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Acute pain induces depressed mood, and chronic pain is known to cause depression. Depression, meanwhile, can also adversely
affect pain behaviors ranging from symptomology to treatment response. Pain and depression independently induce long-term
plasticity in the central nervous system (CNS). Comorbid conditions, however, have distinct patterns of neural activation. We
performed a review of the changes in neural circuitry and molecular signaling pathways that may underlie this complex relationship
between pain and depression. We also discussed some of the current and future therapies that are based on this understanding of

the CNS plasticity that occurs with pain and depression.

1. Introduction

Pain encompasses sensory, cognitive, and most importantly
affective components. The affective component of pain includes
feelings of annoyance, sadness, anxiety, and depression in
response to a noxious stimulus. In particular, depression and
pain share a high degree of comorbidity, and a large number
of studies have examined the close relationship between pain
and depression.

Acute pain can adversely affect mood following surgery.
In the immediate postoperative period, the rate of depression
has been reported to be between 21 and 50% in study popu-
lations with low (0-11.8%) levels of preoperative depression.
Indeed, postoperative pain intensity is correlated with the
degree of depressive symptoms [1-3]. High postoperative
depression scores have also been associated with increased
length of stay and poor functional outcomes after surgeries
[3, 4]. Preoperative psychological factors may also negatively
affect the resolution of acute pain. Preoperative anxiety and
catastrophization are two well-studied risk factors for the
development of chronic postsurgical pain [5]. Both of these
factors are known to lead to worsening depressed mood in the
postoperative period.

Chronic pain and comorbid depression are frequently
encountered clinically. In patients treated for depression, the
prevalence of chronic pain is reported to be 51.8-59.1% [6-
8]. Longitudinal studies have shown that depression is a risk
factor for the onset of disabling or chronic pain [9, 10].
Conversely, in patients with chronic pain, the mean preva-
lence of major depression is reported to be between 18 and
85%, depending on the practice setting [11, 12]. In fact, pain is
a major risk factor for the development of depression. In a
longitudinal, cohort study with 12-year follow-up, pain at
baseline as well as the severity and chronicity of pain was
statistically significantly associated with the onset of depres-
sion [13].

Pain adversely affects the prognosis and treatment of
depression and vice versa. There is a significant correlation
between the severity of pain and the degree of depression [14].
In a study examining the long-term course of depression,
greater severity of pain at baseline, greater number of
pain locations, and longer duration of pain all significantly
increased the risk of still having depression after two years
[15]. Baseline pain severity prior to the initiation of antide-
pressant treatment has also been shown to be a strong neg-
ative predictor of treatment response [16]. At the same time,
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depression also adversely affects prognosis in the treatment
of chronic pain. Patients with chronic pain and depression
report more pain complaints and increased severity and
longer duration of pain symptoms [16]. Some studies have
reported that patients with comorbid pain and depression
have poorer response to pain treatment than nondepressed
patients [17]. Comorbid pain and depression also lead to
significant functional impairments. In a cross-sectional study,
patients with major depressive disorder with chronic pain are
found to be 2.1-4.6 times more likely to report interference
in activities of daily living and family and social interactions
than depressed patients without pain. They have also been
found to be more likely to take sick leave because of pain [18].
Thus, a wealth of clinical data suggests a high degree of
comorbidity between pain and depression. Basic and trans-
lational studies utilizing imaging as well as animal models
have begun to unravel the mechanistic basis for the relation-
ship between pain and depression. In this review, we will
examine the current understanding of the circuit and molec-
ular plasticity that underlie this complex relationship and
how such understanding can lead to successful therapies.

2. Neuroimaging Evidence for the Plasticity of
Pain and Depression Networks

2.1. Identification of Pain and Depression Circuits Based
on Human Imaging Studies. In imaging studies of acute
experimental pain in human subjects, areas most com-
monly activated include the primary somatosensory (S1) and
secondary somatosensory cortex (S2), anterior cingulate
cortex (ACC), insular cortex (IC), prefrontal cortex (PFC),
thalamus, nucleus accumbens (NAc), and amygdala [19-21].
Sland S2 activations contribute to the sensory-discriminative
dimension of pain. The ACC, PFC, IC, NAc, and amygdala,
meanwhile, have been implicated in the affective component
of pain (Figure 1). Distinct alterations in brain structure and
activity, meanwhile, occur with chronic pain. For example,
reductions in gray matter volume are observed in the IC,
ACC, and PFC, areas involved in the emotional and cognitive
aspects of pain [22].

Several studies have also directly examined brain changes
in the transition from acute to chronic pain. Brain activity
in patients with back pain for approximately two months
showed activations in the IC, thalamus, ACC, and PFC [23].
In patients with back pain for more than ten years, mean-
while, abnormal activations in the perigenual ACC, medial
PFC (mPFC), and amygdala are observed in response to pain.
Thus, the transition from acute to chronic pain may be
accompanied by a shift from the sensory to affective-emo-
tional circuitry for pain [24]. Additionally, functional con-
nectivity of the NAc with the PFC has been found to be
higher in patients with persistent back pain, indicating that
the reward circuitry may also play a role in this switch from
sensory to affective focus in chronic pain [23, 24].

Interestingly, the regions and circuits identified in acute
and particularly chronic pain studies closely mirror those
found in studies of depression. Thus, areas most commonly
found to be dysregulated in depressed patients include the
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PFC, ACC, NAc, hippocampus, and amygdala [25, 26]. Gray
matter volume loss and alterations in activity have been found
in these areas, similar to changes that occur with chronic pain.
The PFC and ACC are both involved in the processing of
negative mood and affect and thus are implicated in depres-
sion studies. The NAg, in addition, may be involved in symp-
toms such as anhedonia. The hippocampus and amygdala,
meanwhile, play roles in the formation and retrieval of
negative emotional memory that is associated with pain and
depression.

More recently, fMRI studies of resting state networks,
during task-free settings, have been done to examine changes
in patients with chronic pain and depression. Compared to
healthy controls, the default mode network (DMN) is altered
in patients with chronic pain, with greater representation in
the precuneus and posterior cingulate cortex and less repre-
sentation in the PFC [27]. Correlation of the PFC with the IC
is increased, and connectivity of the PFC with posterior por-
tions of the DMN is decreased in patients with chronic pain.
The DMN consists of a set of brain regions active at rest and
deactivated during a task. The precise function of the DMN is
unclear, but it may be involved in the regulation of attention
and arousal. Altered connectivity of the mPFC and IC may
reflect changes in emotional circuits associated with chronic
pain [27]. Similar changes in the DMN are also seen in
depressed patients. For example, in a resting state fMRI study
of depressed patients, patterns of functional connectivity in
the DMN and affective network based on multivariate pattern
analysis are distinct between depressed patients and healthy
controls. Thus, connections involving the PFC and ACC are
most likely to be altered in the comorbidity between chronic
pain and depression [28].

2.2. Brain Imaging of Physical and Emotional Pain. It is
thought that the concept of suffering is central to the expe-
rience of pain as well as the experience of depression [29-31].
Hence, depression has been interpreted as a state of being
emotional as opposed to physical pain. A number of imaging
studies have addressed this possibility. In healthy subjects, the
pattern of brain activity observed with emotional pain, such
as intense social rejection which is known to cause depressed
mood, is similar to activations in response to exposure to
experimental pain, including somatosensory as well as affec-
tive areas [32, 33]. A recent study, however, suggests that
although there is commonality at the gross anatomical level,
distinct networks may actually underlie acute physical versus
emotional pain [34]. This study finds that experimental pain
and intense social rejection activated similar brain regions in
human subjects, including S2, IC, thalamus, and periaque-
ductal gray (PAG). However, multivariate pattern analysis
showed distinct physical and emotional representations in
these regions. Nevertheless, some shared representations
were found in areas not primarily involved with sensory pain
processing, including the left parahippocampal and fusiform
gyri, retrosplenial cortex, posterior cingulate cortex, and
striatum. These shared representations may thus be associ-
ated with behavioral context, memory, and motivation, and
they may form the network link between depression and pain
[35].
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There is evidence that depressed mood or other negative
emotional states can also modulate sensory neural responses.
In an fMRI study, subjects were exposed to nonpainful
visceral stimulation during neutral and negative emotional
contexts. Significantly greater activations were noted in the
ACC and anterior IC during increasingly greater negative
emotional contexts and greater levels of reported anxiety that
is commonly found in depressed patients [36].

2.3. The Complexity of the Chronic Pain and Depression Net-
works. The interaction between chronic pain and depression
is likely more complex than assessing acute, experimental
conditions. As noted above, in the transition from acute to
chronic back pain, a shift from nociceptive to emotional
circuitry has been observed [24]. Similar brain regions may
be dysregulated in both chronic pain and depression, includ-
ing areas involved in emotional and reward processing such
as the ACC, IC, PFC, and NAc. The DMN is altered in chronic
pain and depression. However, in their study of patients with
chronic pain, Baliki et al. investigated the effect of comorbid
depression on spatial and connectivity properties of resting
state networks and found only low correlations between
depression and their network connectivity measurements
[27]. Further investigation is thus required to explore the rela-
tionship between chronic pain and depression at the circuit
level. Depressive symptomatology has a wide spectrum, and
different brain areas may regulate different symptom clusters.
Similarly, chronic pain varies in etiology and disability, and
different conditions may have distinct links with depressive
symptomatology.

3. Animal Models for the Study of
Pain and Depression

Whereas imaging studies have established evidence of plas-
ticity at the anatomic and circuit level that underlie the
relationship between pain and depression, they do not reveal
mechanistic insights into the cause and effect relationship
between changes in neurocircuitry and the pathology of pain
and depression. Rodent models, on the other hand, have
enabled preclinical investigation into the mechanisms and
symptoms of pain-induced depression. Two well-developed
behavioral assays for depression in rodents are the sucrose
preference test (SPT) and the forced swim test (FST) [37].
The SPT is an assay for anhedonia, a salient feature of clinical
depression. The SPT involves measuring animals’ preference
for sucrose solution compared with water. Rodents naturally
prefer sucrose over water. Depressed rodents, however, dis-
play a decreased preference for sucrose and hence symp-
toms of anhedonia. The FST, meanwhile, assesses behavioral
despair, another important feature of depression. On this test,
a rodent is placed into a water tank for fifteen minutes. It is
then returned to the same tank 24 hours later. If the rodent
is depressed, it will display a decreased motivation to swim
during the second session. Other related tests that can be
used to test depression-like behaviors include the open field
test, elevated plus maze, and novelty-suppressed feeding test

which are assays for anxiety-like behaviors that often accom-
pany depression. Another behavioral assay, the conditioned
place avoidance/preference test (CPA/CPP), allows addi-
tional insight into the aversive and motivational aspects of
animals in pain or depressed states. In the CPA and CPP, an
animal with no preexisting preference is trained to associate
one chamber in a two-chamber set with either a rewarding or
aversive stimulus, such as pain and or pain relief, or a pro- or
antidepressant, and to associate the other chamber with the
control condition. After a period of associative training, the
animal is then allowed to freely choose the chamber it prefers
or avoids. This test has been used to test the efficacy of both
antidepressants and analgesics [38-41].

Models for depression and pain are both very well
established [37, 42-45]. On the one hand, widely accepted
models for depression already rely on pain as a stressor to
induce depression-like symptoms. In the social defeat model,
for example, smaller animals are subjected to physical inter-
actions with larger, more aggressive individuals, and pain
resulting from such aggressive physical interactions plays
an important role in inducing subsequent depression-like
behaviors [37, 46, 47]. In a study combining the social defeat
model with a neuropathic pain model in rats, five-day expo-
sure to social stress was found to ameliorate pain sensitivity in
chronic pain, but ten-day exposure worsened pain thresholds
[46]. Conversely, a study in which mice were housed in either
an impoverished or enriched environment after developing
chronic neuropathic pain symptoms demonstrated that the
enriching environment improved chronic pain symptoms
[48].

At the same time, current rodent models for pain, includ-
ing acute and persistent pain models, have been shown to
induce depression-like behaviors. Incision models appear to
mimic acute surgical pain in humans [43]. Incisions penetrat-
ing the skin, fascia, and muscle, such as the plantar incision
model using the rodent hind paw, the gastrocnemius incision
model using the posterior surface of the rodent hind limb,
and the tail incision model, reliably induce allodynia, a pain
behavior in response to a nonnoxious stimulus [5]. Moreover,
hyperalgesia, increased sensitivity to a noxious stimulus, can
develop around the site of the incision. Acute incisional
pain has been suggested to induce temporary depression-
like symptoms as manifested by decreased sucrose preference,
and these depressive symptoms resolve in a time frame
similar to that of the recovery of sensory symptoms [49].

Persistent pain models are capable of inducing longer last-
ing depressive symptoms. An inflammatory model of pain,
in which complete Freund’s adjuvant (CFA) is injected into
the hind paw in rodents, reliably induces sensory symptoms
of chronic inflammatory pain lasting at least two weeks [44].
This CFA model has also been shown to induce depression-
like symptoms. After CFA injection, rats with inflammatory
pain have been found to show significantly diminished
sucrose preference compared to control animals, and this
depressive phenotype can last at least two to five weeks [50,
51]. In addition, CFA-treated rats can also develop behav-
ioral despair, another feature of depression [52, 53]. Finally,
inflammatory pain has been shown to induce place avoidance
in rats [54, 55]. In this test, rats stayed away from the



chamber associated with inflammatory pain, suggesting that
pain serves as an aversive stimulus that the rats actively
avoid. Similarly, acute or repeated stress has been shown as
an aversive stimulus in the CPA test in a number of rodent
depression studies [37, 56]. Thus, studies using the CPA have
demonstrated that pain, similar to psychological stressors
known to cause depression, can serve as powerful aversive
signals to alter behavior.

Chronic neuropathic pain models mimic human chronic
pain-induced depression more closely than acute or inflam-
matory pain. The most commonly used models of neuro-
pathic pain employ peripheral nerve injury, and these include
the chronic constriction injury (CCI), by which ligatures are
wrapped around the sciatic nerve, the sciatic nerve ligation
model (SNL) of mononeuropathy, by which the L4 spinal
nerve is ligated, and the spared nerve injury (SNI) model, by
which two of the three terminal branches of the sciatic nerve,
the tibial and common peroneal nerves, are axotomized [42,
57]. SNI has been shown to induce anhedonia as well as
behavioral despair in rats, as measured by the SPT and FST
[49, 58]. Certain types of pain treatment, meanwhile, have
been shown to decrease these depressive symptoms [53]. SNL,
likewise, has been shown to cause depressive symptoms as
well as anxiety in rodents [59, 60].

Thus, animal models for depression have already
employed pain as an element of stress to induce depressive
symptoms. More importantly, various rodent pain models
have been validated to induce depression-like behaviors and
hence serve as valuable models for the study of the comor-
bidity between pain and depression.

4. Neurocircuit Plasticity That Underlies the
Comorbidity of Pain and Depression

The advancement of modern systems-level neuroscience
tools has enabled the identification of brain regions involved
in pain and depression processing and the investigation into
their structure and function. Pain is a complex, multidimen-
sional experience that involves the potential recruitment of a
large, bilateral network of brain regions. These components
may become activated dynamically depending on a number
of factors: context, stimulus, cognition, and emotion [22, 61].
Recent efforts to identify a so-called pain signature have
resulted in the identification of regions which are most
essential to experiencing pain. These regions include the
thalamus, the cortex, including the ACC, IC, §1, S2, NAc, and
the PAG [19, 21]. A much larger system involves the function
of subsystems which include the descending pain modulatory
system comprised of the PAG and rostral ventromedial
medulla (RVM), as well as the reward-motivation network,
including the PFC, NAc, and the ventral tegmental area
(VTA). Not surprisingly, this interconnected group of brain
regions also forms the basis for understanding the pathophys-
iology of depression [25].

Preclinical studies focusing on the affective consequences
of neuropathic pain have begun to link the aforementioned
circuit changes with behavior outcomes in pain states. These
studies have provided insights into the potential function
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FIGURE 1: Brain regions and circuits implicated in the comorbidity
between pain and depression. ACC: anterior cingulate cortex;
AMY: amygdala; IC: insular cortex; NAc: nucleus accumbens; PAG:
periaqueductal gray; PFC: prefrontal cortex; RVM: rostral ventro-
medial medulla; SI: primary somatosensory cortex; S2: secondary
somatosensory cortex.

of regions involved in the anxio-depressive components of
chronic pain—most notably, the ACC, IC, hippocampus,
amygdala, the NAc, and the VTA (Figure 1) [62]. The
ACC, which processes cognitive, emotional, and autonomic
functions and interacts with the thalamus and amygdala, has
been implicated in both pain processing and depression [63,
64]. Hypermetabolism and diminished volume of the ACC
have both been observed in depressed patients and ACC
changes, including altered membrane potential oscillations,
have separately been observed in the CCI neuropathic pain
model [65]. Recruitment of the ACC may play multiple roles
in the experience of pain and pain-induced depression, from
anticipation to aversion. In the SNI neuropathic pain model,
for example, the volume of the ACC was found to diminish
only after a delay, at the same time as the onset of anxio-
depressive symptoms, suggesting that structural changes in
the ACC potentially represent certain depressive changes in
response to pain [66]. The ACC response to pain, moreover,
has been shown to be potentiated by amputation [67]. Lesion
studies have moreover confirmed that the ACC is necessary
for the aversive component of neuropathic pain [68]. Addi-
tionally, the ACC has been implicated in pain expectation in
imaging studies [69]. The IC, meanwhile, has been strongly
implicated in processing pain intensity and interacts with
several other key pain regions, including the PFC, ACC, S2,
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and amygdala (Figure 1). Because of the complexity of the IC’s
connections with other relevant regions, its role in processing
affective or depressive symptoms of pain remains a strong
possibility. In addition, IC activity has been tied to both
antinociceptive and pronociceptive functions [70].

The hippocampus and amygdala are two additional
structures that likely play a role in pain-induced depressive
behaviors. The hippocampus, a region known for its role in
learning and memory, has been well-studied in the regulation
of depressive phenotype. Recent animal studies have shown
that cognitive and affective processes are impaired in chronic
neuropathic pain conditions and that this impairment cor-
responds with a decreased hippocampal volume [71]. Neu-
rometabolic changes that can result in decreased serotonin
levels in the hippocampus have also been demonstrated to
cause depressive symptoms in an inflammatory pain model in
rodents [52]. Moreover, studies have demonstrated that pain-
induced changes in the hippocampus correlate with anxiety-
like behaviors commonly associated with the depressed state
[71]. In contrast to decreased hippocampal volume, neuro-
pathic pain has been observed to increase the volume and
neuronal proliferation in both the central and basolateral
nuclei of amygdala [72]. Given the well documented role
of the amygdala in fear and in mood disorders, the amyg-
dala has been suggested as a strong candidate for mediat-
ing depression-like symptoms resulting from pain [73-75].
Indeed, a number of studies have demonstrated that the
amygdala is crucial in maintaining anxio-depressive and
nocifensive behaviors in persistent inflammatory and neuro-
pathic pain states [76-80].

Recent studies of the mesolimbic pathway, including
the PFC, VTA, and NAc, have indicated a prominent role
for these regions in pain processing, particularly in the
depression-like symptoms resulting from chronic pain. The
PFC, VTA, and NAc play crucial roles in reward processing,
and these regions are also activated by nociception [81-83].
The PFC-VTA-NAc axis is critical for the maintenance of
normal hedonic experience and motivation, and hence this
reward circuitry also plays a part in the pathogenesis of
depression [56]. A recent study showed that chronic pain
induces the synaptic incorporation of calcium permeable
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic ~  acid
(AMPA) receptors in the NAc and that transmission through
these receptors has important antidepressant properties in
the chronic pain state [58]. Meanwhile, the PFC has been
found to play a role in pain through its connection with the
NAc (Figure 1) [23]. It has been shown recently that basal
dendrites in the PFC of SNI-treated rodents are longer and
have more branches than those of control animals, and spine
density is also selectively increased in basal dendrites of these
neurons from SNI rats [84]. Thus, changes in the circuit that
links the PFC, VTA, and NAc may play an important role in
the relationship between pain and depression.

5. Molecular Mechanisms That
Underlie the Long-Term Plasticity of
Pain-Induced Depression

5.1. Glutamate Signaling. The current glutamate hypothesis

for depression posits that long lasting alterations in glu-
tamate signaling contribute to the regulation of depressive

phenotype [85]. AMPA receptors are the primary mediators
of excitatory synaptic transmission, and they are composed
of four subunits, GluAl-4. Reduced GluAl levels in the
amygdala, PFC, and hippocampus have been found in several
rodent stress models of depression [86-88]. In the NAc,
meanwhile, lower levels of GluA2-containing AMPA recep-
tors have been described in depressive states [89, 90]. Several
lines of evidence suggest the importance of AMPA receptor
signaling in depression. First, GluAl knockout mice display
vulnerability to depression [91]. Second, antidepressants can
increase GluAl and GluA2 expression in the PFC and NAc
[92, 93]. Lastly, AMPA potentiators which directly increase
AMPA receptor activities have been shown to have antide-
pressant properties [50].

Glutamate signaling has been studied in animal pain
models as well. In the classic PAG-RVM-spinal descending
pathway [94-96], neurons from the PAG form glutamatergic
projections through AMPA receptors on GABAergic cells in
the RVM to inhibit dorsal horn neurons [97]. Not surpris-
ingly, the administration of glutamate into the PAG is known
to produce analgesia [98-100]. In the RVM, meanwhile,
AMPA receptor upregulation mediates analgesia in inflam-
matory pain states [101, 102], whereas their downregulation in
neuropathic pain causes hyperalgesia [103]. Thus, transmis-
sion through AMPA receptors is required for the intact PAG-
RVM descending pathway [104, 105]. A second pain modu-
lating center that depends on glutamate signaling is the NAc.
The NAc provides pain-induced analgesia, in part through
its projection to the RVM [106]. Intra-NAc administration of
AMPA receptor antagonists, however, can disrupt this pain-
induced analgesic mechanism [107]. Furthermore, chronic
pain has been shown to decrease vesicular glutamate trans-
porter (VGLUT) 1 and 3 levels in the NAc, suggesting a
decrease in glutamate signaling in this region [108]. The most
direct evidence for the analgesic effects of glutamate signal-
ing comes from a study that showed AMPAKkines, positive
allosteric modulators for AMPA receptors, have antinocicep-
tive properties in persistent inflammatory and neuropathic
pain conditions [53].

At the same time, however, chronic inflammatory pain
increases trafficking of GluA1 AMPA receptor subunits but
decreases GluA2 delivery [109-111], leading to the formation
of GluA2-lacking receptors [112]. Similarly, AMPA receptor
signaling in the ACC and amygdala has also been suggested to
increase synaptic plasticity and confer hyperalgesia [113-117].
Thus, in chronic pain conditions, AMPA receptor signaling
plays both pronociceptive and antinociceptive roles, depend-
ing on the target CNS regions.

An emerging number of studies have demonstrated that
glutamate signaling also plays an important role in specifi-
cally mediating the depressive symptoms of pain. For exam-
ple, a study on AMPA receptor subunit trafficking showed
that chronic neuropathic pain selectively increases GluAl
levels at the synapse of the NAc, leading to the formation of
GluA2-lacking, or calcium permeable AMPA receptors
(CPARs) [58]. Glutamate transmission through these newly
formed CPARs, in turn, relieves the depressive symptoms of
pain without altering pain sensitivities. In addition, pharma-
cologic studies using ketamine and AMPAKkines, two classes



of drugs that increase glutamate signaling through AMPA
receptors [92, 118, 119], have demonstrated that drugs that
increase glutamate signaling in the brain can also treat
the depressive symptoms of chronic pain [49, 53]. Thus,
glutamate signaling, particularly signaling through AMPA
receptors, plays a key role in regulating pain, depression, and
depression in the context of chronic pain.

5.2. Modulatory Neuropeptides (Serotonin, Dopamine, and
Norepinephrine). Modulatory neuropeptides have long been
studied in the context of both depression and pain. Nore-
pinephrine (NE) neurons are found in the locus ceruleus
(LC), and decreased NE signaling is known to be associated
with depression [120-124]. The LC releases NE into multiple
regions in the brain, including the cerebral cortex, limbic sys-
tem, and spinal cord. Originally thought to regulate attention
and fight-or-flight responses, the NE system has been shown
to affect a wide range of cognitive and affective functions.
Activation of the descending modulatory pathway from the
RVM and PAG, meanwhile, can release NE into the spinal
dorsal horn. The binding of NE to the spinal alpha2 receptors
has been found to exert antinociceptive effects [125]. Thus,
noradrenergic system can have a profound influence on the
pathogenesis of pain and depression.

Dopamine (DA) neurons are located in the VTA.
Dysfunctional DA signaling can cause depression [126-
130]. Dopamine dysfunction has also been associated with
increased pain sensitivity in several chronic pain conditions,
including headache, fibromyalgia, and osteoarthritis [131-
134]. Interestingly, Parkinson’s disease, which presents a
classic hypodopaminergic state, is associated with increased
incidence of both depression and chronic pain [135, 136].
While the molecular mechanism for the role of DA signaling
in pain-induced depression remains incompletely character-
ized, it is thought that dopaminergic signaling in the PFC and
NAc is critical for the maintenance of normal hedonic drive,
as well as working memory, concentration, and locomotion.
Thus, dysfunction of the DA system results in symptoms of
anhedonia, reduced concentration, sleep disturbance, and
psychomotor retardation, all salient symptoms of pain-
induced depression [127, 137].

Serotonin (5-HT) cells are located in the dorsal and
medial raphe nuclei. The role of 5-HT in depression is well-
described [120, 121, 138, 139]. 5-HT is projected widely
throughout the brain to modulate synapses as well as the
release and function of NE and DA, and its activity in the PFC,
ACC, VTA, and NAc is thought to influence mood and
affect. In addition, 5-HT has also been shown to be critical
for descending modulation of pain [140-144]. Activation of
the descending projections from the RVM, which includes
nucleus raphe magnus, produces 5-HT release in the spinal
dorsal horns [97, 145-148]. The RVM provides both descend-
ing inhibition and facilitation of pain, through the activation
of “on” and “oft” cells, respectively [148-154]. Thus, 5-HT
signaling can exert both antidepressant and antinociceptive
properties by modulating synaptic connectivity and the
other monoamine signaling in various regions in the brain.
A recent study examined the role of brain indoleamine
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2,3-dioxygenase (IDOI) in the comorbidity of pain and
depression [52]. IDOL is a rate-limiting enzyme in the meta-
bolism of tryptophan, a precursor to serotonin, and IDOI
activity has been linked to decreased 5-HT content. This
study found that inhibition of hippocampal IDOL1 activity
attenuated pain-induced depression, thus providing further
evidence that 5-HT signaling can exert control over the
comorbidity of pain and depression.

5.3. Neurotrophic Factors and Neuromodulatory Lipids.
Brain-derived neurotrophic factor (BDNF) promotes the
formation of synaptic plasticity [155]. BDNF binds to two
receptors on the surface of cells: TrkB and the low-affinity
nerve growth factor receptor. TrkB is a receptor tyrosine
kinase, and the binding of BDNF to TrkB promotes the
formation of long-term potentiation at synapses as well as de
novo neurogenesis. Decreased BDNF levels have been
identified in patients who have suffered from major
depressive disorder, whereas patients who underwent success-
ful antidepressant treatment have shown increased BDNF
levels [156-158]. Elevated BDNF levels have been associated
with fibromyalgia, whereas a decreased level has been found
in patients with chronic migraine [159, 160]. BDNF val66met
polymorphism, in particular, has been identified in patients
with chronic abdominal and pelvic pain [161, 162]. BDNF has
been shown to regulate both peripheral and spinal sensitivity
to chronic pain in various animal models [163]. Furthermore,
in the hippocampus, decreased BDNF has been found in
chronic inflammatory pain states, and this decrease has been
shown to be responsible for depression-like behaviors [164].
Thus, by modulating synaptic plasticity throughout the
peripheral and central pain circuits, BDNF can alter pain
sensitivity and, more importantly, the level of pain-induced
depression.

The endocannabinoid system is a signaling system com-
prising the G-protein coupled cannabinoid CB1 and CB2
receptors, their intrinsic lipid ligands, endocannabinoids
such as the N-arachidonoyl ethanolamide (anandamide) and
the 2-arachidonoyl glycerol, and associated proteins (trans-
porters, biosynthetic, and degradative enzymes) [165]. The
CBl receptor couples to both G;/, proteins which function to
inhibit adenylyl cyclase activity, activate potassium channels,
and inhibit voltage-gated calcium channels, while the CB2
receptor is known to couple to G; proteins. The CB1 receptor
is located predominantly on presynaptic axon terminals, and
it regulates calcium influx and subsequent neurotransmitter
release to influence synaptic plasticity. CB1 knockout mice
become anhedonic during chronic mild stress, and they also
demonstrate decreased motivation, indicative of the depres-
sive phenotype [166, 167]. These changes are likely caused by
alterations in CBI signaling that help to maintain normal
synaptic efficiency in the PFC, amygdala, hippocampus, and
NAc [168-171]. Both CBI and CB2 receptors are abundantly
expressed in motor and limbic regions and in areas that
are involved in pain transmission and modulation, including
the PAG, RVM, spinal cord dorsal horn, and the peripheral
nerve. In the RVM, CBI signaling can alter the “on” and “oft”
cell balance to favor descending inhibition. In the spinal
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dorsal horn, it can decrease N-methyl-D-aspartic acid
or N-methyl-D-aspartate (NMDA) receptor activation and
decrease noxious stimulus-evoked firing of wide dynamic
range neurons [172]. Endocannabinoid signaling can also
inhibit neuropeptide release from primary afferent fibers in
response to acute noxious stimulus. Thus, endocannabinoid
signaling plays important roles in regulating both depression
and pain. Interestingly, a recent study showed that a CB2-
selective agonist GW405833 specifically relieves depressive
symptoms of chronic neuropathic pain in rats, but it has no
antidepressant effects in rats that do not experience pain
[173]. This finding not only indicates that pain can induce
depression, but it provides evidence that pain-induced
depression may have unique physiologic and molecular
mechanisms.

5.4. Transcriptional, Translational, and Epigenetic Mecha-
nisms. Transcriptional mechanisms have been well studied
in animal models of depression, and genome wide arrays have
begun to uncover genetic bases for depression in patients who
suffer from major depressive disorders. The best character-
ized transcriptional mechanism controlling depression-like
behaviors involves CREB. The role of CREB on depres-
sive symptoms varies depending on the specific brain
regions. Increased transcriptional activity in the hippocampus
induced by CREB has been demonstrated to have antidepres-
sant effects. In contrast, CREB signaling in the NAc promotes
stress susceptibility and induces anhedonic behaviors [174].
Prominent targets for CREB include potassium channels, glu-
tamate receptors, dynorphin, and other neuropeptides [175-
177]. By acting on these receptors and peptides, CREB can
increase the intrinsic excitability of cortical, hippocampal,
and accumbal neurons and promote glutamatergic plasticity,
which will in turn serve as circuit level regulators for affect
and behavior. The role of CREB is well documented in animal
pain models as well. A number of studies have shown that
CREB signaling in the hippocampus, cortex, and NAc can
alter pain sensitivity [178-180]. Furthermore, a recent study
demonstrated that CREB signaling in the ACC promotes
the negative affective experience of pain, as manifested by
conditioned place avoidance [181]. Thus CREB is likely an
important mediator of depressive symptoms of pain.

Translational regulators, especially mTOR, have been
actively investigated in both pain and depression models in
rodents. mTOR signaling in the PFC has been shown to
give rise to dendritic growth and upregulation of the synap-
tic machinery, which underlie the antidepressant effect of
ketamine [92, 182]. Recently, mTOR signaling in the hip-
pocampus has also been found to regulate pain-related synap-
tic plasticity [183]. Thus, translational regulation provides
another level of control for the comorbidity of pain and
depression.

In addition to transcriptional and translational control
of synapse and neuronal excitability, proteins that posttrans-
lationally modify histone, DNA, and recruit large sets of
coactivators or corepressors of genes have come under active
scrutiny over the last two decades. Such epigenetic mech-
anisms have been identified to play significant roles in the

pathogenesis and regulation of depression and pain. For
example, local inhibition of certain histone deacetylases
(HDACs) or DNA methyltransferases (DNMTs) and con-
versely local activation of histone methyltransferases (HMTs)
in the NAc have been found to have antidepressant effects in
various animal models of depression [184-186]. Similarly,
alterations of HDACs and DNMTs in the cortex and hip-
pocampus have also been implicated in depression-like
behaviors [187-189]. Epigenetic mechanisms have been dem-
onstrated to alter pain sensitivity at both spinal and periph-
eral levels [190]. In addition, studies have begun to reveal that
changes in HDACs and DNMTs in the hypothalamus, cortex,
and brain stem can regulate both sensory and affective pain
behaviors [191-193]. Particularly, altered DNA methylation of
the corticotropin releasing-factor genes in the hypothalamic-
pituitary-adrenal axis has been shown to result in stress-
induced pain hypersensitivity, raising the possibility that cen-
tral epigenetic mechanisms can play a role in the relationship
between pain and depression [191].

These molecular mechanisms are summarized in Table 1.

6. Treatment for the Comorbidity of
Pain and Depression

Aline of clinical evidence that supports the close pathological
relationship between chronic pain and depression comes
from the drugs that can treat both conditions. Currently,
two classes of antidepressants, serotonin, and norepinephrine
reuptake inhibitors (SNRIs) and tricyclic antidepressants
(TCAs) are Federal Drug Administration (FDA) approved for
the treatment of depression as well as a variety of chronic pain
conditions. Furthermore, experimental treatments, including
ketamine and deep brain stimulation, have been demon-
strated to have efficacy in treating both pain and depression.

6.1. Serotonin and Norepinephrine Reuptake Inhibitors
(SNRIs). Serotonin reuptake inhibitors (SSRIs) and serotonin
and norepinephrine reuptake inhibitors (SNRIs) are mainstay
treatment options for depression. By inhibiting the reuptake
of serotonin, SSRIs can increase the extracellular levels of
these neurotransmitters [194]. SNRIs, in addition, increase
the level of norepinephrine as well. SSRIs are currently the
first-line treatment for depression. While the exact targets
for these drugs are not known, it is thought that they exert
antidepressant effects by augmenting synaptic plasticity in
the cortex, hippocampus, striatum, and a number of other
brain regions. In addition, SSRIs can promote neurogenesis
in the hippocampus [195]. However, the efficacy of SSRIs in
pain has been disappointing, with number needed to treat
greater than 15 for most of the drugs in this class. SNRIs, in
contrast, have been highly successful in treating a wide range
of pain, particularly neuropathic pain, including diabetic
neuropathy, postherpetic neuralgia, and fibromyalgia
[196-200]. Thus, likely SNRIs modulate the NE signaling
pathway in the CNS to decrease pain and pain-induced
depression. One possible mechanism is the activation of the
descending modulatory pathway from the RVM and PAG
to the dorsal horn neurons [125]. On the other hand, there
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TABLE 1: Molecular mechanisms in pain and depression.

Molecular marker

Depression

Pain

(i) Reduced GluAl-containing AMPA receptors in
amygdala, PFC, and hippocampus
(ii) Reduced GluA2-containing AMPA receptors in

(i) AMPA receptor upregulation in RVM mediates
analgesia; AMPA receptor downregulation in RVM
causes hyperalgesia

(ii) Reduced VGLUT1 and 3 levels in NAc

Glut t
uamate NAc (iii) Reduced GluA2-containing AMPA receptors in
g p
(iii) Ketamine’s antidepressant actions likely include NAc
increases in AMPA receptor signaling (iv) Ketamine€’s analgesic actions likely due to NMDA
antagonism
Norepinephrine Decreased sienaling in LC Activation of RVM and PAG causes norepinephrine
& & release and antinociception
Dopamine Decreased signaling in VTA and NAc Decreased signaling in the NAc
: T Can both inhibit and facilitate pain by projection to off
Serot:
erotonin Altered signaling in PFC, ACC, VTA, and NAc and on cells in the RVM
BDNF Decreased serum levels (i) Elevated serum levels in fibromyalgia
(ii) Decreased serum levels in migraine
(i) CB1 signaling in the RVM favors descending
. inhibition
End binoid ice di i P
ndocannabinoids  CBI knockout mice display depressive phenotype (ii) CBI signaling in the spinal dorsal horn decreases
NMDA receptor activation
CREB ;ﬁgﬁg;ﬁ:g&cﬁgz’;n hippocampus has Signaling in the hippocampus, cortex, and NAc can
(ii) Signaling in NAc induces anhedonic behaviors alter pain sensitivity
mTOR Signaling in PFC underlies antidepressant effect of Signaling in the hippocampus regulated pain-related
ketamine synaptic plasticity
(i) Inhibition of HDACs and DNMTs in NAc has
antidepressant effects . .
. . (ii) Activation of HMTs in NAc has antidepressant Changes in HD.ACS and DNMTs in hypothalamus,
Epigenetic cortex, and brain stem can regulate sensory and

effects
(iii) Alterations of HDACs and DNMTs in cortex and
hippocampus implicated in depressive behaviors

affective pain behaviors

AMPA: x-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF: brain-derived neurotrophic factor; CB: cannabinoid receptor; CREB: cAMP response
element-binding protein; DNMT: DNA methyltransferase; HDAC: histone deacetylase; HMT: histone methyltransferase; LC: locus ceruleus; mTOR:
mammalian target of rapamycin; NAc, nucleus accumbens; NMDA: N-methyl-D-aspartate; PAG, periaqueductal gray; PFC: prefrontal cortex; RVM: rostral

ventromedial medulla; VGLUT: vesicular glutamate transporter; VTA: ventral tegmental area.

is increasing evidence that the pathogenesis of fibromyalgia
strongly involves abnormal processing in the brain, and
the incidence for the comorbidity of fibromyalgia and
depression is particularly high [201, 202]. Thus, SNRIs likely
can also alter NE signaling and synaptic transmission in
the brain to decrease pain, depression, and other associated
affective symptoms in fibromyalgia patients [202]. Currently,
duloxetine is the first-line treatment option for fibromyalgia.
For neuropathic pain in general, the number needed to treat is
approximately 2-5 for SNRIs [203]. It is interesting to note,
however, that the dose of SNRIs for chronic pain treatment is
approximately half of what is used for the treatment of major
depressive disorder.

6.2. Tricyclic Antidepressants (TCAs). Tricyclic antidepres-
sants (TCAs) are an older class of antidepressants. These
drugs block the serotonin transporter and norepinephrine
transporter to increase the synaptic concentration of these
neurotransmitters [194]. Thus, the pharmacologic mecha-
nisms for SNRIs and TCAs are similar. TCAs have been
largely replaced by the SSRIs and SNRIs as the first-line

treatment for depression due to their more serious side effect
profile and poorer tolerability at higher doses. Over the past
two decades, however, TCAs have been widely used in the
treatment of a number of chronic pain conditions, most
notably neuropathic pain conditions [199]. They are used for
essentially the same pain syndromes as SNRIs, including dia-
betic neuropathy, postherpetic neuralgia, and fibromyalgia
as well as chronic low back pain with an element of radicu-
lopathy. The number needed to treat pain for the TCAs is
comparable to that of the SNRIs [204]. Similar to the SNRIs,
the dose of TCAs for chronic pain treatment is less than half of
what is used for depression. The commonly used TCAs
include amitriptyline, nortriptyline, and desipramine.

6.3. Ketamine. Ketamine is classified as a dissociative anes-
thetic, and it is FDA approved as an anesthetic as well as an
analgesic agent. Ketamine affects the function of a number of
receptors and channels. It is known to block NMDA recep-
tors. It is also an agonist for dopamine D2 receptors and
blocks dopamine reuptake. More recently, ketamine has been
shown to increase presynaptic glutamate release and to
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activate mTOR to promote the translation of GluAl AMPA
receptor units at the postsynaptic site [92]. Recently, ketamine
has emerged as a fast onset, long-lasting, and potent antide-
pressant. A single subanesthetic dose of IV ketamine has
rapidly and reproducibly decreased depressive symptoms in
treatment-resistant depressed patients, with antidepressant
responses detected within 1-2 hours after infusion, main-
tained in a majority of patients for at least 24 hours, and in
some cases for up to 7 days [205-207]. While the mechanism
of antidepressant action for ketamine remains incompletely
understood, it likely involves an increase in AMPA receptor
signaling, an increase in BDNF levels, and an overall increase
in synaptic plasticity in the cortex and hippocampus [92, 208,
209]. In animal studies, a subanesthetic dose of ketamine
has been shown to relieve pain-induced depression for up
to five days after a single administration [49], and this time
frame is comparable to studies of stress-induced depression
models as well as human studies of depression. Ketamine
has long been used as an analgesic for acute pain. Recently,
sub-anesthetic-dose ketamine infusion has been used for the
treatment of refractory neuropathic pain syndromes with sig-
nificant depressive comorbidities, most notably the complex
regional pain syndrome [210-213]. In these patients, repeated
infusions of subanesthetic doses of ketamine have been
shown to effectively treat pain as well as associated affective
comorbidities, including depressed mood. In a number of
these studies, the effect has lasted weeks to months.

6.4. Future Therapeutic Developments. Despite of these drugs
discussed above, pharmacologic options for the comorbidity
of pain and depression remain fairly limited. Based on our
current understanding of circuit and molecular mechanisms
for the comorbidity of pain and depression, however, two
future therapeutic approaches hold promise. The first
approach is to use neuromodulation (such as deep brain stim-
ulation (DBS) or transcranial magnetic stimulation or even
biofeedback or cognitive behavioral therapy) to target the
converging circuit pathways in the brain that are responsible
for pain as well as depression. Our knowledge of the converg-
ing pain and depression circuitry suggests that certain brain
regions, including the dorsolateral PFC, hippocampus, and
NAc, can be potential targets for neuromodulation. DBS
targeting some of these regions, in particular the PFC, can
significantly alter long-term neural plasticity and has been
under intense and active investigation for refractory depres-
sion [214-216]. However, neuromodulation treatment for
pain has been limited to spinal cord and peripheral afferent
stimulations [217]. In the future, DBS targeting the PFC and
NAc should be considered in preclinical and clinical studies
for the comorbidity of pain and depression. A second hypo-
thetical therapeutic approach that holds promise is targeting
the excitatory neurotransmission that can treat both pain and
depression. In this regard, AMPA receptors are ideal targets.
A recent study shows that AMPAKkines, drugs that potentiate
AMPA receptor function, can relieve depressive symptoms
of pain [50]. Furthermore, ketamine, which increases AMPA
receptor signaling, has also been shown to relieve pain-
induced depression in animal models [49]. Thus, future

clinical studies are needed to further evaluate the efficacy of
drugs such as AMPAkines and ketamine in the treatment of
comorbidity of pain and depression. Finally, an intriguing
class of drugs are HDAC inhibitors which, by modifying
genomic expression at a large scale, can profoundly affect
both the circuit and molecular basis of pain and depres-
sion. HDAC inhibitors have been shown to relieve pain in
neuropathic and inflammatory models of pain [151, 218].
They have antidepressant effects in animal models of depres-
sion as well [186]. HDAC inhibitors have already been
approved for the treatment of some cancers, and the HDAC
inhibitor valproic acid is used as a mood stabilizer [154].
Future studies are needed to determine whether inhibition of
asingle or multiple HDAC isoforms is most efficacious for the
treatment of pain and depression.

7. Conclusion

Pain and depression are important comorbidities. Both
clinical and preclinical studies clearly indicate that pain
can cause depression, and that depression can worsen pain
behaviors. The CNS undergoes long-term plastic changes
associated with chronic pain and depression. Circuit and
molecular mechanisms that underlie this plasticity have
begun to emerge. Some of the successful current therapeutic
approaches have validated these mechanisms, and future
therapies based on such mechanistic understanding can be
developed to better serve clinical needs.
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