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Modulation in phase and frequency 
of neural oscillations during 
epileptiform activity induced by 
neonatal Zika virus infection in mice
Daniel J. L. L. pinheiro1 ✉, Leandro f. oliveira1, isis n. o. Souza2, João A. ferres Brogin3, 
Douglas D. Bueno4, iranaia Assunção Miranda  5, Andrea t. Da poian  6, Sergio t. ferreira  6,7, 
claudia p. figueiredo2, Julia R. clarke2, esper A. cavalheiro1 & Jean faber1,8

Modulation of brain activity is one of the main mechanisms capable of demonstrating the 
synchronization dynamics of neural oscillations. in epilepsy, modulation is a key concept since seizures 
essentially result from neural hypersynchronization and hyperexcitability. in this study, we have 
introduced a time-dependent index based on the Kullback-Leibler divergence to quantify the effects 
of phase and frequency modulations of neural oscillations in neonatal mice exhibiting epileptiform 
activity induced by Zika virus (ZiKV) infection. through this index, we demonstrate that fast oscillations 
(gamma and beta 2) are the more susceptible modulated rhythms in terms of phase, during seizures, 
whereas slow waves (delta and theta) mainly undergo changes in frequency. the index also allowed 
detection of specific patterns associated with the interdependent modulation of phase and frequency 
in neural activity. furthermore, by comparing ZiKV modulations with the general computational 
model Epileptors, we verify different signatures related to the brain rhythms modulation in phase and 
frequency. These findings instigate new studies on the effects of ZIKV infection on neuronal networks 
from electrophysiological activities, and how different mechanisms can trigger epilepsy.

Zika virus (ZIKV) is an arbovirus from the Flaviviridae family, which was first reported in 1947 in Uganda1. It is 
mainly transmitted by the Aedes aegypti mosquitoes, but can also be transmitted sexually and by blood transfu-
sion from an infected donor2,3. Zika has been considered as an emergent health threat, given its epidemic history, 
transmission in tropical areas4, neurological, congenital diseases5,6, as well as given the fact that it is associated 
with brain abnormalities in newborns (Caires-Júnior et al.7; Rasmussen et al.8). Recent reports show that epi-
leptic seizures are among the main neurological outcomes of congenital Zika syndrome (CZS)9–13; additionally, 
reports of the incidence of epileptic seizures in infants exposed to the ZIKV and who had not developed micro-
cephaly14, represent new challenges due to changes in the neurodevelopmental stages and even their long-term 
consequences.

Epilepsy is one of the most common neurological disorders worldwide15, clinically characterized by the occur-
rence of at least two unprovoked seizures in less than 24 hours, high unprovoked seizure recurrence risk, or 
even by the diagnosis of epilepsy syndrome16. Despite important advances in the understanding of the involved 
pathophysiology, multiple mechanisms behind the hyperexcitability and hypersynchronization of neurons dur-
ing epileptic seizures, still need to be understood better. For instance, the role of neuronal discharge modulation 
during seizures and their relationship with epileptogenesis is not yet completely elucidated17. A physical approach 
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describing the neuromodulatory mechanisms during seizures can provide new insight into the commonly inves-
tigated electrophysiological features18–22.

Neural oscillations can be described in terms of extracellular potentials, called local field potentials (LFP)23, 
which are mainly characterized by their amplitude, frequency, and phase. LFP modulation is directly associated 
with the synchronization of the neuronal inputs, and how the neural populations are structurally and functionally 
organized23–25. Synchronization occurs essentially through changes of the oscillatory rhythms in specific frequencies, 
decreasing the phase differences among neural oscillations. This interdependence between phase and frequency can 
be described in terms of a modulatory process that control the information flow within neuronal populations and 
brain regions23–25. In this way, the strength of phase-frequency coupling is directly related to the synchronicity of 
the neural network. That is, strong couplings brings up hypersynchronous dynamics among the network unities26.

Since electrophysiological neural activities are a physical oscillatory phenomenon, they exhibit interactive 
dynamics given by different types and levels of synchronous effects26. If the synchronous dynamics of a neu-
ronal population is related to its phase and frequency interactions, by identifying specific rhythms responsible to 
coordinate the whole activity during seizures can help to elucidate and characterize underlying mechanisms of 
epilepsy, such as hypersynchronicity during seizures promoted by different agents. Specifically, researches have 
been reporting that the fast oscillations work as a facilitator for synchronization process, in a long-range commu-
nication between neuronal groups27,28. Therefore, the understanding of how fast and slow oscillations modulate 
seizures is a critical point for a better description of epileptogenic process.

We investigated the regime transitions of neural oscillations in neonate mice infected with ZIKV that pre-
sented recurrent epileptic seizures. Mainly, we focused on the phase and frequency changes, here identified as a 
modulatory effect on the neural oscillations. We adapted the Kullback-Leibler divergence (DKL)29 to explore and 
quantify the effect of phase and frequency interdependencies on epileptiform activities. Our results show that fast 
oscillations, namely gamma and beta 2 waves, are predominantly modulated in brain activity during seizures. 
Since ZIKV infection causes an imbalance in brain rhythms, the results raise the question whether this phase and 
frequency modulatory mechanism is promoted specifically by ZIKV or whether it is a general characteristic of 
epileptiform activities.

Results
power frequency characterization. We first analyzed the spectral patterns of recordings from the Mock 
or ZIKV-infected mice, characterizing their signatures in the frequency, Fig. 1A. Two representative animals were 
chosen to illustrate the general aspects observed from each group, and all other spectrograms are presented in 
the supplementary material (Fig. S1). From this figure, it is possible to note that in Mock-infected mice there was 
no power predominance of any specific frequency band, but ZIKV-infected mice showed seizure events starting 
around 14 minutes of the record, and even for the baseline activities changes were noted in its spectral signature. 
Previous work showed that mice infected with ZIKV presented with at least two seizures events during a period 
of 2 hours, with spiking activity followed by polyspike-waves or fast sharp waves, exhibited through invasive elec-
troencephalography as well as behavioral analysis30.

Preictal and postictal epochs, in ZIKV-infected group, also show fluctuations of their PSD, mainly for 
low-frequency bands. It is noteworthy that at the beginning and at the end of seizures there were consistent 
increases in power on the high-frequency bands that did not persist along the rest of the signal. This phenomenon 
has been discussed as a precursor of the epileptiform spike discharges31. The increase of fast oscillations, such as 
gamma, are discussed as precursors in the pre-ictal period but, in fact, there remnants of these changes in the 
post-ictal period, may occur as the epileptiform activity is ceasing.

Figure 1C shows a direct comparison using the CIs for the means, between the PSD of each mouse of the 
ZIKV and Mock groups. There is a consistent and significant difference in mean power for all frequency bands 
between both the groups. The main differences are presented in δ, θ, β2, and γ oscillations. By applying PCA 
analysis on the PSD, considering all animals (Fig. 1B), without band selection, it was still possible to observe a 
clustering between both the groups, despite some intersection between them. When PCA is applied onto each 
specific brain rhythms, Fig. 1D, the clustering formation corroborates the previous mean differences, but now 
highlighting a self-similarity intragroup and differences intergroup, especially for δ, θ, and γ rhythms. Particularly, 
γ oscillations exhibit a profile with lower variance intragroup and higher variance intergroup. These observed 
patterns give lead to the spectral signature of the recordings, but does not explain the modulatory effects that is 
happening on the phase and frequency of the brain rhythms.

Modulatory effects using Λj
k index

After general characterization of the signal power spectral signature, the Λj
k index in frequency and phase was calcu-

lated, referred here as Λfr
k  and Λph

k , respectively. Figure 2 shows how Λj
k index variates along the entire recordings, for 

all animals. Plots on the right-hand side display the Λfr
k  and Λph

k  for ZIKV-infected animals, whereas plots on the 
left-hand side display for Mock. Considering the Λph

k  patterns, β2 and γ oscillations are the predominant modulated 
phase rhythms for both groups. However, for ZIKV mice, Fig. 2A, the Λph

k  present a considerable increase, with high 
variation, specifically during the seizure epochs (marked with gray shadows), emphasizing abrupt changes in the 
modulation process of these rhythms. Additionally, along with the entire ZIKV recordings there are recurrent short 
periods of sudden increase of Λph

k  for these rhythms, β2 and γ, related to brief epileptiform discharge periods (blue 
shadow in Fig. 2A.2-A.4). These short periods present a lower magnitude compared to the seizure epochs. 
Considering Mock group, Λph

k  shows a constant modulation along the whole recording, where the predominance of 
β2 and γ is also higher in comparison to the other rhythms. However, this modulation presents a magnitude level of 
about 10 un, which is considerably lower in comparison to ZIKV group, especially during seizure epochs.
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Considering the frequency, for all k-rhythms, Λfr
k  also reveals different influences of each specific rhythm along 

the LFP recordings. Mock Λfr
k  index shows a modulation pattern that are indistinctly, except some moments of 

higher variation of δ and θ. In contrast, ZIKV Λfr
k  index shows a totally different modulation of each frequency in 

Figure 1. Frequency analysis of electrophysiological signal from neural activity of neonate mice infected with 
Zika Virus (ZikV) in comparison with control group (Mock). (A) Example of spectrogram from each animal 
group, notice that the power fluctuation between 15–40 minutes in ZikV signal is related to epileptic seizure. 
There are also differences in the frequency bands influences even in preictal, postictal and baseline activity 
when compared with Mock. (B) Principal Component Analysis (PCA) of power spectrum with the percentage 
of explained variance in each axis. Note that ZikV and Mock has frequency behavior, and that the first one 
shows a higher variability of some brain rhythms. (C) Frequency power bands of neuronal rhythms per animal 
(representation of mean ± confidence interval for mean 95% of reliability). (D) PCA of individual brain 
rhythms. Stands out that in most of frequency bands is perceptible the clusters referent of each experimental 
group, mainly in δ and γ bands.
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Figure 2. Λk
j  index variation over the time recorded using phase and frequency as features. In B, Mock mice, 

shows that the fast oscillations (β2 and γ) are the most modulated rhythms, although, their modulation effects in 
the frequency power does not gives rise to any rhythms in specific, what is expected considering that there is no 
specific task during the records. Mice injected with ZIKV (A), in other way, shows an already changed pattern 
wherein the slow oscillations have visually lower influences in the raw signal. Evaluating the Λph

k  index variation 
in these animals, notice that the modulation of γ and β2 wave are more intense mainly in seizure (gray shadow), 
and their effects in frequency seems to change δ and θ rhythms. Worth to emphasize that there are some high 
peaks of modulation in the signal by fast oscillations, the blue shadows when the mouse is not having seizure, 
that provokes changes in the slow oscillations (δ and θ) and can represent the nature of system that always trends 
to increase the level of γ and β2 modulation.
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the LFP recordings, especially during seizure epochs. ZIKV Λfr
k  shows that δ and θ are the most affected in this 

condition, having a specific modulated pattern with sudden high peaks of Λph
k  in β2 and γ bands.

Figure 3 exhibit a density plot graphics of the Λj
k index, fixing ph = γ against all other k-rhythms for frequency. 

The Λph
k  was fixed in γ since it presented the most prominent modulatory effect during the seizures. This analysis 

shows how the modulatory effects in the phase are related to the modulatory effects observed in the frequency. 
These graphics could help to evaluate if different physiological conditions would present different modulatory 
effects between both phase and frequency. Although these plots do not imply phase-frequency coupling, they 
depict how the most modulated phase, Λγ

ph, exhibits an association with all rhythms, in the frequency, but with 
different aspects, Fig. 3. The β2 rhythm also presents the same profile as γ, with a lower level of modulation along 
the whole signal. It is important to notice in these density plots the differences between data from ZIKV and 
Mock mice, which already exhibit specific configurations associated with the modulatory effects of phase and 
frequency for all k-rhythms. Concerning that we are not able to affirm if the origins of these electrophysiological 
patterns come from ZIKV infection or from a common epileptic effect, since we did not perform any experiment 
with neonate mice with epilepsy without ZIKV-infection, we decide to use computational models of epilepsy to see 
if they are general patterns. Although, in order to instigate better this discussion, we added a new comparison using 
simulated electrophysiological patterns yielded by a computational model of epilepsy, known as Epileptors32 – 
Supplementary methods. In this way, we were able to highlight the sensibility of the index considering its accu-
racy to distinguish more types of epileptiform activities.

To emphasize the statistical differences of the index Λj
k on neuronal oscillations the histograms associated with 

each rhythm were produced, for phase and frequency, during the pre-defined four stages of LFP recordings, 
Fig. 4. Since, the Mock group had no epileptiform activities it was possible to describe it only during the baseline 
stage. First part of Fig. 4 shows how the indices Λj

k vary during the baseline activity. In the phase, it is possible to 
see that, although both present high modulatory effects on γ and β2 rhythms, the magnitude of Λj

k in the baseline 
ZIKV group is considerably higher than the Mock group. However, in case of frequency, it is possible to see that 
each rhythm is modulated in a completely different way for ZIKV, while Mock group presents a regular and 
homogeneous modulatory effect on all rhythms. In the second part, Fig. 4, show how the indices Λj

k of ZIKV 
group variates, during the preictal stage. Due to the difficulty in defining a line between the baseline and preictal 
activity, both stages present very similar distributions of the modulatory effects on each rhythm.

The third part of Fig. 4 show how the indices Λj
k of ZIKV group varies, during the seizure. In phase, it is pos-

sible to see that Λph
k  exhibits high modulation on γ and β2 rhythms, expressed by their scales and dispersions 

comparatively to all other rhythms. In case of frequency, all Λfr
k  rhythm distributions are very similar to the preic-

tal stage, except δ and θ rhythm that present a considerable modulation on their mean magnitude and dispersion. 
The fourth part of Fig. 4 show how Λj

k index varies during the postictal stage, and in both phase and frequency the 
distributions of each rhythm return to the previous baseline and preictal patterns.

To quantify the differences exhibited in the histograms associated to the index Λj
k, the four statistical moments 

for each one of the stages was calculated and compared, considering each rhythm. Figure 5 emphasizes how the 
statistical moments (mean, standard deviation, kurtosis, and skewness) of Λj

k varies among the four stages, 
including the baseline of Mock, for each histogram exhibited previously in Fig. 4. This calculus quantifies the 
trends of the distributions and the relationship between centrality and dispersion, indicating critical points of the 
index Λj

k. For both the phase and frequency, the index Λj
k did not present significant changes on mean and stand-

ard deviation among the stages, except during the seizure stage which presented a high level of modulation for γ 
and β2 for both statistical moments, but only for phase.

In case of phase, Mock Λph
k  shows lower kurtosis and skewness for all brain rhythm distributions, whilst in the 

frequency, Λfr
k  indicate that their values have a higher probability to occur around the mean. During the seizure 

stages, kurtosis and skewness of Λph
k  present a deflected point indicating that all brain rhythms assume a stable 

configuration around the mean, where the level of modulations are more symmetrical.

Discussion
In this study, we have introduced a new perspective on neural oscillations by investigating the effects of modula-
tion of phase and frequency from in vivo local field recordings from neonate mice infected with ZIKV and 
Mock-infected mice. By using the Kullback-Leibler divergence, we proposed a new index, Λj

k, to emphasize these 
modulatory effects for both phase and frequency. The modulation of a physical signal occurs when one of their 
main properties (phase, frequency or amplitude) changes in a controlled manner in order to transmit a specific 
information33,34. With this index, we were able to show that the modulatory effects occur basically by statistical 
temporal transitions from a uniform-like probability distribution to some structured probability distribution of 
the correspondent feature (phase or frequency). Since, any sudden and consistent changes in statistical pattern of 
a stochastic variable corresponds to a modulatory effect35, through this index, we were able to identify critical 
points corresponding to the onset of modulation for each stage.

The modulation term used here is a general concept because it comes from the physical nature of interactive 
oscillator systems, which can be directly associated with neural activities19. The neuronal communication is more 
effective when a message send by neuron population reaches their destiny in their most excitable phase, in other 
words, the moment where a neuron has more probability to generate an impulse due to an income from an excit-
atory synapse24,25,36. Thus, the concept of synchronization in neural systems can be seen as a natural phenomenon 
in which different populations of neurons interact with themselves and produce a complex dynamic due to this 
interaction37,38. Therefore, the use of phase and frequency information of neuronal oscillations is one way to 
understand better the epileptiform activity and their manifestation. Nowadays, the characterization of epileptic 
seizures uses a more descriptive analysis of wave shape in time, and power of specific frequencies bands39–41.
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Figure 3. Density plot of the relationship between modulation on phase γ band and modulation on all 
frequency brain rhythms. (A) The Λγ

ph axis shows the most modulated oscillation in function of Λfr
k , ∀ 

k-rhythms. The first and second column represent the association between phase and frequency for ZIKV and 
Mock animals, highlighting the differences associated with each modulatory response. The columns three and 
four exhibit two different epileptiform-like patterns (‘*’ refers to a modification of parameters used in the 
simulation, as explained in Supplementary methods), which compared to ZIKV patterns emphasize the high 
sensitivity of Λj

k to detect intrinsic features associated with each activity. Figure B shows the centroids of each 
density plot of A, referent to ZIKV and Mock mice, highlighting the discrepancy between the modulation level 
of γ in phase in relation to other rhythms inn frequency.

https://doi.org/10.1038/s41598-020-63685-2
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In general, studies seeking modulatory effects on brain rhythms, in different conditions such as epilepsy, aim 
to identify the factor couplings between signal features of neuronal oscillations, for example, cross-frequency 
couplings38,42–44. In this work, however, the idea is to evaluate changes in the phase and frequency related to each 

Figure 4. Histograms of Λph
k  and Λfr

k  indexes for each stage of recordings. In Λph
k  it is possible to note that the 

modulatory effects of all brain rhythms in the baseline, preictal and postictal stages of ZIKV mice has some 
difference in comparison to baseline Mock, which can be emphasize by the magnitude scale of them that goes 
up to 80 un of Λph

k  index in front of 15un. In addition, seizure shows a changed of histogram shape to β2 and γ 
wave, which are the most modulated in epileptiform activity. On the other side, in Λfr

k  the parcel of modulation 
exhibited by each rhythm in baseline of Mock are very equilibrated, which are changed in all stages ZIKV mice. 
Particularly, in seizures noted that the shape of δ and θ waves are the most who suffers alteration.

https://doi.org/10.1038/s41598-020-63685-2
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brain rhythm separately, along the time, considering the effect observed in the raw signal. By this analysis, it was 
possible to have a more general overview associated with global neural network changes promoted by phase and 
frequency modulations from local neural populations.

From the results, it was possible to show that fast oscillations, β2 and γ, are the most modulated rhythms in the 
phase, especially during epileptiform activity. Although it does not imply necessarily that they are the cause of 
these activities, it suggests that their high level of modulation (given by the index Λph

k ) is directly related to the 
seizures. For the Mock group, the modulation levels during fast oscillations, in the phase, was also higher than the 
slow oscillations but with lower magnitude compared to the ZIKV group, even out of the epileptiform activity.

Several works have investigated the presence of β and γ oscillation in epileptic seizures, finding higher power 
activities on these bands during seizures45–48. In general, γ waves (30–60 Hz) are associated with memory, sen-
sory, and voluntary movement processing21,49–52 and for the bottom-up transmissions53. While, β oscillations 
(12–30 Hz) are associated with sensory-motor processing54, to maintain normal brain activity55, and for top-down 
transmissions. Some researchers propose patterns of cross-frequency coupling between brain rhythms as elec-
trophysiological biomarkers for neurological disorders, as well as associating them with some specific behavioral 
or cognitive functions37,56. Although some of these patterns have been described as signal couplings, using phase, 
frequency, and amplitude features, they do not attempt to evaluate which specific brain rhythm is modulated 
during specific electrophysiological activities.

Considering the phase analyzes, the index Λph
k  can be seen as an alternative metric to quantify transient 

regimes related to specific brain rhythms. In this way, using Λph
k  it is possible to analyze if a k-oscillation allows for 

interaction with other rhythms, by comparing the temporal changes of its empirical probability distributions26. 
The modulatory effects measured in the phase for β2 and γ implies that they are more prone to synchronize with 
specific oscillations. As they participate in top-down or bottom-up processes, they have a structured probability 
distribution that enables synchronization with specific rhythms. Most probably this a priori selectivity in specific 
sub-range oscillations is the necessary condition to maintain the stability of neural communications49,53. If at 

Figure 5. Histograms measures of each stage with Λph
k  and Λfr

k . Notice that in all measurements the Λj
k index 

show an expressive change at seizure stage for all statistical moments, although just the kurtosis and skewness 
can show these differences in all brain rhythms in phase. Worth to emphasize that in seizure each brain rhythms 
have more stable modulation level, in other words, the phase of these wave seems to follow a more restrict 
regime, what can indicate a configuration more appropriated to hyper-synchronization.

https://doi.org/10.1038/s41598-020-63685-2
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some point this selectivity is lost, then all phase regimes are more equiprobable, statistically characterized by a 
uniform-like distribution. During this state of phase uniformity, the synchronization with different rhythms is 
facilitated, since none phase state is privileged or coupled.

Although the results show that β2 and γ are the rhythms prevalently modulated in the recordings even for the 
Mock group, during epileptiform activities in the ZIKV group, the modulation levels are considerably higher. 
We can interpret these differences as an effect promoted by the epilepsy. However, since here, the epilepsy is 
essentially initiated by ZIKV, it suggests that some structural or functional changes in the network arrangements 
responsible for these oscillations are possible.

Focusing on the Λfr
k  index in the frequency, it indicates how much the power of certain rhythm contributes to 

the composition of raw signal, since it compares the empirical probability distribution made from PSD of the 
k-rhythm with the raw signal. The modulatory effects are evaluated by the Λfr

k  variation over time50,57. The results 
from Λfr

k  show that all brain rhythms have different contributions in the generation of the raw signal in ZIKV mice 
compared to the Mock group, Fig. 2. However, in ZIKV during epileptiform activity, δ and θ oscillations showed 
sudden increases associated with β2 and γ modulations, described in the phase by Λph

k  (blue shadows of Fig. 2). 
During these periods Λph

k  decreases in magnitude whilst Λθ
fr increases, so the modulation peaks of Λβ

ph
2  and Λγ

ph 
impact particularly in the frequency power of these oscillations. Since phase modulation corresponds to synchro-
nization and desynchronization effects, it suggests that frequency modulatory effects are likely to be promoted by 
phase modulation.

All the mice were in exploratory activity, without any specific task during the signal acquisition, which 
imposed a limit to correlate the signal patterns with any possible behavior or cognitive function. Meanwhile, 
during the seizure epochs all mice exhibited a freezing behavioral pattern, stopping their exploration and showing 
tail erection30. Indeed, changes in the Λfr

k  may indicate that a specific brain rhythm suffered power alteration due 
to activity from a neuronal network or as a result of the interaction among neuronal populations with coherent 
activity, since δ and θ were related to Λβ

ph
2  and Λγ

ph. Thus, in the case of epileptiform activity it is interesting to study 
the effects of Λfr

k  to explore the correlations between the modulatory rhythms and the behavioral and cognitive 
manifestations observed during this activity.

Although all the signals in this study were recorded from neonate mice that developed epileptiform activities, 
the nature of the observed phenomenon could be characteristic of epilepsy having a different etiopathogenesis. 
Through the signatures observed in the Fig. 3 it is possible to see that different types of epileptiform activity 
exhibit specific patterns associated with the modulatory effects on phase and frequency.

Despite it seems there is a general signature directly related to the epilepsy phenomenon, the index Λj
k were 

able to detect intrinsic features of epileptiform activities yielded from three different mechanisms, ZIKV, Epileptor 
and Epileptor*. Therefore, the specific patterns found (rhythms most affected by the modulation – Fig. 2; modu-
lation pattern in relation to the phase and frequency of two rhythms – Fig. 3) can be studied as electrophysiolog-
ical biomarkers related to the epileptogenesis, and can help understand better their implications and dynamics on 
neuronal network in that condition.

Additionally, despite a more rigorous conduction of new experiments is necessary, some conjectures can be 
made based on our results and the current literature for ZIKV infection. As β2 and γ have higher modulation 
level, it suggests that the neuronal population activity or the mechanisms responsible to their generation are 
somehow changed. Since the outbreak of ZIKV infection in Brazil in 2015, there were evidences of abnormal 
neuronal migration associated with ZIKV58. When it comes to neurodevelopmental stages, the neurotransmitters 
glutamate and GABA play an important role in the neuronal migration. Glutamate, in particular, is responsible to 
control radial migration of pyramidal neurons and acts in NMDA receptors regulating inhibitory interneurons 
tangential migration59. Both inhibitory interneurons and glutamate neurons are required, with a high level of 
precision, for synaptic transmission of γ wave oscillations52. Therefore, the migration abnormalities could pro-
duce changes in the neuronal network arrangements yielding new configuration which leads to changes in the 
modulation of neural oscillations.

Therefore, we can conjecture that the infection promoted by ZIKV interferes with the structural or functional 
organization of the neuronal networks, specifically interneurons responsible for fast oscillations. These networks 
must be affected allowing unbalanced activities, such as epileptiform patterns60. However, this interpretation is 
not enough to explain the origin of the modulatory effects.

Figure 5D emphasizes a characteristic of skewness and kurtosis in the system’s dynamics, the increase in 
all brain rhythms after the seizure indicates that the system approached a critical transition61. During seizure 
events, the neural system is passes through a transitionary state, which involves all brain rhythm, which somehow 
changes the interactions between neuronal population producing modulatory dynamics as seen. Besides indi-
cating that the seizure is a point of criticality for the neuronal system, it should be noted that all brain rhythms, 
although they do not present changes in the average level of modulation, all present changes in these two statisti-
cal moments when it comes to the phase. Thus, the modulation of the phase of brain rhythms becomes even more 
important for analyses of neural communication, and in cases of hypersynchronization.

These changes in the interactions between neuronal population can also be observed in the density plots of 
Fig. 3, wherein, for all brain rhythms it is observed that the relation between the modulatory effects on frequency 
versus phase of γ are totally different in ZIKV mice when compared to Mock.

The description of how phase and frequency of neuronal oscillations change with time offers a new perspective 
on the general physical mechanisms that allow and sustain epileptic seizures. This novel approach offers a new 
avenue for the traditional characterization using only amplitude shape in time, and power variation for specific 
frequencies bands39–41. Since all the electrophysiological patterns described here are inherently associated with 
functional arrangements of neuronal networks, to describe modulatory effects is an indirect way to evaluate dis-
ruptions on functional network topologies and their working dynamics62,63.
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Finally, the Λj
k index proposed in this work can measure modulatory effects related to the dynamics of brain 

synchronization, which is an important process for neural communication and new studies and experiments to 
elucidate the electrophysiological signatures in different contexts can be conducted, such as epilepsy and other 
comorbidities, associated with the underlying mechanisms related to these modulatory effects.

Methods
experimental model and electrophysiological records. All procedures of this study followed the 
“Principles of Laboratory Animal Care” (US National Institutes of Health) and were approved by the Institutional 
Animal Care and Use Committee of the Federal University of Rio de Janeiro (protocol #052/2017). ZIKV was 
isolated from a febrile patient in the state of Pernambuco, Brazil (gene bank ref. number KX197192). The stocks 
used in the experiments were produced and tittered as previously described in Coelho et al.64. As described by 
Souza et al.30, three-day old Swiss pups were infected subcutaneously (s.c.) with 30 µL of ZIKV (106 PFU) or the 
same volume of Mock medium (control).

The choice to perform the infection at post-natal day three was because this timeframe of rodent brain devel-
opment was shown to be comparable to the third trimester of pregnancy in humans32,65. Moreover, factors that 
determine if and how much ZIKV crosses the human placental barrier and reaches the fetus are unknown. In fact, 
different outcomes have been reported in dizygotic twin pregnancies7,65,66. Therefore, by performing neonatal 
infection we can be sure that all animals are exposed to similar amounts of virus, which is usually not the case 
for models of vertical transmission. As the control, the same volume of virus-free conditioned medium of C6/36 
cells was used (Mock). The virus-free conditioned medium of uninfected C6/36 cells is the most suitable control, 
since it contains all products of cell metabolism but not the virus. Injections of mock or ZIKV are performed in 
the same post-natal day, in the same volume and route. All comparisons are made between ZIKV-infected mice 
and Mock-injected mice.

The method used to the virus infection was developed and characterized as a mouse model of peripheral (sub-
cutaneous) ZIKV infection in immunocompetent neonatal (post-natal day 3) animals by Souza et al.30. Under 
these conditions, they found that ZIKV was able to reach and replicate in the brains of neonatal mice causing 
several behavioral and neuropathological alterations that, in many ways, resemble those of congenital ZIKV syn-
drome. Moreover, viral replication was accompanied by increased expression of pro-inflammatory mediators in 
the brain, leading to several behavioral alterations in mice including epileptic seizures30.

Nine days post-infection (dpi) pups were chosen randomly to be submitted to a surgical procedure for the 
implantation of recording electrodes at the superficial level of the cortex. The mice were anesthetized with isoflu-
rane using a vaporizer system (Cristalia, 2.5%) during surgery and fixed to a mouse stereotaxic instrument (Kopf 
Instruments). Their heads were shaved and superficially opened at the top, the skullcap was cleaned, and then 
implanted with 1.5 mm-long gold-plated electrodes (stereotaxic coordinates: 1.0 mm length; 2 in the right and 2 
in the left cortical surface).

To record the LFP signals, all mice were placed in a box measuring 41 cm × 34 cm × 18 cm containing clean 
sawdust. The receptor electrodes implanted were plugged with shielded cables, which were associated with a 
bio-signal amplifier (FE136 Animal Bio Amp – AD Instruments) and digitizer system (PowerLab 8/35 - AD 
Instruments), using LabChart 8 to display and save the data. All recordings were done 3 days after the surgery (12 
dpi, the peak of viral replication in the brain). The procedures for the analysis of biological signs were approved 
by the Ethics and Research Committee of the Federal University of São Paulo, under the protocol number: 
4495200219.

frequency bands characterization. The LFP records were initially filtered with notch to remove network 
noise, followed by division into 5-second windows with 75% overlap between them, to calculate the power spec-
tra and the modulation index on phase and frequency. Recordings were first analyzed by their frequency band 
features, to investigate the spectral signature of the animals given their condition. Spectrograms were generated 
to evaluate power spectrum density (PSD) over time, through Fast Fourier Transform, and all frequency bands 
per animal were also calculated, using the same method. A confidence interval of the mean (CI, α = 5%) were 
calculated considering the Hamming windows as samples.

A principal component analysis (PCA) was performed to determine the clustering of brain rhythms between 
groups as well as the explained variation by each principal component. The following convention of brain 
rhythms was used: delta (1 ≤ δ < 4 Hz); theta (4 ≤ θ < 8 Hz); alpha (8 ≤ α < 12 Hz); beta 1 (12 ≤ β1 < 16 Hz); beta 
2 (16 ≤ β2 < 30 Hz); and gamma (30 ≤ γ < 60 Hz)50.

empirical probability distributions. To calculate the modulatory effects of signals from 8 mice (four 
by group), it was used the segments of 5 seconds, mentioned before, and then time-domain filtered in each of 
the brain rhythms, Fig. 6A,B. The time window sizes were heuristically calculated, optimizing the relation-
ship between time and frequency features by minimizing the non-stationary variations per window using the 
Kolmogorov-Smirnov test to evaluate so. For each stretch of the specific filtered rhythm and the corresponding 
raw signal, empirical probability distributions were generated using frequency and phase features from the signal.

The paper proposes to identify the modulation levels of brain rhythms, using two general oscillatory features: 
(1) phase and (2) frequency, calculated from electrophysiological recordings in vivo. The empirical probability 
distributions are fundamental elements in analysis since it is the unity of information used to investigate the phe-
nomenon of modulation in neural oscillations. In case of frequency modulations, the Power Spectrum Density 
(PSD) for each time window was calculated by using the module square power of the Fourier Transform. Then, 
each PSD was normalized by its sum up, in order to satisfy the two conditions of a probability distribution, 
namely, 0 < p(i) < 1 ∀ i and ∑ =Ω p i( ) 1, in which Ω represents all the possible states.
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For phase analysis, we used the Hilbert Transform to calculate their distribution in each time window. The 
distributions were calculated through histograms constructed by dividing the entire 360° phase-spectrum into 
eighteen classes of twenty phase degrees each42, and counting the number of events in each class. All phase histo-
grams were then normalized independently, in order to satisfy the probability distribution conditions (Fig. 6D).

Figure 6. Methodology to calculate empirical probability distribution used to evaluate modulatory effects on 
phase and frequency. (A) The raw signal is segmented into stretches of same length (Δ) and with overlap of τ. 
(B) Each stretch is decomposed into six band frequency corresponding to the brain rhythms and then it is 
transformed to the frequency and phase using Fourier and Hilbert transform (C). (D) It is calculated an 
empirical probability distribution from the results of the transforms used. These histograms are the basic unity 
of information used to calculate a Λj

k index of modulatory effects, in which will be possible to analyze the 
modulation level of each rhythm.
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Modulatory effects of phase and frequency. To evaluate the effects of modulation on each brain rhythm 
along the LFP records, we introduce the follow index:

( )
( )

t
D P S

D P U
( )
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k KL j

k
j

KL j
k

j

Λ =

wherein the index j refers to phase or frequency, respectively, j = {ph, fr}, and k = {δ, θ, α, β1, β2 or γ}. The term Pj
k 

is the empirical distribution of a given j and brain rhythm k, and S and U are respectively the raw signals and a 
uniform distribution. The uniform distribution, used in calculation of the index, is generated by dividing one by 
the number of states in each j, thus implying the same probability of occurrence of each state.

The temporal dependence of Λj
k reinforces the fact that the modulatory effects must be analyzed continuously 

in order to evaluate all transitions along the entire signal. Even though the index has the same formula for both 
phase and frequency, its meaning and interpretation are not the same. This index uses the relative entropy or 
Kullback-Leibler divergence (DKL), which can be roughly interpreted as the asymmetrical cost of all possible 
states {X} from probability distribution P  to another Q 25.
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Considering phase, the index Λph
k (t) demonstrates how the phase distribution of a rhythm k (δ, θ, α, β1, β2, or 

γ) tends to a uniform-like distribution. A uniform-like phase distribution means that the sign has no coherent 
tendency; since, no specific phase regime has a greater probability of occurrence, this represents a state that is less 
selective to synchronization. Therefore, the lower the cost to transform a specific rhythm/phase distribution into 
a uniform-like distribution, the higher will be the probability to synchronize it with an oscillation pattern inter-
acting with it. This means that the rhythm does not have a specific regime of synchronization and is not selective 
to interaction with other oscillations. Thus, the more similar the phase distribution of the rhythms, the more 
likely they are to synchronize. A uniform-like distribution the probability to synchronize with any rhythm (or 
oscillator) is higher, because it doesn’t have an specific phase regime of oscillation, and the phase differences with 
any oscillator will be the same, which by consequence does not stablish a preference for synchronization. The 
neural populations are coupled, they have trend to synchronize to the group of neurons with the lower phase 
difference.

Since DKL (Pj
k||Sj) indicates how much a rhythm j explains the signal Sj, normalizing it by the divergence with 

uniform distribution, we consider coherent effects along the signal associated with specific rhythms.
In the frequency, the index Λfr

k (t) also amplifies the modulatory effects through their variation along time. 
Here, the uniform distribution on the denominator is needed to provide a comparison between evaluated records, 
since a uniform distribution corresponds to a state of maximum entropy29. Thus, DKL (Pj

k||Sj) indicates how a 
specific spectral distribution Pj

k is prevalent in the spectral distribution of the whole signal Sj. In this way, the Λfr
k

(t) index describes how much information the spectral signature of a specific brain rhythm provides about the 
signal. Since any change in spectral frequency signature of a given recording corresponds to some modulatory 
effect, any change of the Λfr

k (t) along the time will indicate that there is some factor modulating the signal in that 
specific rhythm.

Figure 1 shows a general scheme of the signal processing steps used to calculate the proposed index Λj
k(t) for 

both phases and frequencies. Signals from ZIKV-infected mice were divided into four stages: (1) baseline activity, 
(2) preictal (five minutes of recording before seizure), (3) seizure (from generalized discharge to the suppressed 
electrical activity) and (4) postictal (five minutes of recording after the seizure), while the Mock-infected mice 
exhibited only one stage corresponding to baseline activity. All data were evaluated along these stages in order to 
determine different patterns associated with each brain rhythm that yields modulatory effects.

computational model: epileptors. We use the computational model of epilepsy, Epileptor67, in order to 
evaluate if the patterns found in the electrophysiological recordings were specifically related to ZIKV infection 
or to a common epileptic effect. All signals generated from Epileptors followed the parameters and equations 
described in the Supplementary Material. These parameters were chosen to simulate variations between fast and 
slow oscillations in an epileptiform activity.

Statistical analysis. Shapiro-Wilk’s test was applied to verify normalcy. Representations for statistical com-
parisons were made using mean/median ± CI for parametric and non-parametric data, respectively. To verify 
possible differences between Λj

k(t) index associated with each recording stages (baseline, preictal, ictal, and pos-
tictal), the corresponding histograms were calculated and compared with respect to their four statistical moments: 
mean, standard deviation, skewness, and kurtosis (∀ k and j). A Kruskall-Wallis test were performed to analyze 
the differences between the modulation levels between the brain rhythms in phase and frequency. For all analyses, 
a significance level α = 5% was used, and all signal processing and statistical analyses were performed using 
Matlab® 2017.
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