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Abstract. X-linked inhibitor of apoptosis (XIAP), a key 
member of the inhibitors of apoptosis protein family, can 
inhibit apoptosis by directly binding to the initiator caspase-9, 
-3 and -7, thereby promoting tumor cell survival during tumor 
progression. In the present study, XIAP basal expression 
levels were investigated and its contribution to the resistance 
to apoptosis was evaluated, in the RCC cell lines exposed to 
apoptosis-inducing drugs. This was investigated by histological 
methods and western blot analysis. Using RNA interference, 
elimination of XIAP in Caki-1 cells was also studied, and its 
contribution to the sensitivity to apoptosis induced through the 
intrinsic pathway was observed. Differences in XIAP expres-
sion were detected between ClearCa-2 and ClearCa-6 cell 
lines. ClearCa-6 cells with lower expression of XIAP were 
more sensitive to apoptosis-inducing drugs, compared with 
ClearCa-2 cells. However, the levels of XIAP expression in 
both cell lines were stable during apoptosis. Furthermore, a 
Caki-1 cell line with no XIAP expression was used, and was 
demonstrated to be more sensitive to the apoptosis induced by 
the mitochondrial pathway. These results suggested that down-
regulation of XIAP expression could enhance the sensitivity 
of RCC cells to apoptosis, and the basal expression of XIAP 
during apoptosis is stable. This may provide novel insight for 
targeted gene therapy against XIAP, in the clinic.

Introduction

Renal cell carcinoma (RCC) has obvious resistance to apop-
tosis induced by chemical and immunological preparations 
and radiation, and this is why the non-surgical treatment for 
RCC is unlikely to be effective (1,2). However, the mechanism 
of RCC in apoptosis resistance is still unclear. Recently, 
molecular targeting therapy employing multi-kinase inhibitors 
(MKIs) such as tyrosine kinase inhibitors has raised hope for 

patients with advanced RCC; sorafenib and sunitinib (3,4) are 
becoming first‑line treatments for metastatic RCC. However, if 
the patients develop resistance to MKIs, they rapidly succumb 
to the disease. It is now of utmost importance to find another 
way to control cancer progression. Manipulation of the apop-
totic mechanisms is one promising approach (5).

Different apoptotic signals such as chemicals can 
induce cell apoptosis in two ways, one of which is death 
receptor pathway (extrinsic), the other one is the mito-
chondrial pathway (intrinsic). Cluster of differentiation 
(CD)95 antibodies (CH11) are Fas ligands which can induce 
apoptosis through death receptor pathway (6,7). Topotecan 
and Etoposide (8) are anti-cancer drugs which can inhibit 
DNA topoisomerase I and II and induce apoptosis through the 
mitochondrial pathway (9,10). As an anti-cancer and anti-HIV 
drug, caffeic acid phenethyl ester (CAPE) is a nuclear factor 
(NF)-κB inhibitor. As NF-κB targets, the expression of 
inhibitor of apoptosis proteins (IAPs) can be promoted by 
NF-κB, so CAPE induces apoptosis through suppression of 
IAPs expression (11). However, regardless of which apoptosis 
pathway is active, the glutathione protease family (caspase) 
such as caspase-3, -7 and-9 must be activated, causing a 
chain reaction leading to apoptosis (12). More importantly, 
caspase-3 and -7 activation is the key to apoptosis; therefore, 
once they are activated, apoptosis can be carried out normally. 
IAPs directly bind to caspases and inhibit their activation, 
serving a vital role in the regulation of cell apoptosis. Caspase 
inhibitor XIAP is the most effective among the IAPs family. It 
can restrain apoptosis by suppressing the apoptosis initiation 
factor caspase-9 and effector caspase-3 and -7 (13). Therefore, 
XIAP expression levels may directly determine the sensitivity 
of tumor cells to apoptosis.

RNA interference (RNAi) can efficiently and specifically 
inhibit homologous gene expression (14-17). It interferes with 
the homologous sequences and gene expression at the transcrip-
tional level, and causes the specific degradation of homologous 
mRNA, corresponding to silencing gene expression. RNAi 
technologies can effectively inhibit XIAP expression (18,19). 
It may reduce the experimental error, and improve the experi-
mental accuracy and credibility.

The present study induced apoptosis in different RCC 
cell lines, which exhibit varying expression levels of XIAP, 
through death receptor, mitochondrial and NF-κB signaling 
pathways. Furthermore, RNAi was used to reduce the expres-
sion of XIAP in XIAP over-expressing RCC cells in order to 
study its role in apoptosis, and to investigate the mechanism 
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of RCC cells in apoptosis resistance. This way, its potential 
application value in tumor gene therapy was investigated.

Materials and methods

Cell culture. The established RCC cell lines ClearCa-2 and 
ClearCa-6 were obtained from Heinrich-Heine University 
(Dusseldorf, Germany). The Caki1 cell line was purchased 
from China Infrastructure of Cell Line Resources (Beijing, 
China), and cultured as described previously (20). CH11 
(CD95-specific CH11 antibody) was purchased from 
Immunotech; Beckman Coulter, Inc. (Brea, CA, USA); 
Etoposide was from Sigma-Aldrich; Merck KGaA (Darmstadt, 
Germany), CAPE and Topotecan hydrochloride was from 
Merck KGaA.

Western blotting. Western blotting was performed on the cell 
lines, as described previously (20). A horseradish peroxi-
dase‑labelled secondary antibody (cat. no. 0101; 1:10,000; 37˚C 
for 40 min) was used and blots were visualized using a Super 
Signal West Pico Substrate (Pierce; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's protocol. β-actin was 
used as a loading control. The images were analyzed using 
UN-SCAN-Itgel Automated Digitizing System software 
(version 5.1 for Windows; Silk Scientific Inc., Orem, UT, USA). 
The following antibodies were used: Anti-XIAP (cat. no. 2042; 
1:10,000; 37˚C for 40 min) from Sigma‑Aldrich; Merck KGaA; 
polyclonal anti-inhibitor of apoptosis 1 (c-IAP1; cat. no. 4952; 
1:10,000; 37˚C for 40 min), anti‑survivin (cat. no. 2802; 
1:10,000; 37˚C for 40 min) from Cell Signaling Technology 
Inc. (Danvers, MA, USA); anti-c-IAP2 (clone F30-2285; 
1:10,000; 37˚C for 40 min) from BD Biosciences (Franklin 
Lakes, NJ, USA) and anti-β‑actin (cat. no. 8227; 1:20,000; 37˚C 
for 40 min) from Abcam (Cambridge, MA, USA).

RNAi. The XIAP-targeting short hairpin RNA vector was 
generated through literature review (21). The target sequence 
is 50-AGG TGA AGG TGA TAA AGT A-30 (22) Transfection 
was carried out using Lipofectamine 2000 transfection reagent 
(Gibco; Thermo Fisher Scientific, Inc.) and a BLOCK‑iT™ 
U6 RNAi Entry Vector kit (Kang Wei Technology, China; 
http://www.cwbiotech.com). For generation of stable transfec-
tant clones, the transfected cells were selected with G418 for 
3-4 weeks. A total of three selected clones were screened for 
XIAP expression (clone nos 1-3), and clone no. 2 was randomly 
selected for further experiments. G418-resistant mock trans-
fectants were also isolated, produced by transfection of the 
plasmid without XIAP-targeting sequence.

Measurement of cell viability and cell apoptosis. CH11 
(cat. no. 49516; 37˚C for 24 h) from Abcam (Cambridge, 
MA, USA), Topotecan (cat. no. d1916; 37˚C for 24 h) from 
Baomanbio (Shanghai, China), CAPE (cat. no. 211200; 
37˚C for 24 h) from Calbiochem; Merck KGaA (Darmstadt, 
Germany), and Etoposide (cat. no. 341205; 37˚C for 24 h) from 
Calbiochem were used to induce apoptosis, and cell viability 
was detected by counting cells under the optical microscope. 
Trypan blue (cat. no. GD‑jk1413; 37˚C for 1 min) from Guduo 
(Shanghai, China) was used to detect viable cells or cell 
death according to the manufacturer's protocol. In additional 

experiments, in order to improve the experiment efficiency, an 
MTT kit was used (Gibco; Thermo Fisher Scientific, Inc.) and 
flow cytometry (BD Biosciences) were used to detect early 
apoptosis according the manufacturer's protocol.

Statistical analysis. SPSS software version 13.0 was used 
(SPSS, Inc., Chicago, IL, USA). All data are expressed as the 
mean ± standard deviation of three independent experimental 
replicates. Statistical analysis was performed using a one-way 
analysis of variance followed by the Least Significant differ-
ence post hoc test or Student's t-test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Basal expression of XIAP is significantly different between 
ClearCa‑2 and ClearCa‑6 cell lines. The basal protein 
expression of XIAP, cIAP-1, cIAP-2 and survivin, which 
are the main members of the IAPs family, were analyzed by 
western blot analysis. It was demonstrated that there were no 

Figure 1. Protein expression of IAP1 and -2, XAP and survivin, in ClearCa-2 
and ClearCa-6 cell lines, as assessed by western blot analysis. XIAP, X-linked 
inhibitor of apoptosis; c-IAP, inhibitor of apoptosis protein.

Figure 2. Cell viability percentage of ClearCa-2 and ClearCa-6 cell lines fol-
lowing CH11, Topotecan, CAPE and Etoposide treatment. Data are expressed 
as the mean ± standard deviation. *P<0.05 ClearCa-2 vs. ClearCa-6. CAPE, 
caffeic acid phenethyl ester; CH11, CD95‑specific antibody.
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differences between cIAP-1 and survivin expression levels 
in both cell lines, and cIAP-2 had a slight difference, but the 
expression XIAP between the two cell lines was very different. 
The expression of XIAP in ClearCa-2 was much higher than 
ClearCa-6 (Fig. 1).

ClearCa‑2 cells with high expression XIAP are resistant to 
apoptosis; however, ClearCa‑6 cells with low‑expression 
XIAP are sensitive to apoptosis. Because of the complicated 
mechanism of apoptosis, four different drugs which could 
induce cell apoptosis through different pathways were used. 
The results demonstrated that ClearCa-2 cells with higher 
expression of XIAP were resistant to apoptosis induced by all 
four drugs (Fig. 2). Following drug treatment for 24 h, the cell 
viabilities (compared with the control group) were 83.54% for 
CH11, 84.07% for Topotecan, 84.04% for CAPE, and 81.85% 
for Etoposide. However, ClearCa-6 cells with lower expression 
of XIAP were sensitive to apoptosis induced by all four drugs 
(Fig. 2). This difference in the expression levels between the 
two cell lines was statistically significant (P<0.05).

Different apoptotic signals did not impact on the expression 
of XIAP during apoptosis. ClearCa-2 and -6 cell lines demon-
strated a different sensitivity to apoptosis, because of different 
basal protein expression levels of XIAP. However, whether 
these levels would change during apoptosis induced by 
different drug sat different time points or not was investigated. 
Following 24 h treatment with CH11 (Fig. 3A) and Topotecan 
(Fig. 3B), both cell lines had no change in XIAP expression 
but XIAP expression levels were higher in ClearCa-2 cells 
compared with the ClearCa-6 cells.

RNAi technology inhibits the expression of XIAP in the 
Caki‑1 cell line. To further determine the role XIAP serves 
in RCC cell apoptosis, another XIAP-high-expression RCC 
cell line was studied (Caki-1), by inhibiting XIAP expression 
through RNAi. A total of three stable transfection cell lines 
were used (clone nos. 1-3), and western blot analysis was 
performed to detect XIAP expression in them. Expression 

levels of XIAP were effectively silenced in all three clone cell 
lines, but in the parental and the mock group, the expression of 
XIAP was normal (Fig. 4). Therefore, clone no. 2 was selected 
in further experiments, and was termed as XIAP no-expression 
Caki-1 cells.

Sensitivity of Caki‑1 cells not expressing XIAP to 
Etoposide‑induced apoptosis is greatly enhanced. It 
was demonstrated that RCC cells were more sensitive to 
Etoposide-induced apoptosis than with the other drugs; 
therefore, XIAP no-expression Caki-1 cells, Caki-1 cells and 
Mock cells (transfected by plasmid without XIAP interference 
gene) were treated with Etoposide for 24 h, and the cell death 
percentage was measured by MTT. It was demonstrated that 
the cell death percentage of XIAP no-expression Caki-1 cells 
was much higher than the Caki-1 and Mock cells, (P<0.05; 
Fig. 5). Between Caki-1 and mock cells, there was no statistical 
significance in the cell death percentage (P=0.519; Fig. 5A). It 
was also observed that following the treatment of Etoposide, 
the early apoptosis rate in XIAP no-expression Caki-1 cells 
was much higher than in the Caki-1 cells. At 0, 0.5, 1, 3, 6, 
12 and 24 h, the early apoptosis rates of XIAP no-expression 
Caki-1 cells were 1.23, 11.7, 13.87, 22.07, 29.14, 31.81 and 
43.21%, respectively. However, the early apoptosis rates of 
Caki-1 cells were 1.16, 1.48, 2.62, 4.61, 4.61, 3.26, and 5.20%, 
respectively (Fig. 5B).

Expression of XIAP is stable during apoptosis induced by 
Etoposide. In order to observe the level of expression of XIAP 

Figure 3. XIAP protein expression following Topotecan and CH11 treatment, as assessed by western blot analysis. Representative western blot images of 
Clear‑Ca‑2 and ‑6 cells following (A) CH11 and (B) Topotecan treatment. XIAP, X‑linked inhibitor of apoptosis; CH11, CD95‑specific antibody.

Figure 4. XIAP expression in RNA interference clone cell lines, as assessed 
by western blot analysis. XIAP, X-linked inhibitor of apoptosis.
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in the progress of apoptosis, the expression of XIAP in Caki-1 
and XIAP no-expression Caki-1 cells was detected by western 
blot analysis, at different time points during apoptosis induced 
by Etoposide. It was observed that there was no change in the 
XIAP protein expression levels, as was also observed in the 
ClearCa-2 an ClearCa-6 cell lines (Fig. 6).

Discussion

In recent years, many apoptosis controlling genes have 
been reported (23-25). XIAP, an important member of the 
anti-apoptotic IAPs family, has a strong inhibitory effect on 
caspase-3, -7, and -9 and it can also inhibit pro-caspase-3. It 
can also affect signaling pathways, such as c-Jun N-terminal 
kinase where, it is thought to serve a key role in the regula-
tion of apoptosis (26-28). Many malignant tumors, such as 
breast, ovarian, lung, pancreatic and prostate cancer, express 
high levels of XIAP (29-34). Some reports have mentioned 
that increasing expression levels of XIAP through transfec-
tion can enhance their resistance to apoptosis induced by 
the death receptors or gamma-rays. Conversely, reducing the 
expression of XIAP increases the sensitivity of cancer cells 
to apoptosis (35,36). A previous study illustrated that XIAP 
is expressed in different histologic types of RCC, and further 
confirmed the universality of XIAP expression in human 
cancer (37). Notably, the expression of XIAP in RCC is 
increased, from early to late cancer stages, at both mRNA and 
protein levels (37). This indicated that tumor progression coin-
cided with higher expression of XIAP. Similar reports have 
been presented regarding non-small cell lung cancer and acute 
myeloid leukemia (38). High expression levels of XIAP may 
reduce the sensitivity of RCC cells to apoptosis, and provide 
favorable conditions for tumor cell survival and development.

The present study demonstrated that the expression levels 
of XIAP have important effects in RCC cells apoptosis. The 
ClearCa-2 and ClearCa-6 RCC cell lines have different basal 
protein expression levels of XIAP. Apoptosis may be induced 
through extrinsic or intrinsic signaling pathways, and ulti-
mately activate caspases leading to apoptosis. A total of four 
drugs were chosen that function through the extrinsic death 
receptor pathway (CH11), the intrinsic mitochondrial pathway 
(Etoposide and Topotecan) and the nuclear factor (NF)-κB 
inhibiting IAPs (CAPE) induced apoptosis. It was demonstrated 
that the ClearCa-6 cell line was sensitive to apoptosis, whereas 
ClearCa-2 cells were not, and the intrinsic mitochondrial pathway 
was the strongest in inducing apoptosis. Furthermore, another 
RCC cell line was employed, termed Caki-1, which has also high 
expression of XIAP, to verify our conclusion that XIAP may 
have important effects in RCC cell apoptosis (22). The protein 
expression of XIAP in theCaki-1 cells was eliminated through 
RNAi, and it was confirmed that the sensitivity of RCC cells to 
apoptosis was increased with decreased expression of XIAP.

Previous studies have reported that the expression of XIAP 
increases following exposure of tumor cells to tumor necrosis 
factor-related apoptosis-inducing ligand or gamma-rays (39); 
however, other reports demonstrated the opposite result (40,41). 
In the present study, CH11 and Topotecan induced apoptosis, 
but had no effect in the expression of XIAP in either ClearCa-2 
or ClearCa-6 cell lines. The expression of XIAP in both cell 
lines was stable during apoptosis, although ClearCa-2 cells 
expressed much higher XIAP than the ClearCa-6 cells. To 
verify this result, the expression of XIAP was investigated 
in Caki-1 cells and no-expression XIAP Caki-1 cells during 
apoptosis induced by Etoposide, and the same phenomenon 
was observed. Therefore, it is evident that that the role of 
XIAP in apoptosis is very important.

Figure 6. XIAP protein expression levels following Etoposide treatment, as assessed by western blot analysis. XIAP, X-linked inhibitor of apoptosis.

Figure 5. (A) Cell death percentage of Caki-1, mock and RNA interference clone no.2 cells detected by MTT. (B) Time course measurement of the apoptotic 
cell percentage of Caki‑1 and XIAP no‑expression Caki‑1 cells following Etoposide treatment. As assessed by flow cytometry. Data are expressed as the 
mean ± standard deviation. *P<0.05 vs. XIAP no expression Caki cells. XIAP, X-linked inhibitor of apoptosis.
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RNAi can effectively suppress protein expression, with a range 
in the inhibition rate (14-17). Regarding XIAP, Wang et al (18) 
has reported that RNAi could reduce the expression of XIAP by 
56.2% in laryngeal carcinoma cells. Cao et al (19) has reported 
that RNAi could reduce its expression by 79.86% in pancreatic 
carcinoma cells. Regarding the RCC cells, Bilim et al (22) 
used RNAi to decrease XIAP by 85.3%, in Caki-1 cells. In the 
present study, the interference plasmid transfected Caki-1 cells 
and it completely inhibited XIAP expression by 100%. To the 
best of our knowledge, no previous study has ever reported such 
an effect. This study provides novel insights on XIAP and gene 
therapy in clinical practice.

In conclusion, there are so many factors inducing apop-
tosis, and the present study only studied the effect of XIAP 
on apoptosis. There was a difference in the basal expression 
of XIAP in two RCC cell lines, and those with higher expres-
sion of XIAP resisted apoptosis. At the same time, reducing 
the expression of XIAP enhanced the sensitivity to apoptosis. 
However, the underlying mechanism(s) of this phenomenon 
need to be elucidated further.
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