 to �32.2, p¼ .02)� �683.0 (�1,544.8 to 178.7, p¼ .11) �0.1 (�0.2 to 0.1, p¼ .50)
Cocaine 754.2 (�763.9 to 2,272.5, p¼ .32) 2,852.1 (�1,993.8 to 7,698.0, p¼ .24) 1.0 (0.2 to 1.9), p¼ .01)�
Marijuana �9.1 (�209.5 to 191.2, p¼ .92) 262.9 (�374.8 to 900.7, p¼ .41) 0.1 (�0.1 to 0.2, p¼ .06)
Per capita health care spending 1.0 (0.3 to 1.7, p < .01)� 3.68 (1.3 to 5.9, p < .01)� 0.1 (0.1 to 0.1, p¼ .18)
Public transportation volume 0.1 (0.1 to 0.2, p < .01)� 0.1 (0.1 to 0.2, p¼ .01)� 0.1 (0.1 to 0.2, p¼ .02)�
Number of residents in nursing

home facilities
0.1 (0.1 to 0.2, p < .01)� �0.1 (�0.2 to 0.1, p¼ .88) 0.1 (0.1 to 0.2, p¼ .01)�

Number of inmates in prisons 0.1 (p¼�0.1 to 0.1, p¼ .98) �0.1 (�0.2 to 0.1, p¼ .11) 0.1 (�0.1 to 0.1, p¼ .37)
Tourism ranking 2018 (lower ranking

means more tourists)
�79.8 (p¼�146.0 to �13.7, p¼ .01)� �50.9 (�275.1 to 173.2, p¼ .65) �0.1 (�0.2 to �0.1, p¼ .02)�

�Statistically significant.
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COVID-19 percent mortality, univariate analyses

The following factors were associated with greater
percent mortality on univariate linear regression analy-
ses: older age in years (beta coefficient 0.2, p¼ .01),
population density (beta coefficient 0.1, p¼ .02),
higher prevalence of asthma (beta coefficient 0.4,
p¼ .04), lower prevalence of uninsured (beta

coefficient �0.1, p¼ .02), higher prevalence of cocaine
use (beta coefficient 1.0, p¼ .01), higher public trans-
portation volume (beta coefficient 0.1, p¼ .02), higher
number of residents in nursing home facilities (beta
coefficient 0.1, p¼ .01), and lower number for tourism
ranking and thus more tourists (beta coefficient
�0.1, p¼ .02).

Table 2. Associations between demographic factors, comorbidities, and environmental factors on case numbers, test numbers
and percent mortality in univariate analysis.

Cases per million Tests per million Mortality percent

Age No No Yes (more mortality with
increased age)

Gender Yes (higher frequency with
more females)

No No

Race, White No No No
Race, Black No No No
Race, Native American No No No
Race, Asian No No No
Race, Islander No No No
Race, Other race Yes (higher frequency with

other race)
No No

Race, multiple race No No No
Uninsured Yes (higher frequency with

less uninsured)
Yes (lower frequency with

more uninsured)
Yes (lower mortality with

more uninsured)
Obesity Yes (higher frequency with

lower obesity)
No No

Asthma No No Yes (higher mortality with
more asthma)

Diabetes No No No
Chronic obstructive pulmonary

disease (COPD)
No No No

Myocardial infarction No No No
Coronary artery disease No No No
Hypertension No No No
Hyperlipidaemia No No No
Cancer No No No
Stroke No No No
Human immunodeficiency virus (HIV) No No No
Physical inactivity No No No
Received influenza vaccination No No No
State population density Yes (higher frequency with

more density)
Yes (higher frequency with

more density)
Yes (more mortality with

greater density)
Urban air quality rank (lower number is

better quality)
No No No

Drinking water quality rank (lower
number is better quality)

No No No

Ultraviolet (UV) index Yes (higher frequency with
lower UV index)

No No

Precipitation No No No
Average temperature No No No
Average household income Yes (higher frequency with

higher average income)
No No

High school grad percent No No No
Social distancing score No No No
Alcohol consumption No No No
Current cigarette smoker Yes (higher frequency with

lower smoking)
No No

Cocaine No No Yes
Marijuana No No No
Per capita health care spending Yes (higher frequency with

higher spending)
Yes (higher frequency with

higher spending)
No

Public transportation volume Yes (higher frequency with
higher volume)

Yes (higher frequency with
higher volume)

Yes (higher mortality with
higher volume)

Number of residents in nursing
home facilities

Yes (higher frequency with
higher number)

No Yes (higher mortality with
higher number)

Number of inmates in prisons No No No
Tourism ranking 2018 (lower number means

more tourists)
Yes (higher frequency with

more tourists)
Yes (higher frequency with

more tourists)
Yes (higher mortality with

more tourists)
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COVID-19 percent mortality, multivariate analyses

The following factors were associated with greater
percent mortality using multivariable analyses: median
age in years (beta coefficient 0.2, p¼ .01) and tourism
ranking (beta coefficient-0.1, p¼ .02) (Table 3). The R-
square for this model was 0.29. Collinearity analyses
did not demonstrate significant collinearity.

Power analyses

For multivariate regression analyses for case frequency,
for which there is a relatively adequate effect size, and
two predictors in the model, 31 subjects would be
required to achieve 80% power. With 50 states and
thus 50 subjects in these analyses, the multivariate
analyses for case frequency are adequately powered.

For multivariable regression analyses for testing fre-
quency, for which there is a relatively low effect size,
and one predictor in the model, 385 subjects would be
required to achieve 80% power. With 50 states and thus
50 subjects in these analyses, the multivariable analyses
for testing frequency are not adequately powered.

For multivariable regression analyses for percent mor-
tality, for which there is relatively low effect size, and
two predictors in the model, 478 patients would be
required to achieve 80% power. With 50 states and thus
50 subjects in these analyses, the multivariable analyses
for percent mortality are not adequately powered.

Discussion

In these analyses, wide variations in case frequency,
testing frequency, and percent mortality were

Table 3. Associations between demographic factors, comorbidities, and environmental factors on case numbers, test numbers
and percent mortality in multivariable analysis.

Cases per million Tests per million Mortality percent

Age �0.10 (p¼ .09) �0.16 (p¼ .22) 0.33 (0.12–0.55, p¼ .01)�
Gender �0.01 (p¼ .97) �0.08 (p¼ .55) 0.16 (p¼ .22)
State population density 0.64 (0.20–1.01), p< .01)� 0.52 (0.30–0.74, p < .01)� 0.24 (p¼ .07)
Urban air quality rank (Lower

number is better quality)
0.02 (p¼ .65) 0.04 (p¼ .72) 0.04 (p¼ .73)

Drinking water quality rank (lower
number is better quality)

0.04 (p¼ .54) 0.07 (p¼ .56) �0.07 (p¼ .61)

UV index 0.05 (p¼ .47) �0.06 (p¼ .62) �0.11 (p¼ .42)
Precipitation 0.01 (p¼ .99) �0.10 (p¼ .44) 0.18 (p¼ .19)
Average temperature 0.07 (p¼ .28) �0.17 (p¼ .18) 0.01 (p¼ .98)
Average household income �0.08 (p¼ .28) �0.15 (p¼ .34) 0.20 (p¼ .16)
High school grad percent �0.05 (p¼ .44) �0.02 (p¼ .84) �0.03 (p¼ .81)
Obesity 0.07 (p¼ .28) �0.02 (p¼ .87) �0.07 (p¼ .63)
Asthma �0.10 (p¼ .11) 0.20 (p¼ .11) 0.22 (p¼ .10)
Diabetes 0.02 (p¼ .74) �0.03 (p¼ .79) 0.09 (p¼ .53)
COPD 0.01 (p¼ .92) �0.02 (p¼ .85) 0.12 (p¼ .37)
MI �0.01 (p¼ .91) 0.01 (p¼ .90) 0.03 (p¼ .83)
CAD 0.01 (p¼ .92) �0.05 (p¼ .65) 0.10 (p¼ .48)
Hypertension 0.04 (p¼ .47) �0.06 (p¼ .62) 0.09 (p¼ .50)
Hyperlipidaemia 0.04 (p¼ .44) �0.10 (p¼ .41) 0.15 (p¼ .26)
Cancer 0.04 (p¼ .47) �0.03 (p¼ .77) 0.11 (p¼ .42)
Stroke 0.03 (p¼ .61) �0.08 (p¼ .53) 0.04 (p¼ .77)
HIV 0.12 (p¼ .09) �0.10 (p¼ .41) 0.19 (p¼ .15)
Physical inactivity 0.06 (p¼ .27) 0.07 (p¼ .57) �0.01 (p¼ .96)
Received influenza vaccination �0.11 (p¼ .07) �0.25 (p¼ .05) �0.01 (p¼ .98)
Uninsured 0.11 (p¼ .13) �0.18 (p¼ .18) �0.20 (p¼ .17)
Race, White �0.05 (p¼ .44) 0.08 (p¼ .55) �0.18 (p¼ .18)
Race, Black �0.08 (p¼ .16) �0.12 (p¼ .33) 0.21 (p¼ .13)
Race, Native American 0.02 (p¼ .73) 0.21 (p¼ .11) �0.22 (p¼ .09)
Race, Asian �0.11 (p¼ .14) �0.12 (p¼ .37) 0.16 (p¼ .28)
Race, Islander �0.07 (p¼ .24) 0.15 (p¼ .24) �0.23 (p¼ .09)
Race, Other race �0.06 (p¼ .39) 0.11 (p¼ .38) �0.02 (p¼ .84)
Race, multiple race �0.08 (p¼ .16) �0.05 (p¼ .68) 0.10 (p¼ .45)
Social distancing score 0.05 (p¼ 0.40) 0.15 (p¼ .23) �0.03 (p¼ .78)
Alcohol consumption �0.01 (p¼ .89) 0.01(p¼ .94) �0.18 (p¼ .17)
Current cigarette smoker 0.06 (p¼ .36) �0.05 (p¼ .70) 0.10 (p¼ .48)
Cocaine �0.12 (p¼ .05) 0.08 (p¼ .53) 0.06 (p¼ .63)
Marijuana �0.08 (p¼ .19) 0.08 (p¼ .51) 0.05 (p¼ .70)
Per capita health care spending �0.04 (p¼ .58) 0.24 (p¼ .09) 0.14 (p¼ .37)
Public transportation volume 0.57 (0.23–0.84, p< .01) 0.24 (p¼ .06) 0.11 (p¼ .43)
Number of residents in nursing

home facilities
0.02 (p¼ .86) �0.16 (p¼ .21) 0.11 (p¼ .49)

Number of inmates in prisons �0.25 (�0.41 to �0.04, p < .01)� �0.24 (p¼ .05) �0.09 (p¼ .61)
Tourism ranking 2018 (lower

ranking means more tourists)
�0.05 (p¼ 0.52) 0.10 (p¼ .45) �0.30 (�0.53 to �0.83, p¼ .02)�

�Statistically significant.
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observed. These results also identified factors, such as
population density, transportation volume, tourism
index and older age to be some of the factors affect-
ing the above outcomes. To the authors’ knowledge,
this is the first study to incorporate large number of
variables to study the differences in COVID-19 trans-
mission among different states in the US.

Several laboratory and clinical risk factors have
been postulated to predispose patients to symptom-
atic infection with COVID-19 and related mortality
[7–9]. However, non-clinical factors that affect such
outcomes are unknown. After multivariate analysis in
this study, a higher population density was found to
be associated with higher case and testing frequency.
The results also identified increased public transporta-
tion to be associated with higher case frequency.
Finally, the results identified older age and increased
tourism independently related to higher mortality.

Since these analyses were based on state-level
data, the power for multivariate regression was
reduced compared to if the analyses were completed
with patient-level data. Hence, the findings of the uni-
variate analyses deserve attention as well here. We
found direct relationships between case frequency in
a state and female gender, underinsured status, aver-
age household income and per capita healthcare
spending and inverse relationship with obesity, smok-
ing and UV light exposure. Public transportation was
significantly associated with frequency of cases, testing
and mortality rates on univariate analysis. However, on
multivariate analysis, only the frequency of cases
remained significantly associated with public transpor-
tation. Tourism ranking was also a significant predictor
of all three endpoints on univariate analysis and
remained significantly associated with mortality even
after multivariate regression.

There is limited data on the nature of healthcare
disparities during the COVID-19 pandemic. The cumu-
lative COVID-19 incidence has been reported to be
significantly variable among jurisdictions, ranging from
20.6 per 100,000 cases in Minnesota to 915.3 per
100,000 cases in New York City [10]. The timing of the
introduction of COVID-19 in the state and the extent
of mitigation measures may mediate some of this vari-
ation. The age of patients has been shown to be a sig-
nificant predictor of COVID-19 infection and worse
outcomes [9,11]. The race and gender of patients have
also been reported to be associated with a higher
case frequency and worse outcomes in patients with
COVID-19 [12,13]. It continues to be shown that popu-
lation density is associated with an increase in

transmission and infection for the high-risk popula-
tion [14,15].

The results of this study showed that public trans-
port volume was also linked to a higher case rate.
Prior studies have demonstrated similar findings with
influenza-like illnesses and that its use increases the
individual’s risk for acquiring an acute respiratory
infection [16,17]. A simulation model indicated that
the high level of subway usage in New York can influ-
ence disease spread in an influenza epidemic and that
between 4 and 5% of total infections would occur on
subways [18]. This information is particularly important
as recommendations to maintaining strict disinfecting
guidelines for public transport along with shelter-in-
place whenever possible are established [19,20].

The results of this study identified that higher tour-
ism is associated with increased mortality. A possible
explanation of this identified phenomenon has been
published and thought to be related to an influx of
infected patients presenting late in the disease course
[21,22]. Furthermore, prior studies have shown that air
transportation accelerates viral spreading mainly
related to high passenger traffic and risk of surface
contamination in airports [23,24]. Similar findings have
been reported in trains and other types of commercial
vessels [25,26]. Hence, the widespread implementation
of travel restrictions, social distancing and lockdowns
has become the main preventative intervention to
decrease viral spreading during this pandemic.
However, in this analysis, social distancing score was
not associated with COVID-19 case frequency or mor-
tality. The result from prior studies showed that social
distancing is an effective measure at decreasing viral
spreading when comprised of quarantines, school clos-
ure and workplace distancing [27,28]. However, our
current analysis showed a lack of association between
social distancing and COVID-19 case frequency, which
may also represent a limitation of the process of
measuring the social distancing score. This is particu-
larly important as some countries like Sweden have
encountered higher COVID-19 case frequencies after
adopting more lenient social distancing measures [29].
This analysis also showed a lack of impact of climate-
related factors on case and testing frequency. These
findings require further validation as conflicting
reports have been published [5,30,31]. Surprisingly, in
our analysis states with a higher number of uninsured
patients were found to have lower mortality which
could possibly be related to underreporting in such
populations as both case numbers and testing num-
bers were also lower in such states.
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Finally, most of the comorbidities analyzed were
not found to be independently associated with the
case mortality in this analysis. This may suggest the
complex interplay between demographics, environ-
mental factors and diseases processes [32,33]. The
findings from this analysis also highlight some of the
potential limitations of state-level data rather than
patient-level data, as previous studies have found a
few comorbidities to be associated with increases in
case frequency and percent mortality.

These analyses offer some early assessment of the
factors that may be mediating COVID-19 case fre-
quency, testing frequency, and percent mortality. These
analyses present associations using state-level data and
not patient-level data. While these analyses offer novel
data regarding case frequency, testing frequency and
percent mortality in the US, these analyses are not
without their limitations. First, all the study data was
captured from publicly available sources which only
had data until 2018. The use of state-level data reduced
the power of analyses, as we used for the multivariate
regression models the number of states as the subjects.
Although the data collection carries a risk of bias, this
was minimized by utilizing multiple investigators for
the accuracy of data captured. The ecologic design of
the paper and use of various data sources with varying
methods are other limitations of our study. Finally, the
lack of granularity to county or city level data further
limits our interpretations.

With these limitations in mind, it is important to
frame the intentions of this study appropriately. These
analyses are by no means intended to be definitive
data but are intended to be exploratory data to help
identify variables that should be accounted for in larger,
multicenter studies that utilize patient-level data. Factors
such as the environmental and local infrastructural char-
acteristics appear to modulate the case frequency and
percent mortality and thus could be beneficial to cap-
ture in future studies. The data from those variables
may assist with the understanding of viral spreading
and the pandemic evolution. For instance, the identifica-
tion of the association between higher tourism volume
with higher case frequency and percent mortality may
help implement faster travel restrictions for future pan-
demics. Similarly, the association between public trans-
portation volume and its association with increased
case frequency and percent mortality may assist in
developing a future public response.

Conclusion

This observational analysis of publicly reported state-
level data identified factors associated with increased

case frequency, testing frequency, and percent mortal-
ity for COVID-19. These data can guide future study
design and develop risk prediction models.
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