Blood Levels of Ammonia and Carnitine in Patients Treated with Valproic Acid: A Meta-analysis

Saaya Yokoyama¹, Norio Sugawara¹, Kazushi Maruo², Norio Yasui-Furukori¹, Kazutaka Shimoda¹

¹Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, ²Faculty of Medicine, University of Tsukuba, Tsukuba, Japan

Objective: Long-term valproic acid (VPA) administration is associated with adverse metabolic effects, including hyperammonemia and hypocarnitinemia. However, the pathogeneses of these adverse events remain unclear, and not enough reviews have been performed. The aim of this study was to conduct a meta-analysis of studies examining blood levels of ammonia and carnitine in patients treated with VPA.

Methods: We conducted database searches (PubMed, Web of Science) to identify studies examining blood levels of ammonia and carnitine in patients treated with VPA. A meta-analysis was performed to conduct pre- and post-VPA treatment comparisons, cross-sectional comparisons between groups with and without VPA use, and estimations of the standardized correlations between blood levels of ammonia, carnitine, and VPA.

Results: According to the cross-sectional comparisons, the blood ammonia level in the VPA group was significantly higher than that in the non-VPA group. Compared to that in the non-VPA group, the blood carnitine level in the VPA group was significantly lower. In the meta-analysis of correlation coefficients, the blood VPA level was moderately correlated with blood ammonia and blood free carnitine levels in the random effects model. Furthermore, the blood ammonia level was moderately correlated with the blood free carnitine level.

Conclusion: Although the correlation between ammonia and free carnitine levels in blood was significant, the moderate strength of the correlation does not allow clinicians to infer free carnitine levels from the results of ammonia levels. Clinicians should measure both blood ammonia and free carnitine levels, especially in patients receiving high dosages of VPA.

KEY WORDS: Bipolar disorder; Valproic acid; Free carnitine; Acylcarnitine; Ammonia.

INTRODUCTION

Valproic acid (VPA) is commonly used for the treatment of psychiatric or neurological diseases. The mechanism of VPA is not fully understood, although the regulation of glutamate excitatory neurotransmission and/or gamma aminobutyric acid (GABA) inhibitory neurotransmission has been postulated [1]. While VPA is usually tolerated, adverse metabolic effects, such as hypocarnitinemia as well as hyperammonemia, have been associated with long-term VPA administration [2].

Carnitine is essential for the transport of long-chain fatty

Received: May 25, 2021 / Accepted: July 28, 2021 Address for correspondence: Norio Sugawara Department of Psychiatry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan E-mail: nsuga3@dokkyomed.ac.jp ORCID: https://orcid.org/0000-0001-7058-664X acids into mitochondria for beta-oxidation. When carnitine is lacking, fatty acids accumulate and inhibit the urea cycle via multiple pathways, resulting in elevated ammonia [3,4]. A recent meta-analysis indicated that carnitine supplementation significantly reduces blood levels of ammonia [5]. Although the abovementioned mechanisms suggest that carnitine deficiency could promote VPA-induced hyperammonemia, previous studies conducted in participants receiving VPA reported inconsistent results regarding the relationship between ammonia and carnitine [2,3,6,7]. Clarifying the relationship between ammonia and carnitine could be important for clinicians to decide monitoring plans for patients taking VPA.

Therefore, we conducted a meta-analysis of studies evaluating blood levels of ammonia and carnitine in patients treated with VPA. We aimed to (1) clarify the mean differences in ammonia and carnitine levels between patients with and without VPA treatment (cross-sectional

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

comparisons), (2) describe the mean differences in ammonia and carnitine levels after VPA treatment (pre- and post-VPA comparisons), and (3) estimate the standardized correlations between blood levels of ammonia, carnitine, and VPA (meta-correlational analyses).

METHODS

Study Selection

The systematic review was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards (a protocol used to evaluate systematic reviews) [8]. Electronic databases, including PubMed and Web of Science, were initially searched using six terms. The search phrases for PubMed were "(valproic acid [ALL] OR valproate [ALL] OR divalproex [ALL]) AND carnitine [ALL])" OR "(valproic acid [ALL] OR valproate [ALL] OR divalproex [ALL]) AND (ammonia [ALL] OR hyperammonemia [ALL])". We used comparable search terms for Web of Science.

We included studies that had ≥ 10 participants with VPA use, regardless of clinical setting (inpatient, outpatient); (1) observational studies (cross-sectional, longitudinal studies), (2) randomized controlled trials, and (3) case reports. We excluded the following: (1) comments, editorials, letters; (2) studies not performed in human participants; (3) non-English publications; (4) studies including conditions likely to significantly affect the distribution

Table 1. Major characteristics of studies included for cross-sectional comparison

Author	Group	Unit	Mean ± SD	Number	$Mean \pm SD$	Number	Mean ± SD	Number
Maldonado <i>et al.</i> [9],	With VPA	µg/dl	105.2 ± 57.2	28				
2016	Without VPA		61.7 ± 27.3	31	82.1 ± 35.6	41		
Yamamoto <i>et al.</i> [10],	With VPA	µg/dl	85.8 ± 42.7	1,826				
2013	Without VPA		36.0 ± 21.1	445	56.0 ± 28.5	673		
Castro-Gago et al. [11],	With VPA	µmol/L	39.8 ± 14.1	57				
2010	Without VPA		29.5 ± 10.5	75	29.9 ± 8.1	17		
Agarwal <i>et al</i> . [12],	With VPA	µg/dl	86.4 ± 39.9	100				
2009	Without VPA		68.7 ± 30.1	100				
Hamed and Abdella	With VPA	µg/dl	75.6 ± 18.0	60				
[6], 2009	Without VPA		36.4 ± 10.8	40				
Verrotti <i>et al.</i> [13],	With VPA	µg/dl	36.7 ± 12.4	32	59.9 ± 16.3	28		
1999	Without VPA		31.1 ± 14.7	24	29.7 ± 12.1	40		
Hirose et al. [14], 1998	With VPA	µmol/L	26.0 ± 9.2	45				
	Without VPA		29.4 ± 11.8	45				
Altunbaşak <i>et al</i> . [15],	With VPA	µg/dl	29.8 ± 14.6	44	32.0 ± 19.4	24		
1997	Without VPA		21.6 ± 20.4	16				
Thom <i>et al</i> . [16], 1991	With VPA	µmol/L	32.0 ± 24.3	37				
	Without VPA		21.0 ± 18.8	22				
Beghi <i>et al</i> . [17], 1990	With VPA	µg/dl	62.5 ± 40.9	55	56.1 ± 32.6	54		
	Without VPA		49.4 ± 31.3	51	36.5 ± 24.6	53		
Komatsu <i>et al</i> . [18],	With VPA	µg/dl	39.9 ± 13.6	8	61.7 ± 24.1	25	121.9 ± 48.6	31
1987	Without VPA		39.3 ± 12.5	12	48.6 ± 13.2	16	39.3 ± 9.9	13
			48.1 ± 17.6	17	68.9 ± 20.0	15		
Kugoh <i>et al</i> . [19], 1986	With VPA	µg/dl	40.5 ± 23.3	53	56.6 ± 26.5	140		
	Without VPA		40.7 ± 15.2	63				
Farrell <i>et al.</i> [20], 1986	With VPA	µmol/L	30.2 ± 9.3	31	34.9 ± 9.0	19		
	Without VPA		29.8 ± 10.8	25				
Ratnaike <i>et al</i> . [21],	With VPA	µmol/L	37.1 ± 31.8	23	37.6 ± 21.4	33		
1986	Without VPA		21.5 ± 7.8	25				
Haidukewych <i>et al</i> .	With VPA	µg/ml	0.8 ± 0.5	33	0.6 ± 0.3	27	0.6 ± 0.2	13
[22], 1985			0.3 ± 0.2	14	0.3 ± 0.2	38		
	Without VPA		0.5 ± 0.1	32				
Ohtani <i>et al</i> . [23], 1982	With VPA	μg/dl	143.8 ± 42.4	14				
	Without VPA	-	55.1 ± 15.0	11	46.7 ± 72.2	27		

Mean \pm standard deviation (SD) of blood ammonia levels.

VPA, valproic acid.

Table 2. Major characteristics of studies included for cross-sectional comparison

Author	Group	Unit	Mean \pm SD	Number	Mean \pm SD	Number	Mean \pm SD	Number
Qiliang <i>et al</i> . [24],	With VPA	µmol/L	23.9 ± 10.6	299				
2018	Without VPA		36.4 ± 9.4	299				
Maldonado <i>et al</i> . [9],	With VPA	µmol/L	39.8 ± 13.0	28				
2016	Without VPA		37.8 ± 8.6	31	50.1 ± 18.9	41		
Cansu <i>et al.</i> [25], 2011	With VPA	µmol/L	29.6 ± 7.1	28				
	Without VPA		30.9 ± 10.1	28				
Nakajima <i>et al</i> . [7],	With VPA	µmol/L	40.8 ± 11.0	28	32.1 ± 8.4	23		
2011	Without VPA		47.7 ± 9.1	23				
Hamed and Abdella	With VPA	µmol/L	25.3 ± 8.1	60				
[6], 2009	Without VPA		40.9 ± 4.8	40				
Anil <i>et al</i> . [26], 2009	With VPA	µmol/L	16.5 ± 10.2	50				
	Without VPA		44.6 ± 7.3	30				
Zelnik <i>et al</i> . [27], 2008	With VPA	μg/ml	26.9 ± 8.6	18				
	Without VPA	-	38.5 ± 7.8	24	37.2 ± 7.8	28	40.4 ± 8.7	21
Werner <i>et al.</i> [28],	With VPA	µmol/L	44.4 ± 10.8	16	41.1 ± 11.5	9		
2007	Without VPA		48.7 ± 22.1	15	47.9 ± 9.5	27		
Verrotti <i>et al.</i> [13],	With VPA	µmol/L	28.9 ± 5.1	32	25.7 ± 4.3	28		
1999	Without VPA		40.9 ± 7.1	24	42.9 ± 8.0	40		
Castro-Gago <i>et al.</i> [29],	With VPA	µmol/L	25.8 ± 6.1	17				
1998	Without VPA	·	34.3 ± 8.3	10	27.8 ± 4.4	5	49.0 ± 5.9	71
Hirose <i>et al.</i> [14], 1998	With VPA	µmol/L	42.7 ± 9.9	45				
£ 37	Without VPA	•	44.4 ± 9.9	45				
Hiraoka <i>et al</i> . [30],	With VPA	µmol/L	35.6 ± 13.5	9	24.6 ± 5.2	13		
1997	Without VPA	····· · · -	42.7 ± 9.3	12				
Zelnik <i>et al.</i> [31], 1995	With VPA	µmol/L	29.1 ± 6.2	15				
	Without VPA	• *	38.9 ± 14.6	14	37.2 ± 7.9	8	40.3 ± 12.8	34
Riva <i>et al.</i> [32], 1993	With VPA	µmol/L	35.0 ± 13.0	22				
· · · · · · · · · · · · · · · · · · ·	Without VPA	····· · · -	48.0 ± 20.0	16				
Hug <i>et al.</i> [33], 1991	With VPA	µmol/L	27.0 ± 10.0	53	23.2 ± 9.3	18		
	Without VPA	····· · · -	42.5 ± 14.1	32	24.6 ± 12.3	119	31.4 ± 10.4	92
			33.0 ± 8.3	141	24.0 ± 10.7	19	30.9 ± 11.0	17
			38.8 ± 10.7	12				
Thom <i>et al.</i> [16], 1991	With VPA	µmol/L	30.8 ± 10.9	37				
	Without VPA	• *	39.3 ± 6.6	22				
Opala <i>et al</i> . [34], 1991	With VPA	µmol/L	29.9 ± 10.0	43	21.4 ± 12.0	91		
- p	Without VPA	• *	36.7 ± 10.0	43	36.8 ± 7.0	89		
Matsumoto <i>et al.</i> [35],	With VPA	µmol/L	44.7 ± 30.1	198				
1990	Without VPA	····· · · -	53.4 ± 20.6	50				
Beghi <i>et al</i> . [17], 1990	With VPA	µmol/L	33.0 ± 11.7	55	36.2 ± 10.4	54		
2 · 0	Without VPA	····· · · -	37.0 ± 9.4	51	41.4 ± 8.9	53		
Melegh <i>et al.</i> [36],	With VPA	µmol/L	26.1 ± 7.1	10				
1990	Without VPA	····· · · -	42.7 ± 6.8	10				
Rodriguez-Segade	With VPA	µmol/L	26.4 ± 8.4	34				
<i>et al.</i> [37], 1989	Without VPA	pinto (E	41.2 ± 11.7	149	42.1 ± 10.0	26	47.1 ± 7.7	49
Komatsu <i>et al.</i> [18],	With VPA	µmol/L	55.7 ± 8.6	11	42.5 ± 9.5	25	36.6 ± 11.5	25
1987	Without VPA	pinto , E	57.3 ± 7.7	7	51.3 ± 13.5	7	48.5 ± 11.2	26
			53.2 ± 7.9	12	52.8 ± 17.4	5		
Melegh <i>et al.</i> [38],	With VPA	µmol/L	16.8 ± 5.9	11	5210 - 1711	5		
1987	Without VPA	P	26.5 ± 7.0	11				
Morita <i>et al.</i> [39], 1986	With VPA	µmol/L	20.5 ± 7.0 21.5 ± 7.4	12				
	Without VPA	putton E	31.5 ± 7.7	12	51.7 ± 8.8	32		
Laub <i>et al</i> . [40], 1986	With VPA	µmol/L	33.5 ± 8.0	21	5117 ± 010	54		
Laus et al. [10]/ 1500	Without VPA	M1101/L	41.2 ± 12.0	21	39.9 ± 9.0	21		
Ohtani <i>et al</i> . [23], 1982	With VPA	µmol/L	28.6 ± 9.7	14	55.5 ± 5.0	21		
Grian <i>et al</i> . [23], 1902	Without VPA	µm0i/L	43.0 ± 8.6	11	44.2 ± 63.3	27		
	without vr A		+J.U ± 0.0	11	11.4 ± 03.3	21		

Mean \pm standard deviation (SD) of blood free carnitine levels. VPA, valproic acid.

of ammonia or carnitine levels (e.g., participants with valproate-induced hyperammonemic encephalopathy, carnitine palmitoyltransferase deficiency, hepatitis, or liver failure); and (6) studies including participants who used VPA for less than 1 month. Two researchers (SY and NS) independently searched the literature. After all papers had been assessed, any discrepancies in the responses were identified and discussed until consensus was reached.

Data Extraction

The following data were extracted: first author's name, publication year, sample size, means and standard deviation (SD) values of blood ammonia and free carnitine levels in each group, and correlation coefficients between blood levels of ammonia, carnitine, and VPA among participants taking VPA (Tables 1-4) [9-54]. Subjects whose mean levels of ammonia or carnitine were more than twice as high as the upper limit of the normal range were excluded from the final analysis.

Statistical Analysis

We calculated the mean (SD) as a one group, when there were two or more groups taking VPA in one article. Additionally, all non-VPA groups in one article were considered a single group for data synthesis purposes.

For the cross-sectional comparison, we calculated the standardized mean differences (SMDs) between the groups using the metacont function in the meta package with the option for SMD (sm = "SMD").

Regarding the pre- and post-VPA comparison, most studies included only the mean and SD of each pre- and postvisit, not the mean and SD of the difference from baseline. Therefore, we calculated the mean and SD of the differences from baseline for such studies under the assumption that the correlations between pre- and post-variables were equivalent to 0.5. We calculated the mean differences from baseline visit data using the metamean function in the meta package of R software with the default settings [55].

For the meta-correlational analysis, we transformed Spearman's correlation coefficients to Pearson's coefficients using transformation functions on the assumption that the variables followed a normal distribution after applying an adequate statistical transformation (e.g., Box-Cox transformation) [56]. We synthesized the correlations between the variables using the metacor function in the meta package with the default settings.

All meta-analyses were conducted using random effect

Table 3. Major characteristics of studies included for pre-post comparison

Author	Variables	Group	Unit	Mean ± SD	Number	Mean ± SD	Number
Hamed and Abdella [6], 2009	Ammonia	Before VPA	µg/dl	40.7 ± 5.4	60		
		After VPA		75.6 ± 18.0			
Redden <i>et al.</i> [41], 2009	Ammonia	Before VPA	μmol/L	39.2	193		
		Mean difference		11.7 ± 21.3			
Paganini <i>et al</i> . [42], 1984	Ammonia	Before VPA	µg/dl	39.1 ± 16.0	21		
		After VPA		57.6 ± 16.0			
Cansu <i>et al.</i> [25], 2011	Free carnitine	Before VPA	µmol/L	32.9 ± 10.9	28		
		After VPA		29.6 ± 7.1			
Hamed and Abdella [6], 2009	Free carnitine	Before VPA	µmol/L	36.9 ± 4.0	60		
		After VPA		25.3 ± 8.1			
Werner <i>et al</i> . [28], 2007	Free carnitine	Before VPA	µmol/L	46.5 ± 8.5	16	47.4 ± 11.7	9
		After VPA		44.4 ± 11.2		41.1 ± 11.5	
Castro-Gago <i>et al</i> . [29], 1998	Free carnitine	Before VPA	μmol/L	34.4 ± 8.5	17		
		After VPA		25.8 ± 6.1			
Van Wouwe [43], 1995	Free carnitine	Before VPA	µmol/L	32.7 ± 7.3	13		
		After VPA		20.9 ± 5.2			
Zelnik <i>et al</i> . [31], 1995	Free carnitine	Before VPA	µmol/L	37.6 ± 24.0	15		
		After VPA		29.1 ± 6.2			
Riva <i>et al.</i> [32], 1993	Free carnitine	Before VPA	µmol/L	49.0 ± 17.0	22		
		After VPA		35.0 ± 13.0			

Mean \pm standard deviation (SD) of blood ammonia and free carnitine levels.

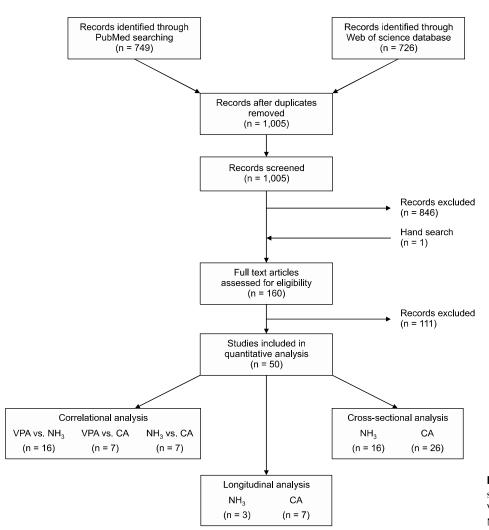
VPA, valproic acid.

Author	Variables	Correlation	nal coefficient	Numbe
Yokoyama <i>et al</i> . [20], 2020	VPA, ammonia	0.149	Pearson	182
Duman <i>et al.</i> [44], 2019	VPA, ammonia	0.207	Pearson	94
Maldonado <i>et al</i> . [9], 2016	VPA, ammonia	0.683	Pearson	28
Günaydin <i>et al</i> . [45], 2014	VPA, ammonia	0.742	Spearman	26
Tseng <i>et al.</i> [46], 2014	VPA, ammonia	0.210	Pearson	158
Sharma <i>et al</i> . [47], 2011	VPA, ammonia	0.820	Spearman	63
Castro-Gago <i>et al</i> . [11], 2010	VPA, ammonia	0.449	Spearman	57
Moreno <i>et al.</i> [48], 2005	VPA, ammonia	0.272	Pearson	29
Verrotti <i>et al</i> . [13], 1999	VPA, ammonia	0.410	Pearson	60
Altunbaşak <i>et al.</i> [15], 1997	VPA, ammonia	0.458	Pearson	68
Patsalos <i>et al.</i> [49], 1993	VPA, ammonia	0.080	Pearson	82
Kondo <i>et al</i> . [50], 1992	VPA, ammonia	-0.233	Spearman	53
Kugoh <i>et al</i> . [19], 1986	VPA, ammonia	0.570	Pearson	53
Laub [51], 1986	VPA, ammonia	-0.362	Pearson	10
Haidukewych <i>et al</i> . [22], 1985	VPA, ammonia	0.249	Pearson	125
Williams <i>et al</i> . [52], 1984	VPA, ammonia	0.054	Pearson	10
Yokoyama <i>et al.</i> [20], 2020	VPA, free carnitine	-0.194	Pearson	182
Maldonado <i>et al.</i> [9], 2016	VPA, free carnitine	-0.616	Pearson	28
Anil <i>et al.</i> [26], 2009	VPA, free carnitine	0.180	Pearson	50
Moreno <i>et al</i> . [48], 2005	VPA, free carnitine	-0.301	Pearson	29
Hirose <i>et al.</i> [14], 1998	VPA, free carnitine	-0.410	Pearson	45
Morita <i>et al</i> . [39], 1986	VPA, free carnitine	-0.421	Pearson	12
Laub [51], 1986	VPA, free carnitine	0.097	Pearson	21
Yokoyama <i>et al.</i> [20], 2020	Ammonia, free carnitine	-0.097	Pearson	182
Okumura <i>et al</i> . [4], 2019	Ammonia, free carnitine	-0.392	Pearson	49
Ando <i>et al</i> . [53], 2017	Ammonia, free carnitine	0.020	Pearson	37
Nakajima <i>et al.</i> [7], 2011	Ammonia, free carnitine	-0.546	Spearman	51
Hamed and Abdella [6], 2009	Ammonia, free carnitine	-0.935	Pearson	60
Goto <i>et al.</i> [54], 2008	Ammonia, free carnitine	-0.420	Pearson	60
Laub [51], 1986	Ammonia, free carnitine	0.013	Pearson	21

Table 4. Major characteristics of studies included for meta-correlational analysis

VPA, valproic acid.

models, and the heterogeneity for each analysis result was evaluated with I-square statistic.


RESULTS

After excluding duplicates and nonrelevant studies, our search yielded 50 publications that fulfilled the inclusion criteria (Fig. 1). In the cross-sectional comparison, the blood ammonia level in the VPA group was significantly higher than that in the non-VPA group (n = 16, n = 4,821, SMD = 0.7, confidence interval [CI]: 0.5, 1.0, p < 0.01; I² = 88%) (Fig. 2). Compared to that in the non-VPA group, the blood carnitine level in the VPA group was significantly lower (n = 26, n = 3,505, SMD = -1.1, CI: -1.4, -0.8, p < 0.01; I² = 90%) (Fig. 3).

According to the pre- and post-VPA comparison, VPA treatment significantly increased the blood ammonia level

(n = 3, n = 274, MRAW = 14.3 micromol/L, CI: 8.3, 20.4, p < 0.01; I² = 96%) (Fig. 4) and significantly decreased the blood carnitine level (n = 7, n = 180, MRAW = -8.7 micromol/L, CI: -11.4, -5.9, p < 0.01; I² = 79%) (Fig. 5).

The correlation coefficient between VPA and blood ammonia level was 0.36 (CI: 0.20, 0.50) (n = 16, n = 1,098, p < 0.01; l² = 86%) in the random effects model (Fig. 6). Under the same analytical conditions, the correlation coefficient between VPA and free carnitine in blood was -0.24 (CI: -0.43, -0.03) (n = 7, n = 367, p < 0.01; l² = 67%) (Fig. 7), and the correlation coefficient between ammonia and free carnitine in blood was -0.44 (CI: -0.73, -0.02) (n = 7, n = 460, p < 0.01; l² = 95%) (Fig. 8).

Fig. 1. A flow chart of the study selection process. VPA, valproic acid; CA, carnitine; NH₃, ammonia.

DISCUSSION

To our knowledge, this is the first meta-analysis to assess the relationships between ammonia, free carnitine, and VPA. According to the pre- and post-VPA comparison and the cross-sectional comparison, VPA treatment significantly increased the blood ammonia level and decreased the blood carnitine level. The meta-correlational analysis revealed that the blood ammonia level had moderate associations with both VPA and free carnitine levels in blood. Furthermore, VPA level showed a weak correlation with free carnitine level in blood.

Hyperammonemia and hypocarnitinemia are well known as adverse metabolic effects of VPA treatment [2]. Ammonia is produced by the catabolism of proteins and other nitrogenated compounds. Under physiological conditions, ammonia exists as a constituent in body fluids and is transferred to the liver for its ultimate removal as urea. It is then excreted via the kidneys. Normally, circulating ammonia levels in blood are low, at less than 50 μ mol/L (85 μ g/dl) [46]. VPA is mainly metabolized by uridine diphosphate glucuronosyltransferases (UGTs) in the cytosol and partially via mitochondrial beta-oxidation and cytosolic omega-oxidation. The metabolites of VPA, such as valproyl-CoA, 2-propyl-4-pentenoate (4-ene VPA), and propionate, inhibit enzymes in the urea cycle, leading to an elevated blood ammonia level [50,57,58].

VPA treatment is also known as a cause of carnitine deficiency [2]. Carnitine, which is a carrier-type molecule required for the transport and oxidation of fatty acids in mitochondria, plays an important role in energy production [59]. Free plasma carnitine levels were significantly lower in patients who took VPA than in those who did not take VPA [24,26,36]. Although the mecha-

Study	\ Total	With VP/ Mean	A SD	Wi Total	thout VI Mean	PA SD	Standardised mean difference	SMD	95% CI	Weight (fixed)	Weight (random)
Maldonado <i>et al.</i> [9], 2016	28	105.2	57.2	72	73.3	33.7			[0.3, 1.2]	1.9%	6.1%
Yamamoto <i>et al.</i> [10], 2013	1,826	85.8	42.7	1.118	48.0	27.6	+		[0.9, 1.1]	61.8%	7.7%
Castro-Gago <i>et al.</i> [11], 2010	57	39.8	14.1	92	29.6	10.1		0.9		3.2%	6.7%
Agarwal <i>et al.</i> [12], 2009	100	86.4	39.9	100	68.7	30.1		0.5	[0.2, 0.8]	4.8%	7.0%
Hamed and Abdella [6], 2009	60	75.6	18.0	40	36.4	10.8		2.5	[2.0, 3.0]	1.3%	5.5%
Verrotti <i>et al.</i> [13], 1999	60	47.5	18.4	64	30.2	13.0		1.1	[0.7, 1.5]	2.7%	6.5%
Hirose <i>et al.</i> [14], 1998	45	26.0	9.2	45	29.4	11.8		-0.3	[-0.7, 0.1]	2.2%	6.3%
Altunbaşak <i>et al.</i> [15], 1997	68	30.6	16.3	16	21.6	20.4	÷:	0.5	[0.0, 1.1]	1.3%	5.4%
Thom <i>et al.</i> [16], 1991	37	32.0	24.3	22	21.0	18.8		0.5	[-0.1, 1.0]	1.3%	5.5%
Beghi <i>et al.</i> [17], 1990	109	59.3	37.0	104	42.8	28.7		0.5	[0.2, 0.8]	5.1%	7.0%
Komatsu <i>et al.</i> [18], 1987	64	88.1	50.0	73	49.5	18.4		1.0	[0.7, 1.4]	3.0%	6.6%
Kugoh <i>et al.</i> [19], 1986	193	52.2	26.6	63	40.7	15.2		0.5	[0.2, 0.8]	4.6%	7.0%
Farrell <i>et al.</i> [20], 1986	50	32.0	9.4	25	29.8	10.8	- +	0.2	[-0.3, 0.7]	1.7%	5.9%
Ratnaike <i>et al.</i> [21], 1986	56	37.4	25.9	25	21.5	7.8		0.7	[0.2, 1.2]	1.6%	5.8%
Haidukewych <i>et al.</i> [22], 1985	125	0.5	0.4	32	0.5	0.1	+ -	0.2	[-0.1, 0.6]	2.5%	6.4%
Ohtani <i>et al.</i> [23], 1982	14	143.8	42.4	38	49.1	61.1		1.6	[0.9, 2.3]	0.8%	4.6%
Fixed effect model	2,892			1,929				0.9	[0.8, 0.9]	100.0%	_
Random effects model	· -			, -				0.7	[0.5, 1.0]	_	100.0%
Heterogeneity: $l^2 = 88\%$, $p < 0.0$	01						-1 0 1 2 3 4	5			

Fig. 2. Mean difference of blood ammonia levels between with and without valproic acid (VPA) treatment. SD, standard deviation; CI, confidence interval; SMD, standardized mean difference.

	v	Vith VP/	4	Wi	thout V	PA	Standardised mean			Weight	Weight
Study	Total	Mean	SD	Total	Mean	SD	difference	SMD	95% Cl	(fixed)	(random)
Qiliang <i>et al.</i> [24], 2018	299	23.9	10.6	299	36.4	9.4		-1.2	[-1.4, -1.1]	20.4%	4.5%
Maldonado <i>et al.</i> [9], 2016	28	39.8	13.0	72	44.8	16.4		-0.3	[-0.8, 0.1]	3.3%	4.1%
Cansu <i>et al.</i> [25], 2011	28	29.6	7.1	28	30.9	10.1		-0.1	[-0.7, 0.4]	2.3%	3.9%
Nakajima <i>et al.</i> [7], 2011	51	36.9	10.7	23	47.7	9.1		-1.0	[-1.6, -0.5]	2.3%	3.9%
Hamed and Abdella [6], 2009	60	25.3	8.1	40	40.9	4.8	_	-2.2	[-2.7, -1.7]	2.4%	3.9%
Anil <i>et al.</i> [26], 2009	50	16.5	10.2	30	44.6	7.3	.	-3.0	[-3.7, -2.4]	1.4%	3.6%
Zelnik <i>et al.</i> [27], 2008	18	26.9	8.6	73	38.5	8.1		-1.4	[-2.0, -0.8]	2.0%	3.8%
Werner <i>et al.</i> [28], 2007	25	43.2	10.9	42	48.2	15.0	¦ _ ∎∔	-0.4	[-0.9, 0.1]	2.5%	4.0%
Verrotti <i>et al.</i> [13], 1999	60	27.4	5.0	64	42.2	7.7		-2.3	[-2.7, -1.8]	3.1%	4.1%
Castro-Gago <i>et al.</i> [29], 1998	17	25.8	6.1	86	46.1	9.0	_	-2.3	[-3.0, -1.7]	1.7%	3.7%
Hirose <i>et al.</i> [14], 1998	45	42.7	9.9	45	44.4	9.9		-0.2	[-0.6, 0.2]	3.7%	4.1%
Hiraoka <i>et al.</i> [30], 1997	22	29.1	10.7	12	42.7	9.3		-1.3	[-2.1, -0.5]	1.0%	3.3%
Zelnik <i>et al.</i> [31], 1995	15	29.1	6.2	56	39.5	12.6		-0.9	[-1.5, -0.3]	1.8%	3.7%
Riva <i>et al.</i> [32], 1993	22	35.0	13.0	16	48.0	20.0	<u> </u>	-0.8	[-1.5, -0.1]	1.4%	3.5%
Hug <i>et al.</i> [33], 1991	71	26.0	9.9	432	30.7	11.8	-	-0.4	[-0.7, -0.2]	9.9%	4.4%
Thom <i>et al.</i> [16], 1991	37	30.8	10.9	22	39.3	6.6		-0.9	[-1.4, -0.3]	2.1%	3.8%
Opala <i>et al.</i> [34], 1991	134	24.1	12.0	132	36.8	8.1	- <u></u>	-1.2	[-1.5, -1.0]	9.1%	4.4%
Matsumoto <i>et al.</i> [35], 1990	198	44.7	30.1	50	53.4	20.6	-	-0.3	[-0.6, 0.0]	6.5%	4.3%
Beghi <i>et al.</i> [17], 1990	109	34.6	11.1	104	39.2	9.4	-	-0.4	[-0.7, -0.2]	8.5%	4.4%
Melegh <i>et al.</i> [36], 1990	10	26.1	7.1	10	42.7	6.8		-2.3	[-3.5, -1.1]	0.4%	2.4%
Rodriguez-Segade et al. [37], 1989	9 34	26.4	8.4	224	42.6	11.0		-1.5	[-1.9, -1.1]	4.3%	4.2%
Komatsu <i>et al.</i> [18], 1987	61	42.5	12.2	57	51.3	11.2		-0.7	[-1.1, -0.4]	4.5%	4.2%
Melegh <i>et al.</i> [38], 1987	11	16.8	5.9	11	26.5	7.0		-1.4	[-2.4, -0.5]	0.7%	2.9%
Morita <i>et al.</i> [39], 1986	12	21.5	7.4	45	45.9	12.5		-2.1	[-2.8, -1.3]	1.1%	3.4%
Laub <i>et al.</i> [40], 1986	21	33.5	8.0	42	40.6	10.5	÷	-0.7	[-1.3, -0.2]	2.2%	3.9%
Ohtani <i>et al.</i> [23], 1982	14	28.6	9.7	38	43.9	53.3		-0.3	[-0.9, 0.3]	1.7%	3.7%
Fixed effect model	1,452			2,053			\$	-1.0	[-1.1, -0.9]	100.0%	_
Random effects model							\$	-1.1	[-1.4, -0.8]	-	100.0%
Heterogeneity: $l^2 = 90\%$, $p < 0.01$							-4 -3 -2 -1 0 1 2				

Fig. 3. Mean difference of blood free carnitine levels between with and without valproic acid (VPA) treatment. SD, standard deviation; CI, confidence interval; SMD, standardized mean difference.

Study	Mean	Weigh MRAW 95% CI (fixed	nt Weight I) (random)
Hamed and Abdella [6], 2009		20.4 [18.0, 22.8] 11.5%	% 33.1%
Redden <i>et al.</i> [41], 2009		11.7 [8.7, 14.7] 7.39	6 32.2%
Paganini <i>et al.</i> [42], 1984		10.9 [10.0, 11.8] 81.29	% 34.7%
Fixed effect model	\$	12.1 [11.2, 12.9] 100.09	~ <u> </u>
Random effects model	\sim	14.3 [8.3, 20.4]	- 100.0%
Heterogeneity: $l^2 = 96\%$, $p < 0.01$	0 10 20 30 40		

Fig. 4. Mean difference of blood ammonia levels after valproic acid treatment.

MRAW, raw mean; CI, confidence interval.

Study	Mean	MRAW 95% CI	Weight Weight (fixed) (random)
Cansu <i>et al.</i> [25], 2011		-3.3 [-6.8, 0.2]	10.4% 14.5%
Hamed and Abdella [6], 2009		-11.6 [-13.4, -9.8]	41.6% 17.7%
Werner <i>et al.</i> [28], 2007	li —	-3.7 [-7.8, 0.4]	7.8% 13.4%
Castro-Gago <i>et al.</i> [29], 1998		-8.6 [-12.2, -5.0]	10.1% 14.4%
Van Wouwe [43], 1995		-11.8 [-15.3, -8.3]	10.5% 14.6%
Zelnik <i>et al.</i> [31], 1995	- <u>l</u>	-8.5 [-11.3, -5.7]	16.5% 15.9%
Riva <i>et al.</i> [32], 1993		-14.0 [-20.4, -7.6]	3.2% 9.4%
Fixed effect model	♦	-9.4 [-10.5, -8.3]	100.0% –
Random effects model	$\stackrel{\frown}{\Longrightarrow}$	-8.7 [-11.4, -5.9]	- 100.0%
Heterogeneity: $l^2 = 79\%$, $p < 0.01$	-25 -20 -15 -10 -5 0	5	

Fig. 5. Mean difference of blood free carnitine levels after valproic acid treatment.

MRAW, raw mean; CI, confidence interval.

Study	Total	Correlation	COR	95% Cl	Weight (fixed)	Weight (random)	
Yokoyama <i>et al.</i> [20], 2020	182		0.15	[0.00, 0.29]	17.0%	7.5%	
Duman <i>et al.</i> [44], 2019	94		0.21	[0.00, 0.39]	8.7%	7.1%	
Maldonado <i>et al.</i> [9], 2016	28	li — •	0.68	[0.42, 0.84]	2.4%	5.6%	
Günaydin <i>et al.</i> [45], 2014	26	· · · · ·	0.76	[0.52, 0.89]	2.2%	5.5%	
Tseng <i>et al.</i> [46], 2014	158		0.21	[0.06, 0.35]	14.8%	7.5%	
Sharma <i>et al.</i> [47], 2011	63	-	0.83	[0.74, 0.90]	5.7%	6.8%	
Castro-Gago <i>et al.</i> [11], 2010	57	-1:	0.47	[0.23, 0.65]	5.1%	6.7%	
Moreno <i>et al.</i> [48], 2005	29		0.27	[-0.10, 0.58]	2.5%	5.7%	
Verrotti <i>et al.</i> [13], 1999	60		0.41	[0.17, 0.60]	5.4%	6.7%	
Altunbaşak <i>et al.</i> [15], 1997	68		0.46	[0.25, 0.63]	6.2%	6.9%	
Patsalos <i>et al.</i> [49], 1993	82		0.08	[-0.14, 0.29]	7.5%	7.0%	
Kondo <i>et al.</i> [50], 1992	53		-0.24	[-0.48, 0.03]	4.8%	6.6%	
Kugoh <i>et al.</i> [19], 1986	53		0.57	[0.35, 0.73]	4.8%	6.6%	
Laub [51], 1986	10		-0.36	[-0.81, 0.35]	0.7%	3.2%	
Haidukewych <i>et al.</i> [22], 1985	125		0.25	[0.08, 0.41]	11.6%	7.3%	
Williams <i>et al.</i> [52], 1984	10	+ <u>i:</u>	0.05	[-0.60, 0.66]	0.7%	3.2%	F
		E					0
Fixed effect model	1,098	↓ ♦	0.31	[0.26, 0.37]	100.0%	_	`
Random effects model			0.36	[0.20, 0.50]	-	100.0%	(
Heterogeneity: $l^2 = 86\%$, $p < 0$.	01 -1	-0.5 0 0.5	ו 1				i

Fig. 6. Forest plot of standardized correlation coefficient between blood valproic acid and ammonia levels. COR, correlation; CI, confidence interval.

nism of carnitine deficiency with VPA use is controversial, inhibition of carnitine biosynthesis via a decrease in alpha-ketoglutarate might be a potential cause [60].

_

Despite high heterogeneity, there are no studies in which the non-VPA group had a significantly higher ammonia level than the VPA group in a cross-sectional comparison, and all studies that included pre- and post-VPA comparisons showed a significantly elevated ammonia level after VPA treatment. Regarding free carnitine levels, there were no studies in which the non-VPA group had a significantly lower free carnitine level than the VPA group in a cross-sectional comparison, and most of the studies included in the pre- and post-VPA comparison showed a significant reduction in the free carnitine level after VPA treatment. Our results confirmed the abovementioned results in the meta-analysis of both the cross-sectional and

					Weight	Weight
Study	Total	Correlation	COR	95% C	(fixed)	(random)
Yokoyama <i>et al.</i> [20], 2020	182		-0.19	[-0.33, -0.05]	51.7%	21.3%
Maldonado <i>et al.</i> [9], 2016	28	<u> </u>	-0.62	[-0.80, -0.32]	7.2%	13.3%
Anil <i>et al.</i> [26], 2009	50	3	0.18	[-0.10, 0.44]	13.6%	16.7%
Moreno <i>et al.</i> [48], 2005	29		-0.30	[-0.60, 0.07]	7.5%	13.6%
Hirose <i>et al.</i> [14], 1998	45		-0.41	[-0.63, -0.13]	12.1%	16.2%
Morita <i>et al.</i> [39], 1986	12		-0.42	[-0.80, 0.20]	2.6%	7.5%
Laub [51], 1986	21		0.10	[-0.35, 0.51]	5.2%	11.4%
		i l				
Fixed effect model	367	$\langle \mathbf{A} \rangle$		[-0.31, -0.11]	100.0%	-
Random effects model			-0.24	[-0.43, -0.03]	-	100.0%
Heterogeneity: $l^2 = 67\%$, p <	< 0.01	-1 -0.5 0 0.5	1			
Study	T ()		000	0.5% 01	Weight	Weight (random)
Study	Total	Correlation	COR	95% C	(lixed)	(ranuom)
Yokoyama <i>et al.</i> [20], 2020	182	i	-0.10	[-0.24, 0.05]	40.8%	15.0%
Okumura <i>et al.</i> [4], 2019	49	<u>'</u> #	-0.39	[-0.61, -0.12]	10.5%	14.4%
Ando <i>et al.</i> [53], 2017	37	i	0.02	[-0.31, 0.34]	7.7%	14.1%
Nakajima <i>et al.</i> [7], 2011	51		-0.56	[-0.73, -0.34]	10.9%	14.4%
Hamed and Abdella [6], 200	9 60	=	-0.94	[-0.96, -0.89]	13.0%	14.5%
Goto <i>et al.</i> [54], 2008	60	<u> </u>	-0.42	[-0.61, -0.19]	13.0%	14.5%
Laub [51], 1986	21		0.01	[-0.42, 0.44]	4.1%	13.2%
		11 11				
Fixed effect model	460	÷	-0.40	[-0.48, -0.32]	100.0%	_
Random effects model			-0.44	[-0.73, -0.02]	_	100.0%
Heterogeneity: $l^2 = 95\%$, p <						
neterogeneity. 7 – 95 %. D v	< 0.01	-1 -0.5 0 0.5	י 1			

Fig. 7. Forest plot of standardized correlation coefficient between blood valproic acid and free carnitine levels.

COR, correlation; CI, confidence interval.

Fig. 8. Forest plot of standardized correlation coefficient between blood ammonia and free carnitine levels. COR, correlation; CI, confidence interval.

pre-and post-VPA comparisons. Even though the mechanisms of hyperammonemia and hypocarnitinemia with VPA use are controversial, our pooled analysis robustly supports concern about these adverse metabolic effects in patients with long-term VPA use.

In the meta-correlational analysis, both ammonia and free carnitine levels in blood showed a significant association with blood VPA level. Although our results had significant heterogeneity, there were no studies showing a significantly negative correlation between VPA and ammonia and a significantly positive correlation between VPA and free carnitine. Blood level-dependent relationships might indicate dose-dependent relationships in clinical settings. Clinicians should be aware of hyperammonemia and hypocarnitinemia, especially in patients receiving high-dose VPA treatment.

Our results also demonstrated a significant correlation between ammonia and free carnitine levels in blood. Although carnitine deficiency can promote VPA-induced hyperammonemia via inhibition of the urea cycle [3,4], the clinical implications of our findings should be interpreted with caution due to the moderate effect size of the observed correlation. Patients with hyperammonemia do not necessarily have hypocarnitinemia. Carnitine is

synthesized endogenously from two essential amino acids, lysine and methionine, and is also obtained primarily by the ingestion of meat and dairy products. Dietary intake of carnitine could affect blood levels, even after VPA treatment. Clinicians prescribing VPA should monitor both blood ammonia and free carnitine levels.

Our findings should be interpreted with caution due to several limitations of this meta-analysis. First, considerable heterogeneity, indicating variations in relationships among studies, may have affected our results, although we employed random effects models throughout the analyses to conservatively estimate the relationships. The effect size of the observed relationships should be interpreted with caution. Second, the analyses were based on a limited number of studies and subjects due to stringent inclusion/exclusion criteria. Nonetheless, the comprehensive search of two electronic databases may have limited the risk of reporting bias. Third, several potential confounding factors, such as age, reason for VPA treatment, dietary intake of carnitine, and use of other antiepileptics, were not included in our analyses. Indeed, it is important to note that meat and dairy products are sources of carnitine. Future studies assessing the effects of potential confounders on blood levels of ammonia and carnitine in patients treated with VPA are needed.

This was the first meta-analysis to assess the relationships between ammonia and free carnitine and VPA. In line with previous findings, VPA treatment was associated with both hyperammonemia and hypocarnitinemia in a blood level-dependent manner. Although the correlation between ammonia and free carnitine levels in blood was significant, the moderate strength of the correlation does not allow clinicians to infer free carnitine levels from the results of ammonia levels. Clinicians should measure both blood ammonia and free carnitine levels, especially in patients receiving high dosages of VPA.

Funding-

None.

Acknowledgments-

We would like to thank Ms. Rui Ohashi and Ms. Naomi Natsume for their kind support.

■ Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Conceptualization: Saaya Yokoyama, Norio Yasui-Furukori. Methodology: Norio Sugawara. Data analysis; Kazushi Maruo. Overall study coordination; Norio Yasui-Furukori, Kazutaka Shimoda. Data interpretation: Saaya Yokoyama, Norio Sugawara, Kazushi Maruo, Norio Yasui-Furukori, Kazutaka Shimoda. Writing of the manuscript: Norio Sugawara, Kazushi Maruo, Saaya Yokoyama.

Kazushi Maruo

https://orcid.org/0000-0002-9077-9382 Saaya Yokoyama https://orcid.org/0000-0001-7058-664X Norio Sugawara https://orcid.org/0000-0002-3093-0386 Norio Yasui-Furukori

https://orcid.org/0000-0002-4414-3770

Kazutaka Shimoda https://orcid.org/0000-0002-9663-6243

REFERENCES

- 1. Monti B, Polazzi E, Contestabile A. Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol 2009;2:95-109.
- 2. Yokoyama S, Yasui-Furukori N, Nakagami T, Miyazaki K,

Ishioka M, Tarakita N, et al. Association between the serum carnitine level and ammonia and valproic acid levels in patients with bipolar disorder. Ther Drug Monit 2020;42:766-770.

- 3. Engel AG, Rebouche CJ. Carnitine metabolism and inborn errors. | Inherit Metab Dis 1984;7 Suppl 1:38-43.
- 4. Okumura A, Kurahashi H, Iwayama H, Numoto S. Serum carnitine levels of children with epilepsy: related factors including valproate. Brain Dev 2019;41:516-521.
- 5. Abbasnezhad A, Choghakhori R, Kashkooli S, Alipour M, Asbaghi O, Mohammadi R. Effect of L-carnitine on liver enzymes and biochemical factors in hepatic encephalopathy: a systematic review and meta-analysis. | Gastroenterol Hepatol 2019;34:2062-2070.
- 6. Hamed SA, Abdella MM. The risk of asymptomatic hyperammonemia in children with idiopathic epilepsy treated with valproate: relationship to blood carnitine status. Epilepsy Res 2009;86:32-41.
- 7. Nakajima Y, Ito T, Maeda Y, Ichiki S, Kobayashi S, Ando N, et al. Evaluation of valproate effects on acylcarnitine in epileptic children by LC-MS/MS. Brain Dev 2011;33:816-823.
- 8. Knobloch K, Yoon U, Vogt PM. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. | Craniomaxillofac Surg 2011;39:91-92.
- 9. Maldonado C, Guevara N, Queijo C, González R, Fagiolino P, Vázquez M. Carnitine and/or acetylcarnitine deficiency as a cause of higher levels of ammonia. Biomed Res Int 2016; 2016:2920108.
- 10. Yamamoto Y, Takahashi Y, Imai K, Mishima N, Yazawa R, Inoue K, et al. Risk factors for hyperammonemia in pediatric patients with epilepsy. Epilepsia 2013;54:983-989.
- 11. Castro-Gago M, Gómez-Lado C, Eirís-Puñal J, Díaz-Mayo I, Castiñeiras-Ramos DE. Serum biotinidase activity in children treated with valproic acid and carbamazepine. J Child Neurol 2010;25:32-35.
- 12. Agarwal R, Sharma S, Chhillar N, Bala K, Singh N, Tripathi CB. Hyperammonemia and hepatic status during valproate therapy. Indian J Clin Biochem 2009;24:366-369.
- 13. Verrotti A, Greco R, Morgese G, Chiarelli F. Carnitine deficiency and hyperammonemia in children receiving valproic acid with and without other anticonvulsant drugs. Int J Clin Lab Res 1999;29:36-40.
- 14. Hirose S, Mitsudome A, Yasumoto S, Ogawa A, Muta Y, Tomoda Y. Valproate therapy does not deplete carnitine levels in otherwise healthy children. Pediatrics 1998;101:E9.
- 15. Altunbaşak S, Baytok V, Tasouji M, Hergüner O, Burgut R, Kayrin L. Asymptomatic hyperammonemia in children treated with valproic acid. J Child Neurol 1997;12:461-463.
- 16. Thom H, Carter PE, Cole GF, Stevenson KL. Ammonia and carnitine concentrations in children treated with sodium valproate compared with other anticonvulsant drugs. Dev Med Child Neurol 1991;33:795-802.
- 17. Beghi E, Bizzi A, Codegoni AM, Trevisan D, Torri W. Valproate,

carnitine metabolism, and biochemical indicators of liver function. Collaborative Group for the Study of Epilepsy. Epilepsia 1990;31:346-352.

- Komatsu M, Kodama S, Yokoyama S, Konishi H, Tanaka K, Momota K, et al. Valproate-associated hyperammonemia and DL-carnitine supplement. Kobe J Med Sci 1987;33:81-87.
- Kugoh T, Yamamoto M, Hosokawa K. Blood ammonia level during valproic acid therapy. Jpn J Psychiatry Neurol 1986; 40:663-668.
- 20. Farrell K, Abbott FS, Orr JM, Applegarth DA, Jan JE, Wong PK. *Free and total serum valproate concentrations: their relation-ship to seizure control, liver enzymes and plasma ammonia in children. Can J Neurol Sci 1986;13:252-255.*
- Ratnaike RN, Schapel GJ, Purdie G, Rischbieth RH, Hoffmann S. Hyperammonaemia and hepatotoxicity during chronic valproate therapy: enhancement by combination with other antiepileptic drugs. Br J Clin Pharmacol 1986;22:100-103.
- 22. Haidukewych D, John G, Zielinski JJ, Rodin EA. *Chronic valproic acid therapy and incidence of increases in venous plasma ammonia. Ther Drug Monit 1985;7:290-294.*
- 23. Ohtani Y, Endo F, Matsuda I. *Carnitine deficiency and hyperammonemia associated with valproic acid therapy. J Pediatr 1982;101:782-785.*
- 24. Qiliang L, Wenqi S, Hong J. *Carnitine deficiency in Chinese children with epilepsy on valproate monotherapy. Indian Pediatr 2018;55:222-224.*
- 25. Cansu A, Serdaroglu A, Biberoglu G, Tumer L, Hirfanoglu TL, Ezgu FS, et al. Analysis of acylcarnitine levels by tandem mass spectrometry in epileptic children receiving valproate and oxcarbazepine. Epileptic Disord 2011;13:394-400.
- 26. Anil M, Helvaci M, Ozbal E, Kalenderer O, Anil AB, Dilek M. Serum and muscle carnitine levels in epileptic children receiving sodium valproate. J Child Neurol 2009;24:80-86.
- 27. Zelnik N, Isler N, Goez H, Shiffer M, David M, Shahar E. *Vigabatrin, lamotrigine, topiramate and serum carnitine levels. Pediatr Neurol 2008;39:18-21.*
- Werner T, Treiss I, Kohlmueller D, Mehlem P, Teich M, Longin E, et al. Effects of valproate on acylcarnitines in children with epilepsy using ESI-MS/MS. Epilepsia 2007;48:72-76.
- 29. Castro-Gago M, Eirís-Puñal J, Novo-Rodríguez MI, Couceiro J, Camiña F, Rodríguez-Segade S. *Serum carnitine levels in epileptic children before and during treatment with valproic acid, carbamazepine, and phenobarbital. J Child Neurol 1998;13:546-549.*
- 30. Hiraoka A, Arato T, Tominaga I. *Reduction in blood free carnitine levels in association with changes in sodium valproate* (VPA) disposition in epileptic patients treated with VPA and other anti-epileptic drugs. Biol Pharm Bull 1997;20:91-93.
- 31. Zelnik N, Fridkis I, Gruener N. *Reduced carnitine and antiepileptic drugs: cause relationship or co-existence? Acta Paediatr 1995;84:93-95.*
- 32. Riva R, Albani F, Gobbi G, Santucci M, Baruzzi A. *Carnitine* disposition before and during valproate therapy in patients

with epilepsy. Epilepsia 1993;34:184-187.

- 33. Hug G, McGraw CA, Bates SR, Landrigan EA. *Reduction of serum carnitine concentrations during anticonvulsant therapy with phenobarbital, valproic acid, phenytoin, and carbamazepine in children. J Pediatr 1991;119:799-802.*
- 34. Opala G, Winter S, Vance C, Vance H, Hutchison HT, Linn LS. *The effect of valproic acid on plasma carnitine levels. Am J Dis Child 1991;145:999-1001.*
- 35. Matsumoto K, Yamada Y, Takahashi M, Todoroki T, Mizoguchi K, Misaki H, et al. Fluorometric determination of carnitine in serum with immobilized carnitine dehydrogenase and diaphorase. Clin Chem 1990;36:2072-2076.
- Melegh B, Kerner J, Acsádi G, Lakatos J, Sándor A. *L-carnitine* replacement therapy in chronic valproate treatment. Neuropediatrics 1990;21:40-43.
- Rodriguez-Segade S, de la Peña CA, Tutor JC, Paz JM, Fernandez MP, Rozas I, et al. Carnitine deficiency associated with anticonvulsant therapy. Clin Chim Acta 1989;181:175-181.
- Melegh B, Kerner J, Kispál G, Acsádi G, Dani M. Effect of chronic valproic acid treatment on plasma and urine carnitine levels in children: decreased urinary excretion. Acta Paediatr Hung 1987;28:137-142.
- Morita J, Yuge K, Yoshino M. Hypocarnitinemia in the handicapped individuals who receive a polypharmacy of antiepileptic drugs. Neuropediatrics 1986;17:203-205.
- 40. Laub MC, Paetzke-Brunner I, Jaeger G. Serum carnitine during valproic acid therapy. Epilepsia 1986;27:559-562.
- Redden L, DelBello M, Wagner KD, Wilens TE, Malhotra S, Wozniak P, et al. Long-term safety of divalproex sodium extended-release in children and adolescents with bipolar I disorder. J Child Adolesc Psychopharmacol 2009;19:83-89.
- Paganini M, Zaccara G, Campostrini R, Valenza T, Angelastro R, Bartelli M, et al. Venous blood ammonia concentrations in adult epileptic patients are increased by treatment with valproic acid. Acta Neurol (Napoli) 1984;6:442-446.
- 43. Van Wouwe JP. Carnitine deficiency during valproic acid treatment. Int J Vitam Nutr Res 1995;65:211-214.
- 44. Duman B, Can KC, Ağtaş-Ertan E, Erdoğan S, İlhan RS, Doğan Ö, et al. Risk factors for valproic acid induced hyperammonemia and its association with cognitive functions. Gen Hosp Psychiatry 2019;59:67-72.
- 45. Günaydın YK, Akıllı NB, Dündar ZD, Köylü R, Sert ET, Çekmen B, et al. Antiepileptic drug poisoning: three-year experience. Toxicol Rep 2014;2:56-62.
- Tseng YL, Huang CR, Lin CH, Lu YT, Lu CH, Chen NC, et al. Risk factors of hyperammonemia in patients with epilepsy under valproic acid therapy. Medicine (Baltimore) 2014;93:e66.
- 47. Sharma S, Gulati S, Kabra M, Kalra V, Vasisht S, Gupta YK. Blood ammonia levels in epileptic children on 2 dose ranges of valproic acid monotherapy: a cross-sectional study. J Child Neurol 2011;26:109-112.
- 48. Moreno FA, Macey H, Schreiber B. *Carnitine levels in valproic* acid-treated psychiatric patients: a cross-sectional study. J

Clin Psychiatry 2005;66:555-558.

- Patsalos PN, Wilson SJ, Popovic M, Cowan JMA, Shorvon SD, Hjelm M. The prevalence of valproic-acid-associated hyperammonaemia in patients with intractable epilepsy resident at the Chalfont centre for epilepsy. J Epilepsy 1993;6:228-232.
- Kondo T, Ishida M, Kaneko S, Hirano T, Otani K, Fukushima Y, et al. Is 2-propyl-4-pentenoic acid, a hepatotoxic metabolite of valproate, responsible for valproate-induced hyperammonemia? Epilepsia 1992;33:550-554.
- 51. Laub MC. Nutritional influence on serum ammonia in young patients receiving sodium valproate. Epilepsia 1986;27:55-59.
- 52. Williams CA, Tiefenbach S, McReynolds JW. Valproic acidinduced hyperammonemia in mentally retarded adults. Neurology 1984;34:550-553.
- 53. Ando M, Amayasu H, Itai T, Yoshida H. *Association between the blood concentrations of ammonia and carnitine/amino acid of schizophrenic patients treated with valproic acid. Biopsychosoc Med 2017;11:19.*
- 54. Goto S, Seo T, Hagiwara T, Ueda K, Yamauchi T, Nagata S, et al. Potential relationships between transaminase abnormality and valproic acid clearance or serum carnitine concentrations in Japanese epileptic patients. J Pharm Pharmacol 2008;60:

267-272.

- 55. Verbiest HB, Straver JS, Colombo JP, van der Vijver JC, van Woerkom TC. *Carbamyl phosphate synthetase-1 deficiency discovered after valproic acid-induced coma. Acta Neurol Scand 1992;86:275-279.*
- 56. Aires CC, van Cruchten A, Ijlst L, de Almeida IT, Duran M, Wanders RJ, et al. New insights on the mechanisms of valproate-induced hyperammonemia: inhibition of hepatic N-acety/glutamate synthase activity by valproyl-CoA. J Hepatol 2011;55:426-434.
- 57. Foster DW. *The role of the carnitine system in human metabolism. Ann N Y Acad Sci 2004;1033:1-16.*
- Farkas V, Bock I, Cseko J, Sandor A. Inhibition of carnitine biosynthesis by valproic acid in rats--the biochemical mechanism of inhibition. Biochem Pharmacol 1996;52:1429-1433.
- 59. Balduzzi S, Rücker G, Schwarzer G. *How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019;22:153-160.*
- 60. Croux C, Dehon C. *Influence functions of the Spearman and Kendall correlation measures. Stat Methods Appl 2010;19: 497-515.*