
Transcriptome-wide subtyping of pediatric and adult T cell
acute lymphoblastic leukemia in an international study of
707 cases
Yu-Ting Daia,1, Fan Zhanga,1, Hai Fanga,1, Jian-Feng Lia,b , Gang Lua, Lu Jianga, Bing Chena, Dong-Dong Maoa, Yuan-Fang Liua, Jin Wanga, Li-Jun Penga,
Chong Fenga,b, Hai-Feng Chenc, Jun-Xi Muc , Qun-Ling Zhangd, Hao Wange, Hany Ariffinf, Tan Ah Moyg, Jing-Han Wangh, Yin-Jun Louh , Su-Ning Cheni,j,
Qian Wangi, Hong Liui, Zhe Shani, Itaru Matsumurak, Yasushi Miyazakil, Takahiko Yasudam, Li-Ping Doue, Xiao-Jing Yann, Jin-Song Yano,
Allen Eng-Juh Yeohp,q,r, De-Pei Wui,j , Hitoshi Kiyois, Fumihiko Hayakawat, Jie Jinh, Sheng-Yue Wanga, Xiao-Jian Suna,2 , Jian-Qing Mia,2, Zhu Chena,2 ,
Jin-Yan Huangu,v,2, and Sai-Juan Chena,2

Contributed by Zhu Chen; received November 18, 2021; accepted February 28, 2022; reviewed by Mark Lathrop and Bin-Bing Zhou

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy
of T cell progenitors, known to be a heterogeneous disease in pediatric and adult
patients. Here we attempted to better understand the disease at the molecular level
based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult
patients, and 7 with unknown age; 599 from published cohorts and 108 newly investi-
gated). Leveraging the information of gene expression enabled us to identify 10 sub-
types (G1–G10), including the previously undescribed one characterized by GATA3
mutations, with GATA3R276Q capable of affecting lymphocyte development in zebra-
fish. Through associating with T cell differentiation stages, we found that high expres-
sion of LYL1/LMO2/SPI1/HOXA (G1–G6) might represent the early T cell progenitor,
pro/precortical/cortical stage with a relatively high age of disease onset, and lympho-
blasts with TLX3/TLX1 high expression (G7–G8) could be blocked at the cortical/post-
cortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9–G10)
might correspond to cortical/postcortical/mature stages of T cell development. Notably,
adult patients harbored more cooperative mutations among epigenetic regulators, and
genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged
40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid
leukemia, suggesting the nature of mixed phenotype acute leukemia.
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T cell acute lymphoblastic leukemia (T-ALL) is characterized by malignant transforma-
tion and proliferation of T cell progenitors (1, 2), accounting for 10 to 15% of pediatric
and 20 to 25% of adult ALL cases (2, 3). Therapeutic progress has led to a gradual
improvement in clinical outcomes, with a curable rate achieving up to 90% in children
but much lower rate (60%) in adults (4). Recent advances in high-throughput genomic
technologies have spurred the cohort-scale genetic analysis for identifying recurrent
genetic abnormalities in T-ALL (5, 6). Recurrent genetic events in lymphoid neoplasia
have been reported to cooperatively induce malignant transformation of normal thymo-
cytes through transcriptional deregulation, leaving traces in the form of specific expres-
sion patterns (7–9). In most T-ALL patients, genetic abnormalities often involve genes
encoding transcription factors, as highlighted by lymphoblastic leukemia-associated fac-
tors (e.g., LYL1, LMO1/2, TLX1/3, NKX2-1, and TAL1/2) (10). These genes may
exhibit aberrant expression levels, when structural variations involve the T cell receptor
gene (TCR) or enhancer regions from other partner genes: for example, the transcription
factor gene TAL1 in the STIL-TAL1 deletion (11). Most commonly seen in early T cell
precursor ALL (ETP-ALL) patients are the SET-NUP214 fusion and fusions involving
the gene NUP98 (12). In addition to gene fusions and rearrangements, mutations are
observed in over 90% of T-ALLs (9). Driver mutations can occur in genes essential for
regulating T lymphocyte development, to name but a few: the NOTCH signaling
(NOTCH1, FBXW7, NOTCH3), the JAK-STAT signaling (JAK3, STAT5B), the PI3K-
AKT-mTOR (mammalian target of rapamycin) signaling (PIK3R1, PIK3CD), epigenetic
regulators (PHF6, USP7), PRC2 complexes (EZH2, SUZ12), and transcription factors
(BCL11B, ETV6, GATA3). Mutations can also occur in genes essential for modulating
cell proliferation and differentiation, such as the RAS signaling (KRAS, NRAS), cell cycle,
or apoptosis-related factors (CDKN2A, CCDN3), and translational regulators (RPL10,
RPL5). In staging of T cell maturation, T-ALL can be arrested at different stages of
T cell development. Based on the clinical immunophenotypes, T-ALL has been
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subclassified into ETP-ALL, pro/precortical, cortical, postcorti-
cal, and mature T-ALL (5, 13). Notably, the recurrent genetic
alterations show a degree of association with T cell development
stages (14, 15), while combining both information from genetic
alterations and differentiation arrests for improved subtyping has
not yet been reported.
It is well recognized that T-ALL display a large variability of

clinical and genetic features between pediatric and adult
patients (9). Previously we described the landscape of B cell
precursor-ALL molecular abnormalities, proposing 14 distinct
subtypes based on RNA-sequencing (RNA-seq) data of 1,223
patients (7). By analogy, we here aimed to elucidate genetic/
transcriptomic alterations alteration in T-ALL, in particular
genomic insights into differences between pediatric and adult
patients. We aggregated the evidence from RNA-seq data of

707 T-ALL patients (510 pediatric, 190 adult, and 7 with
unknown age), including 599 obtained from six published
international public cohorts (cohorts 1 to 6) (5, 9, 16–19) and
108 newly contributed from two more centers of excellence in
China (cohorts 7 and 8) (SI Appendix, Table S1 and Dataset
S1). All RNA-seq data were uniformly preprocessed and sub-
jected to integrative analysis using a well-established pipeline
(Fig. 1A) (7, 20, 21), generating resources on gene expression
and genetic alterations.

Results

Discovery of Gene Fusions and Characterization of T-ALL Sub-
types Based on RNA-seq Data from 707 Cases. We carried out
an integrated analysis combining RNA-seq data from multiple
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C

Fig. 1. Overview of molecular subtypes of T-ALL. (A) Overview of the T-ALL study workflow. RNA-seq data of T-ALL patients from eight cohorts are collected
and integrated. After quality control, the gene-expression profile, sequence variations, and gene fusions identified from RNA-seq data are subjected to
further analysis. tSNE analysis and hierarchical clustering methods are applied to determine the subtypes of T-ALL. (B) Two-dimensional tSNE plot and
suprahexagonal map of 707 T-ALL patients. On the tSNE plot, each dot represents one T-ALL patient. The top 5% of genes demonstrating variance (with a
perplexity score of 15 and a θ-value of 0.2) are subjected to tSNE analysis. Patient samples are colored according to the subtypes. Shown, Right, are illustra-
tions of subtype-specific expression using a suprahexagonal map. (C) Bar plot of the percentage of patients based on age and gender in each subtype. (D)
Profiling of clinical characteristics and genetic features identified in 707 T-ALL patients. Columns indicate T-ALL patients, and rows represent three panels:
clinical information panel (subtypes, age, gender, clinical outcome, ETP status, T-cell maturation stage), fusion panel (gene fusions, including fusions reported
in the original study from public cohorts and identified in RNA-seq), and expression panel (gene-expression level of dysregulated leukemic factors). Patient
samples are ordered according to the unsupervised hierarchical clustering within each subtype. For the gene-expression panel, up- and down-regulated
genes are shown in the heatmap in red and blue, respectively. Ten subtypes are defined according to their molecular features: G1 (LYL1/LMO2 overexpres-
sion, LYL1/LMO2), G2 (GATA-3 mutation, GATA-3 mut), G3 (SPI1-fusion, SPI1-fus), G4 (KMT2A-rearrangement, KMT2A-r), G5 (MLLT10-rearrangement, MLLT10-r),
G6 (HOXA10-fusion, HOXA10-fus), G7 (TLX3 overexpression probably due to fusion to TCR, TLX3), G8 (TLX1 overexpression probably due to fusion to TCR, TLX1),
G9 (NKX2-1 overexpression, NKX2-1), and G10 (TAL1/LMO1 overexpression, TAL1/LMO1).
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cohorts totaling 707 T-ALL patients (Fig. 1A). Based on the
information of gene expression with batch effects corrected
across cohorts (SI Appendix, Fig. S1 A and B), 10 distinct sub-
types were identified using a graph-based semisupervised classi-
fication approach (SI Appendix, SI Materials and Methods). The
classification of each subtype was evident in both visual inspec-
tion and robust analysis using random forest (SI Appendix, Fig.
S1 C–G). The tightness of patient groupings was illustrated
using the two-dimensional representation determined by t-dis-
tributed stochastic neighbor embedding (tSNE), complemented
with subtype-specific expression illustrations using a suprahex-
agonal map, collectively revealing the (dis)similarity among
subtypes (Fig. 1B).
We next characterized subtypes regarding demographic

information, gene fusion events, and dysregulated expression of
leukemogenic factors (Fig. 1 C and D and Dataset S2). In G1,
G2, and G6, over 50% of patients were adults, representing the
highest proportion of adult patients among all subtypes (Fig.
1C). G1 was associated with SET-NUP214 and NUP98 fusions
and the elevated expression of LYL1 (participating in lympho-
magenesis) (22), LMO2 (perturbing T-cell differentiation) (23),
SPI1 (expressing in ETPs and essential for the normal hemato-
poiesis) (24), MEF2C (activated in T-ALL) (25), and HOXA
family genes (Fig. 1D, expression panel). Notably, ETP-ALL
patients were mainly classified into G1 as compared to other
subtypes (42 of 59 vs. 7 of 215, P = 1.7e-32, χ2 test) (Fig. 1D
and Dataset S2). The G2, tightly located close to G1 (Fig. 1B),
was identified as a subtype, which was represented by GATA3
mutations, while no significant fusion transcripts were detected
(Fig. 1D). The G3, another subtype close to G1, contained
patients all harboring SPI1 fusions (TCF7-SPI1 and STMN1-
SPI1). Patients in G4, G5, and G6 exhibited overexpression of
HOXA family genes (Fig. 1D). All patients in G4 harbored
KMT2A fusions and MLLT10 rearrangements were regarded as
key fusion events in G5, whereas HOXA10 fusions mainly
occurred in G6 (Fig. 1D). T-ALLs in G7 and G8 were, respec-
tively, characterized by TLX3 and TLX1 overexpression (Fig.
1D). The G9 subtype was unique because of the overexpression
of NKX2-1 (interfering T cell differentiation by ectopic expres-
sion) (26). The G10 subtype was featured by diverse fusion
events (such as STIL-TAL1, TAL2 fusions, LMO2 fusions, and
LMO1 fusions), and also by the overexpression of TAL1 (par-
ticipating in an oncogenic transcriptional program) (27) and
LMO1 (altering T-cell differentiation together with TAL1) (28)
in most patients (Fig. 1D).
In summary, transcriptome-driven molecular subtyping is

biologically relevant, with each subtype associated with unique
molecular abnormalities, namely: G1 (LYL1/LMO2 overexpres-
sion), G3 (SPI1 fusion), G4 (KMT2A rearrangement), G5
(MLLT10 rearrangement), G6 (HOXA10 fusion), G7 (TLX3
overexpression probably involving TCR fusion), G8 (TLX1
overexpression probably involving TCR fusion), G9 (NKX2-1
overexpression), and G10 (TAL1/LMO1 overexpression). The
identification of subtype G2 motivated further investigation
into its molecular and functional mechanism.

Evidence for Subtypes from Nonsilent Gene Mutations in
T-ALL. Using the previously established workflow (7, 9), we
sought to explore evidence from our RNA-seq dataset, allowing
the identification of nonsilent gene mutations with high sensi-
tivity and specificity (SI Appendix, Fig. S1H). The number of
nonsilent mutations detected in patients was significantly corre-
lated with age (Spearman correlation coefficient R = 0.44, P <
0.0001) (SI Appendix, Fig. S1I). We identified a total of 2,380

candidate mutated genes, with 78 recurring in >1% of T-ALL
patients. These 78 genes were broadly grouped into 9
functional categories (C1 to C9): NOTCH signaling (C1),
epigenetic regulators (C2), transcription factors (C3), PI3K-
AKT-mTOR signaling (C4), JAK-STAT signaling (C5), RAS
signaling pathway (C6), translation (C7), proliferation/apopto-
sis (C8), and others (C9) (Datasets S3–S5). Mutations distrib-
uted among 10 subtypes (G1 to G10) are detailed in SI
Appendix, Fig. S2 and summarized based on functional catego-
ries (C1 to C9) (Fig. 2 A, Middle). The most frequently
mutated genes included NOTCH1 (492 of 707, 69.6%), fol-
lowed by FBXW7, PHF6, PTEN, and others (Fig. 2 A, Bottom).
Most mutations in FBXW7, PHF6, and PTEN, three well-
known tumor suppression genes, were loss-of-function in
nature (29–31). Though with a much lower frequency (3.5%),
GATA3 mutations were highly enriched (P = 8.7e-18, Fisher’s
exact test) in G2 (Fig. 2A), thus supporting the notation of G2
(GATA3-mut) (Fig. 1D).

Mutated genes were functionally diverse (Fig. 2A), possibly
acting as a coherent network. To support this, we integrated
the knowledge of gene interactions (defined by Kyoto Encyclo-
pedia of Genes and Genomes [KEGG] pathways). A network
of mutated genes emerged, which was useful to explore rela-
tionships between mutated genes and subtypes (Fig. 2B). We
next explored the percentage of mutations in each subtype and
compared the frequency of the given mutations to that in other
subtypes (Fig. 2C and Dataset S6). For example, mutations of
NOTCH1 were found in all subtypes, but the rates were rela-
tively lower in G1 (111 of 199, 55.78%), G4 (10 of 18, 55.
56%), and G10 (183 of 278, 65.83%), suggestive of an ten-
dency of independence, and higher in other subtypes, including
G6 (11 of 11, 100%) and G2 (10 of 11, 90.9%), suggestive of
cooccurrence (Fig. 2C). As expected, the GATA3 mutations
most significantly clustered in G2 (Fig. 2C). For other sub-
types, key findings are summarized: among patients in G1
(LYL1/LMO2), mutated genes in epigenetic regulators (PHF6,
ASXL1, CHD4, EZH2, SETD2, DNMT3A, and IDH2), tran-
scription factors (WT1, RUNX1, ETV6, MED12, IKZF1),
JAK-STAT signaling (JAK3, JAK1), RAS signaling (NRAS,
KRAS), and spliceosome complex (U2AF1) (P value < 0.05)
(Dataset S6) showed concurrent tendency (Fig. 2C). Gene
mutations in the PI3K-AKT-mTOR signaling were enriched in
G10 (TAL1/LMO1) (C4, P = 3.5e-24) (Dataset S6). We also
examined overall correlations between gene–gene (Dataset S6)
and category–category correlations (Dataset S6). The results
revealed mutations in PI3K-AKT-mTOR signaling (C4) were
mutually exclusive with those in the JAK-STAT signaling (C5,
P = 1.2e-5) and the RAS signaling (C6, P = 1.5e-3) (SI
Appendix, Fig. S3 and Dataset S6). Of note, mutations in isoci-
trate dehydrogenases (IDH2) significantly cooccurred with the
epigenetic modifier DNMT3A and NRAS mutations
(SI Appendix, Fig. S3 and Dataset S6). We also noticed that
RPL10R98S hotspot mutation formed two subclusters (G9 and
G10) (SI Appendix, Fig. S2), which was reported to be associ-
ated with young age T-ALL, and altered T cell development by
enhancing JAK-STAT signaling (32, 33).

GATA3R276Q Functions as a Driver Gene in T-ALL Leukemogen-
esis. Given that GATA3 point mutations were identified to sig-
nify subtype G2, we next addressed their functional
features. GATA3 is a key transcriptional regulator for T cell
development through binding to the DNA consensus sequence
GATA (34). The elevation of GATA3 gene expression was
found in T cell lymphoproliferative disorders (35, 36) and solid
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tumors, such as breast cancer (SI Appendix, Fig. S4 A and B).
Indeed, most mutations were clustered on the DNA binding
domain with an intact open reading frame (ORF), in contrast
to some cases of GATA3 mutations distributed in other sub-
types with a truncated ORF of the genes (Fig. 3A). Previously,
the lack of or aberrant gene expression of GATA3 was linked to
cancerogenesis, especially in leukemia (37). Despite limited
sample size, the prognosis of G2 cases seemed to be poor (using
available survival data, 5 dead and 2 alive in G2, 112 dead and
455 alive in other subtypes, P = 4.8e-3 by Fisher’s exact test).
The mutants identified in patients in G2 (GATA3-mut) were
all located on the N-finger domain of GATA3 protein, such as
R276Q (n = 5) (Fig. 3A). The expression level of GATA3 in
G2 was significantly elevated, further supporting the impor-
tance of GATA3 in leukemogenesis (Fig. 3B). We also noticed

that the expression levels of altered GATA3 were significantly
higher in G2 (Fig. 3C), which was not observed in other
subtypes (SI Appendix, Fig. S4 C and D). Although one case
in G2 had lower GATA3 expression (SI Appendix, Fig. S3B),
the variant allele frequency of GATA3R276Q was 0.891 (Dataset
S5) and this case harbored NRASG13D. Based on the crystal
structure of GATA3, there exist two types of GATA3/DNA
complexes (38): one for the protein binding to a palindromic
DNA site (the wrapping structure) (SI Appendix, Fig. S4E), the
other where GATA3 targets two separate DNA molecules (the
bridging structure) (SI Appendix, Fig. S4F). The residue R276,
located on the zinc core module of the N-finger, likely interacts
with the DNA binding sites (SI Appendix, Fig. S4 E and F).

To evaluate the binding affinity, we built two different
GATA3/DNA complex sets (wrapping vs. bridging conformations),

A

B

C

Fig. 2. The landscape of molecular interaction and pairwise relationship between nonsilent gene mutations. (A) Profiling of nonsilent gene mutations identi-
fied in 707 T-ALL RNA-seq. Mutation counts, gene mutations with high frequencies, and mutations in different categories are illustrated in three panels. In
the Top, the number of mutations identified in RNA-seq data are illustrated as a barplot. In the Middle, genes with over 10% mutation frequency in T-ALL, as
well as USP7 (9.5%) and GATA3 (used to discriminate GATA-mut subtype), are visualized. In the Bottom, mutation events in different categories are summa-
rized using a blue label. (B, Left) Network visualization of mutated genes with edges defined by the knowledge of gene interactions from KEGG pathways.
(Right) The same network but with nodes color-coded by the subtype-specific mutation frequency. (C) Comparison of the percentage of mutations in each
subtype. Tendencies of cooccurrence and independence/exclusivity between gene mutations and subtypes are calculated, respectively. Red pies represent
statistically significant cooccurrence, blue ones indicate statistically significant exclusivity, while gray ones show tendencies of gene mutation relationship
that does not reach to statistical significance. Statistical significance of cooccurrence and exclusivity is calculated by comparing the mutations frequency in
this subtype with other subtypes using χ2 test (when cases in all conditions >5) or Fisher’s exact test. Due to the limited sample sizes in some subtypes,
some tendencies of relationship between gene mutations and subtypes could not always reach to statistical significance. Statistical results between muta-
tions and subtypes are listed in Dataset S6.
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each containing the wild-type GATA3 (GATA3WT) and
mutant (GATA3R276Q), and calculated the binding free energy
to estimate the GATA3/DNA interaction (SI Appendix, SI
Materials and Methods). Our model simulations showed that
for the wrapping complex, the binding free energy was signifi-
cantly higher in GATA3R276Q/DNA (thus lower DNA-binding
affinity) than in GATA3WT/DNA, and no difference was
observed for the bridging structure (Fig. 3D). To predict target
genes that might be affected by wrapping/bridging motifs, we
employed HOMER (39), combined with chromatin
immunoprecipitation-sequencing data of GATA3WT in human
Jurkat cell lines (40) (Dataset S7), to define three sets of target
genes: genes affected by wrapping motifs (wrapping targets),
bridging motifs (bridging targets), and those insusceptible to
wrapping/bridging motifs (other targets). Meanwhile, we iden-
tified 685 significantly up-regulated genes and 318 down-
regulated genes in G2 (GATA3-mut), but not in GATA3MUT

T-ALL cases falling into other subtypes (Fig. 3E and SI
Appendix, Fig. S4G). These data supported the unique role of
GATA3 in defining G2 as a distinct subtype. Among the 685
up-regulated genes in G2, 215 (31%) were GATA3 target
genes, including 84 wrapping targets, 100 bridging targets, and
49 wrapping/bridging targets (Fig. 3F). These latter 49 genes
were of functional relevance to negative regulation of myeloid
cell differentiation (ZBTB16 and MEIS2), the cAMP signaling
pathway (ATP1B1), and transcription factor binding (GATA3)
(Fig. 3F). Notably, ZBTB16, also known as promyelocytic leu-
kemia zinc finger PLZF, was reportedly to be involved in T cell
lineage development (41) (SI Appendix, Fig. S4 H and I).

To examine the in vivo effect of GATA3R276Q in hematopoi-
esis, we tried to use the zebrafish as a model. In this regard, we
tested the leukemogenic role of the above-mentioned
RPL10R98S, an established leukemogenic mutation (32, 33), in
a zebrafish experiment. Indeed, the results showed that cmyb, a

A
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Fig. 3. Schematic representation of GATA3 point mutations. (A) Protein structure of GATA3 and its mutations in T-ALL. All mutations on GATA3 are visualized
on the upper area of the protein structure, and mutations in the N-finger domain identified in G2 are visualized in the lower area. (B) Boxplot of gene
expression of GATA3 in each subtype. The dashed line represents the mean value of GATA3 in 707 T-ALLs. The P values are calculated by comparing with the
mean gene expression of GATA3 using Wilcoxon rank-sum test. (C) Boxplot of count of GATA3WT and altered GATA3MUT reads in G2. P value is calculated using
paired Wilcoxon rank-sum test. (D) Binding free energy (KJ/mol) reveals binding affinities of GATA3 (wild type, R276Q) protein and wrapping and bridging
DNA sequence. (E) Volcano plot shows the differentially expressed genes between G2 (GATA3-mut) and GATA3WT T-ALL. Each dot represents one gene. Genes
significantly up-regulated in G2 (GATA3-mut) are colored in red, and significantly down-regulated in G2 (GATA3-mut) in blue. (F, Left) Gene-expression level of
predicted bridging genes in T-ALL patients with different GATA3 genotypes; (Right) the gene ontology results using up-regulated bridging genes in GATA3R276Q.
(G) WISH results of rag1 RNA probes between GATA3WT- and GATA3R276Q-mRNA injected embryos at 4 dpf. The phenotypes are defined as four groups: high,
normal, mild, and extremely low according to the rag1 RNA+ area in thymus. The percent is quantified (Right). P value is calculated using Fisher’s exact test.
(H) WISH results of cmyb, αe-globin, and lyz RNA probes between GATA3WT- and GATA3R276Q -injected embryos at 4 dpf. P value is calculated using Wilcoxon
rank-sum test. (I) qRT-PCR analysis of mRNA expression of the GATA3 downstream genes and rag1 in both GATA3WT- and GATA3R276Q-mRNA injected embryos
at 4 dpf. The relative mRNA expressions are normalized to human GATA3. P values are calculated using Student's t test.
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hematopoietic stem/progenitor cell (HSPC) marker, was
aberrantly up-regulated in the caudal hematopoietic tissue
of RPL10R98S mRNA-injected embryos compared to RPL10WT,
as revealed by whole-mount in situ hybridization (WISH),
reflecting an abnormal proliferation of HSPCs (SI Appendix, Fig.
S5). Now that the system was feasible, we carried out the overex-
pression assay for both GATA3WT and GATA3R276Q in zebra-
fish. GATA3WT and GATA3R276Q mRNAs were injected into
embryos for transient expression, followed by WISH examining
the definitive hematopoiesis (Fig. 3 G and H). The expression of
rag1 (a lymphocyte marker in zebrafish) was significantly
up-regulated in GATA3R276Q mRNA-injected embryos in the
thymus at 4 d postfecundation (dpf, P = 0.0076) (Fig. 3G), but
no such altered expression was found with cmyb, αe1-globin, and
lyz (Fig. 3H), the latter two being markers of erythroid cells and
neutrophils, respectively. qRT-PCR confirmed the up-regulation
of GATA3 downstream genes (including gata3, zbtb16a/b,
meis2a/b, bcl2a/b, and spi1a) and rag1 mRNA in the
GATA3R276Q mRNA-injected group (Fig. 3I and Dataset S8).
Taken together, our results confirmed GATA3R276Q as a driver
for thymocyte proliferation in zebrafish embryos through either
enhancing the effect of hematopoiesis-associated transcription
factors (GATA3, ZBTB16, MEIS2) or activating target genes
involved in T cell development pathways (including TGF-β,
NOTCH, and Wnt/β-catenin signaling) (SI Appendix, Fig.
S6A). These signaling cascades might collectively affect T cell
proliferation and differentiation, eventually contributing to the
pathogenesis of T-ALL.

Association of Molecular Subtypes with T Cell Development
Stages. Given that genetic alterations distributed differently
among subtypes, particularly ETP-ALL patients mainly found
in G1 (LYL1/LOM2), we hypothesized that the subtypes
might be inherently relevant to the maturation stages of T
cells. In support of this, patients in G1 had low expression
levels of T cell-related markers—such as CD1A, CD2, CD3E,
CD4, and CD8A (immunophenotype-related genes)—but
higher hematopoietic stem cell-related markers, such as CD34
(SI Appendix, Fig. S6B). Notably, the myeloid marker CD33
was highly expressed in G1 (SI Appendix, Fig. S6B). Further-
more, the expression patterns for the hematopoietic-related
features in G2 and G3 were similar to those in G1, suggesting
that T-lineage elements in G2 and G3 might be primitive (SI
Appendix, Fig. S6B). Leukemic cells in G4 to G10 subtypes
were likely at relatively late-stage T cell development, consid-
ering the decreased expression of HSPC-related markers and
the increased expression of T cell-related markers (SI
Appendix, Fig. S6B). To systematically associate subtypes with
T cell development stages, we used the diffusion maps (42)
for dimensionality reduction of 707 T-ALL, yielding three
distinct branches (Fig. 4A): branch 1 for patients mainly from
G1 to G6, branch 2 (G7 and G8), and branch 3 (G9 and
G10). These three branches differed in ETP status and T cell
maturation stages, showing that ETP-ALL with pro/precorti-
cal immunophenotypes were enriched in branch 1, whereas
postcortical and medullary patients were enriched in branch 3
(SI Appendix, Fig. S6C).
Next, we used available public data of T cell expression func-

tional clusters (43) (Dataset S9) to characterize subtypes and
branches. The T cell differentiation stages in branch 1 patients
were the earliest, branch 2 patients at an intermediate stage,
and branch 3 patients at the late stage (the mature T-ALL
stage) (Fig. 4B). Together with dysregulated leukemogenic fac-
tors and subtypes, T-ALL patients thus could be divided into

three differentiation arrest branches: LYL1/LMO2/SPI1/HOXA
high expression (branch 1, G1 to G6), TLX3/TLX1 high
expression (branch 2, G7 to G8), and NKX2-1/TAL1/LMO1
high expression (branch 3, G9 to G10). Using both ETP signa-
ture (ETP status) and precortical signature (T cell development
status), we generated the signature-specific enrichment score for
each patient (Fig. 4C and Dataset S10). Patients with LYL1/
LMO2/SPI1/HOXA tended to have higher scores for both ETP
and precortical signatures, whereas patients with NKX2-1/
TAL1/LMO1 had lower scores for both signatures (Fig. 4C).
We also compared the age and gender composition between
the three branches and found that the LYL1/LMO2/SPI1/
HOXA branch had the highest percentage of adult patients
(P = 1.3e-26, χ2 test) (Fig. 4D) and harbored more mutations
(Fig. 4E). Functional categories were distributed differently
among the three branches: mutations in NOTCH signaling
(C1) were enriched in the TLX3/TLX1 patients; mutations in
epigenetic regulators (C2), transcription factors (C3), JAK-
STAT signaling (C5), RAS signaling (C6), and proliferation/
apoptosis (C8) were in the LYL1/LMO2/SPI1/HOXA and
TLX3/TLX1; and mutations in PI3K-AKT-mTOR signaling
(C4) were specifically concentrated in the NKX2-1/TAL1/
LMO1 branch (Fig. 4F).

In light of the prevailing perspectives (1, 5) and the knowl-
edge obtained in this study, a working model of T-ALL leuke-
mogenesis was proposed, with four key points (Fig. 4G): 1) the
accumulation of genetic abnormalities, such as gene fusions and
cancer driver mutations, could cause the dysregulation of differ-
ent leukemogenic factors, ultimately blocking normal T cell
development; 2) for T-ALL patients with the LYL1/LMO2/
SPI1/HOXA (G1 to G6), the immunophenotype of blasts
might represent the population blocked at a near HSPC or very
early T cell development stage (i.e., ETP-ALL or near ETP,
pro/precortical or cortical), and the age-onset for leukemogene-
sis tended to be higher (with over 50% adult patients); 3) for
T-ALL patients with the TLX3/TLX1 (G7 and G8), leukemic
blasts could be blocked at an intermediate stage, with the corti-
cal or postcortical immunophenotype of T-ALL cells; and 4)
the immunophenotype of T-ALL patients with the NKX2-1/
TAL1/LMO1 (G9 and G10) might correspond to cortical, post-
cortical, or mature T cell counterparts at the late stage.

Exploring Genomic, Expression, and Cellular Correlates likely
Explaining Differences in Adult and Pediatric T-ALL Patients.
Correlating age with mutations in T-ALL, we found that
DNMT3A and IDH2 mutations tended to occur in the rela-
tively elderly patients, with the mean age of 53 y for IDH2 and
48 y for DNMT3A (Fig. 5A and SI Appendix, Fig. S7A). When
the G1 group, which contained the majority of ETP-ALL in
this series, was further scrutinized, the mutations rates of
DNMT3A and IDH2, two genes with high lesion frequencies
in acute myeloid leukemia (AML), were concentrated in about
44% of the G1 cases with the age of over 40 y (SI Appendix,
Fig. S7B). The mutations tended to be frameshift and stop-
gain for DNMT3A, suggesting loss-of-function (SI Appendix,
Fig. S7C) (44), whereas hotspot missense mutations R140Q
were observed in IDH2, in agreement with a gain-of-function
alteration (SI Appendix, Fig. S7D) (45). It was reported that
DNMT3A and IDH2 mutations could cooperate to induce
AML (44), but such cooperation was not yet identified in
T-ALL. Mutated genes in epigenetic regulators (IDH2,
DNMT3A, CHD4, ASXL1, CREBBP, and EZH2), transcrip-
tion factors (IKZF1, ETV6, and RUNX1), JAK-STAT signaling
(JAK3 and JAK1), and RAS signaling (NRAS) were enriched in
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Fig. 4. Dimensionality reduction analysis revealing T cell development in different subtypes. (A) Visualization of the dimensions calculated by diffusion map
using 707 T-ALL patients. The top 5% variance genes in RNA-seq data are subjected to diffusion map analysis and the first three diffusion components are
visualized using three-dimensional plots. Each point represents one sample. (B) Gene-expression patterns of signatures of different functional clusters.
These clusters were differentially expressed in different T cell stages. The Left heatmap shows the expression levels of functional clusters in different T cell
stages, the Middle heatmap shows the expression levels in different subtypes, while the Right heatmap shows the expression levels in different branches.
Expression is calculated using the mean value of the genes and then scaled as the row z-score. (C) Scatter and density plot of enrichment score (ES) for ETP
and precortical signatures in different dysregulated leukemogenic factor branches. (D) Bar plot of the percentage of patients according to age (Upper) and
gender (Lower) in each dysregulated leukemogenic factor branch. P values are calculated using a χ2 test. (E) Violin plot of mutation counts identified in RNA-
seq of each branch. The outline color represents age information and the internal boxplot represents the three branches. P values are calculated using Wil-
coxon rank-sum test. (F) Comparisons of different functional categories of mutations in the three branches. P values are calculated using Fisher’s exact test.
(G) Model of the association between the accumulation of genetic abnormalities, the dysregulation of leukemogenic factors, T cell stages, and age in T-ALL
leukemogenesis.
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adult T-ALL, while those in FBXW7, BCL11B, and RPL10
were more likely to occur in pediatric T-ALL (P < 0.05) (Fig.
5A). Regarding gene fusions, we sorted the patients by their age
at diagnosis (Fig. 5B). SET-NUP214, NUP98 fusions and
ZFP36L2 fusions were significantly enriched in adult patients,
whereas SPI1 fusions, NKX2-1 fusions, and STIL-TAL1 were
more likely to occur in pediatric patients (P < 0.05) (Fig. 5B).
Since differences in genetic abnormalities/expression did exist
between pediatric and adult patients, we searched for genes that
were significantly correlated with age, especially those in path-
ways of vulnerability for potential therapeutic targets (Fig. 5B).
Indeed, the expression levels of two therapeutic targets, BCL2
(participating in apoptosis) and LCK (involved in preTCR acti-
vation) (46), were found oppositely correlated with age in
T-ALL (SI Appendix, Fig. S7E). Other targets (JAK1, ABL1,
and FLT3) were mainly up-regulated in adult T-ALL (Fig. 5B).
Of note, FLT3 and its related gene signatures (such as the

AML pathway and BCL2) was highly expressed in G1, G2, G3,
and G7, especially in ETP and procortical T-ALLs (SI
Appendix, Fig. S8 A–C), indicating FLT3 inhibitors as a poten-
tial therapeutic target for future study.

It was recently established that ETP-ALL share features with
mixed phenotype acute leukemia (MPAL) (47). We thus used
AML gene signatures for enrichment analysis in an ETP-ALL
subset and found a significantly augmented AML enrichment
score with age (SI Appendix, Fig. S8B). Applying the xCell algo-
rithm (48) and the 17-gene stemness score (49), we were able
to infer the proportion of hematopoietic stem cell, common
lymphoid progenitor, and common myeloid progenitor, and
show a much higher likelihood of adult patients than pediatric
ones to exhibit MPAL (SI Appendix, Fig. S8 D and E). Extend-
ing the leukemogenesis model of MPAL, we deduced that
genetic lesions might occur at an earlier HSPC stage in adult
T-ALL, resulting in abnormal proliferation/differentiation/
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Fig. 5. Profiling of genetic abnormalities in pediatric and adult T-ALL. (A) Boxplot of age distribution of mutated genes (>2%) in T-ALL. Patient samples are
colored based on the three dysregulated leukemogenic factor branches. Genes are ordered according to the mean age of patients. Mutations significantly
enriched in adult T-ALL are marked with red stars, while those significantly enriched in pediatric T-ALL are marked with blue stars. P value is calculated using
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apoptosis of myeloid and lymphoid lineages, which might be
significant in explaining the difference in prognosis and treat-
ment responses observed between pediatric and adult T-ALL
(SI Appendix, Fig. S8 F and G, respectively illustrating pediatric
and adult leukemic hematopoiesis models).

Discussion

The transcriptomic landscape of 707 T-ALLs unveiled 10
subtypes in this study, which was superior to previous classifica-
tions of T-ALL that depended on the single/double combina-
tion of dysregulated leukemogenic factors, such as LOM2,
LYL1, HOXA family genes, TLX3/1, NKX2-1, LMO1, and
TAL1/2. Limited by the small sample size, we previously classi-
fied patients into three parts, namely TLX1/3/HOXA, ETP/
LYL1/HOXA, TAL1/LMO1 (9). The classification of ALL based
on gene-expression patterns in larger ALL cohorts could help to
identify rare subtypes (7). In the present study, GATA3 muta-
tions (G2) were first clarified as a subtype of T-ALL with a
poor prognosis. Because previous studies have reported GATA3
in solid tumors, including breast cancer (35, 36), how the role
of GATA3 dysregulation participated in T cell commitment
would be further investigated in T-ALL and other T cell disor-
der diseases. Additionally, three subtypes with elevated expres-
sion of HOXA family genes were revealed—namely G4
(KMT2A-r), G5 (MLLT10-r), and G6 (HOXA10-fus)—each
representing a small number of T-ALL patients, similar to G2,
which might be the reason why they were not found as inde-
pendent subtypes in a previous study (9).
Meanwhile, the expanded sample size of adult T-ALL

allowed us to conduct a comparison of abnormal genome/tran-
scriptome landscapes between pediatric and adult patients (Fig.
6). We illustrated that some fusions/mutations differed signifi-
cantly in frequencies between the two age groups. Adult
patients tended to harbor more nonsilent mutations than pedi-
atric ones, especially in epigenetic regulators—with DNMT3A

and IDH2 being the most representative ones—JAK-STAT sig-
naling, and RAS signaling pathways. These sequence mutations
could cooperate with aberrant gene expression and exert an
effect on clinical outcomes. Our results provide evidence that
the more complex genetic abnormalities in leukemic cells in
adults than in children may contribute to the unfavorable prog-
nosis in the former age group. In addition, adult patients,
particularly those aged over 40 y, are more likely to bear the
features of MPAL, which render the malignant cells less sensi-
tive to the current therapeutic agents. In this regard, it may be
interesting to note the emergence of some potential therapeutic
drug targets in adult T-ALL, such as BCL-2 and FLT3.

There are some limitations to note in our study. First, the
number of patients in some subtypes is still limited. Second,
using RNA-seq alone to identify copy number variations or dele-
tions, such as of CDKN2A/CDKN2B, is challenging. Fusions
involving TLX1/TLX3 and LMO1/LMO2 are hardly identified
from RNA-seq data, although their high expression levels are sug-
gestive of the existence of fusion to TCR. Third, without samples
from normal tissues as control and genomic DNA sequencing
data in most cohorts, nonsilent mutations were inferred based on
the previously reported mutation profiles in T-ALL and other
leukemia (5, 7, 9, 16–21) and improvement of mutation-calling
pipelines (described in SI Appendix, SI Materials and Methods).
Despite these limitations, this work can facilitate an in-depth
understanding of the biological nature of T-ALL. The dimension-
ality reduction analysis proves useful to determine the associations
between molecular subtypes and phenotypes according to the
stages of blockage in T cell development.

In conclusion, we identified 10 subtypes of T-ALL, character-
ized their genetic alteration patterns, and investigated the associa-
tions between these subtypes and T cell development stages. These
results revealed that the involvement of T cell differentiation stage
was earliest in G1 and latest in G10. Based on the dysregulated
leukemogenic factors, we have revealed relative mutation/abnor-
mal expression features in adult and pediatric T-ALL patients.
Furthermore, our study lends support to the feasibility of RNA-
seq as a clinical platform for the classification of T-ALL.

Materials and Methods

Patients. Patients in cohorts 1 to 6 were obtained from public database.
Patients in cohort 7 were from the Hematological Biobank, Jiangsu Biobank of
Clinical Resources during 2016 to 2019. Patients in cohort 8 were from a multi-
center study under the coordination of the Shanghai Institute of Hematology,
including Chinese People’s Liberation Army General Hospital and the First Affili-
ated Hospital, Zhejiang University College of Medicine, and Second Hospital of
Dalian Medical University, these cohorts being followed from 2016 to 2020.
Informed consent for cohorts 7 and 8 patients in the study was obtained by the
participating centers. This research was approved by Ruijin Hospital Ethics Com-
mittee. Detailed information of the patients is listed in SI Appendix, SI Materials
and Methods and Dataset S1.

RNA-seq Analysis, Mutations and Fusions Calling, Zebrafish
Experiment, and T Cell Differentiation Stage Analysis. Detailed materials
and methods are provided in SI Appendix, SI Materials and Methods. All animal
experiments were approved by the Committee of Animal Use for Research at
Shanghai Jiao Tong University School of Medicine (China).

Data Availability. RNA sequencing data generated in this study are deposited
at the National Omics Data Encyclopedia (NODE) (accession code OEP002748).
Previously published data used for this work were Liu et al. (5), Seki et al. (17),
Qian et al. (16), Yasuda et al. (18), Chen et al. (9), and Autry et al. (19).
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lesions identified in T-ALL. (Left) Genomic aberrations in pediatric T-ALL,
and (Right) illustration of those in adult T-ALL. Gene fusions and mutations
(>1%) and their subcellular localizations from cell surface membrane
through cytosolic compartments to cell nucleus are represented. Mutations
are illustrated in the ellipse and in different colors. Fusions and mutations
that are significantly enriched in pediatric T-ALL are marked with blue stars,
while those significantly enriched in adult T-ALL are marked with red stars.
Genes whose overexpression is most likely due to fusions are marked with
red arrows. LCK and BCL2 overexpression may represent drug targets and
are labeled with arrowheads.

PNAS 2022 Vol. 119 No. 15 e2120787119 https://doi.org/10.1073/pnas.2120787119 9 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120787119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120787119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120787119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120787119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120787119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120787119/-/DCSupplemental
https://www.biosino.org/node/project/detail/OEP002748


Sciences, St. Jude Children’s Research Hospital, for their helpful advice on data
analyses. This work was supported by the National Natural Science Foundation
of China General Program (81770205, 32170663, 81670147, 81861148030,
Antrag M-0377); the State Key Laboratory of Medical Genomics; the Double
First-Class Project (WF510162602) from the Ministry of Education; the Shanghai
Collaborative Innovation Program on Regenerative Medicine and Stem Cell
Research (2019CXJQ01); the Overseas Expertise Introduction Project for Disci-
pline Innovation (111 Project; B17029); the Shanghai Shenkang Hospital Devel-
opment Center (SHDC2020CR5002); the Shanghai Major Project for Clinical
Medicine (2017ZZ01002); and the Innovative Research Team of High-level Local
Universities in Shanghai.

Author affiliations: aShanghai Institute of Hematology, State Key Laboratory of Medical
Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin
Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China;
bSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240
Shanghai, China; cState Key Laboratory of Microbial metabolism, Joint International
Research Laboratory of Metabolic & Developmental Sciences, Department of
Bioinformatics and Biostatistics, National Experimental Teaching Center for Life
Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao
Tong University, 200240 Shanghai, China; dDepartment of Medical Oncology, Fudan
University Shanghai Cancer Center, Shanghai Medical College, Fudan University,
200032 Shanghai, China; eDepartment of Hematology, Chinese People’s Liberation
Army General Hospital, 100853 Beijing, China; fUniversity of Malaya Cancer Research
Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia;
gDepartment of Paediatrics, KK Women’s & Children's Hospital, 229899 Singapore;

hDepartment of Hematology, The First Affiliated Hospital, Zhejiang University College of
Medicine, 310058 Hangzhou, People’s Republic of China; iNational Clinical Research
Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated
Hospital of Soochow University, 215006 Suzhou, People’s Republic of China; jInstitute
of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology,
Soochow University, 215006 Suzhou, People’s Republic of China; kDivision of
Hematology and Rheumatology, Kindai University Faculty of Medicine, 5778502 Osaka,
Japan; lDepartment of Hematology, Atomic Bomb Disease Institute, Nagasaki
University, 8528521 Nagasaki, Japan; mClinical Research Center, Nagoya Medical
Center, National Hospital Organization, 4600001 Nagoya, Japan; nDepartment of
Hematology, The First Affiliated Hospital of China Medical University, 110001 Liaoning,
China; oDepartment of Hematology, Second Hospital of Dalian Medical University,
116027 Leaoning, People’s Republic of China; pCentre for Translational Research in
Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine,
National University of Singapore, 117597 Singapore; qViva-University Children’s Cancer
Centre, Khoo Teck Puat-National University Children’s Medical Institute, National
University Hospital, 119074 Singapore; rCancer Science Institute of Singapore, National
University of Singapore, 117599 Singapore; sDepartment of Hematology and Oncology,
Nagoya University Graduate School of Medicine, 4668550 Nagoya, Japan; tDepartment
of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya
University Graduate School of Medicine, 4610047 Nagoya, Japan; uCenter for
Biomedical Big Data, The First Affiliated Hospital, School of Medicine, Zhejiang
University, 310003 Hangzhou, China; and vCancer Center, Zhejiang University, 310058
Hangzhou, China

Author contributions: X.-J.S., J.-Q.M., Z.C., J.-Y.H., and S.-J.C. designed research; F.Z., H.F.,
G.L., L.J., B.C., D.-D.M., Y.-F.L., J.W., L.-J.P., C.F., H.-F.C., J.-X.M., T.A.M., S.-Y.W., X.-J.S.,
J.-Q.M., Z.C., J.-Y.H., and S.-J.C. performed research; J.-F.L., Q.-L.Z., H.W., H.A., J.-H.W.,
Y.-J.L., S.-N.C., Q.W., H.L., Z.S., I.M., Y.M., T.Y., L.-P.D., X.-J.Y., J.-S.Y., A.E.-J.Y., D.-P.W., H.K.,
F.H., and J.J. contributed new reagents/analytic tools; Y.-F.L., J.W., L.-J.P., H.W., H.A.,
T.A.M., J.-H.W., Y.-J.L., S.-N.C., Q.W., H.L., Z.S., I.M., Y.M., T.Y., L.-P.D., X.-J.Y., J.-S.Y.,
A.E.-J.Y., D.-P.W., H.K., F.H., J.J., S.-Y.W., and J.-Q.M. contributed data and provided
clinical information; Y.-T.D., H.F., and J.-Y.H. analyzed data; and Y.-T.D., Z.C., J.-Y.H., and
S.-J.C. wrote the paper.

1. T. Girardi, C. Vicente, J. Cools, K. De Keersmaecker, The genetics and molecular biology of T-ALL.
Blood 129, 1113–1123 (2017).

2. C. H. Pui, M. V. Relling, J. R. Downing, Acute lymphoblastic leukemia. N. Engl. J. Med. 350,
1535–1548 (2004).

3. S. Chiaretti, R. Fo�a, T-cell acute lymphoblastic leukemia. Haematologica 94, 160–162 (2009).
4. C. H. Pui, W. E. Evans, Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 354, 166–178

(2006).
5. Y. Liu et al., The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic

leukemia. Nat. Genet. 49, 1211–1218 (2017).
6. I. Iacobucci, C. G. Mullighan, Genetic basis of acute lymphoblastic leukemia. J. Clin. Oncol. 35,

975–983 (2017).
7. J. F. Li et al., Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on

an international study of 1,223 cases. Proc. Natl. Acad. Sci. U.S.A. 115, E11711–E11720 (2018).
8. Y. F. Liu et al., Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia.

EBioMedicine 8, 173–183 (2016).
9. B. Chen et al., Identification of fusion genes and characterization of transcriptome features in T-cell

acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. U.S.A. 115, 373–378 (2018).
10. L. Belver, A. Ferrando, The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat.

Rev. Cancer 16, 494–507 (2016).
11. Q. Chen et al., Coding sequences of the tal-1 gene are disrupted by chromosome translocation in

human T cell leukemia. J. Exp. Med. 172, 1403–1408 (1990).
12. P. Van Vlierberghe et al., The recurrent SET-NUP214 fusion as a new HOXA activation mechanism

in pediatric T-cell acute lymphoblastic leukemia. Blood 111, 4668–4680 (2008).
13. E. P. Noronha et al.; Brazilian Collaborative Study Group of Acute Leukemia, The profile of

immunophenotype and genotype aberrations in subsets of pediatric T-cell acute lymphoblastic
leukemia. Front. Oncol. 9, 316 (2019).

14. E. Coustan-Smith et al., Early T-cell precursor leukaemia: A subtype of very high-risk acute
lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009).

15. U. Koch, F. Radtke, Mechanisms of T cell development and transformation. Annu. Rev. Cell Dev.
Biol. 27, 539–562 (2011).

16. M. Qian et al., Whole-transcriptome sequencing identifies a distinct subtype of acute
lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome
Res. 27, 185–195 (2017).

17. M. Seki et al., Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic
leukemia. Nat. Genet. 49, 1274–1281 (2017).

18. T. Yasuda et al., Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and
young adults. Nat. Genet. 48, 569–574 (2016).

19. R. J. Autry et al., Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in
acute lymphoblastic leukemia. Nat. Can. 1, 329–344 (2020).

20. L. Jiang et al., Multidimensional study of the heterogeneity of leukemia cells in t(8;21) acute
myelogenous leukemia identifies the subtype with poor outcome. Proc. Natl. Acad. Sci. U.S.A. 117,
20117–20126 (2020).

21. J. Xiong et al., Genomic and transcriptomic characterization of natural killer T cell lymphoma.
Cancer Cell 37, 403–419.e6 (2020).

22. Y. Zhong, L. Jiang, H. Hiai, S. Toyokuni, Y. Yamada, Overexpression of a transcription factor LYL1
induces T- and B-cell lymphoma in mice. Oncogene 26, 6937–6947 (2007).

23. D. J. Curtis, M. P. McCormack, The molecular basis of Lmo2-induced T-cell acute lymphoblastic
leukemia. Clin. Cancer Res. 16, 5618–5623 (2010).

24. A. Champhekar et al., Regulation of early T-lineage gene expression and developmental
progression by the progenitor cell transcription factor PU.1. Genes Dev. 29, 832–848
(2015).

25. S. Nagel et al., MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic
leukemia cell lines. Leukemia 22, 600–607 (2008).

26. I. Homminga et al., Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as
potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19, 484–497 (2011).

27. T. K. Tan, C. Zhang, T. Sanda, Oncogenic transcriptional program driven by TAL1 in T-cell acute
lymphoblastic leukemia. Int. J. Hematol. 109, 5–17 (2019).

28. S. Herblot, A. M. Steff, P. Hugo, P. D. Aplan, T. Hoang, SCL and LMO1 alter thymocyte
differentiation: Inhibition of E2A-HEB function and pre-T alpha chain expression. Nat. Immunol. 1,
138–144 (2000).

29. M. Sanchez-Martin, A. Ferrando, The NOTCH1-MYC highway toward T-cell acute lymphoblastic
leukemia. Blood 129, 1124–1133 (2017).

30. H. M. McRae et al., PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes
with expression of TLX3 to cause leukemia. Blood 133, 1729–1741 (2019).

31. A. M. Martelli et al., The key roles of PTEN in T-cell acute lymphoblastic leukemia development,
progression, and therapeutic response. Cancers (Basel) 11, 629 (2019).

32. T. Girardi et al., The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT
signaling. Leukemia 32, 809–819 (2018).

33. K. R. Kampen et al., The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation
in T-ALL. Leukemia 33, 319–332 (2019).

34. I. C. Ho, T. S. Tai, S. Y. Pai, GATA3 and the T-cell lineage: Essential functions before and after T-
helper-2-cell differentiation. Nat. Rev. Immunol. 9, 125–135 (2009).

35. K. Kataoka et al., Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 47,
1304–1315 (2015).

36. C. Murga-Zamalloa, R. A. Wilcox, GATA-3 in T-cell lymphoproliferative disorders. IUBMB Life 72,
170–177 (2020).

37. L. Fransecky et al., Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL. J.
Hematol. Oncol. 9, 95 (2016).

38. Y. Chen et al., DNA binding by GATA transcription factor suggests mechanisms of DNA looping and
long-range gene regulation. Cell Rep. 2, 1197–1206 (2012).

39. S. Heinz et al., Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities.Mol. Cell 38, 576–589 (2010).

40. D. Hnisz et al., Activation of proto-oncogenes by disruption of chromosome neighborhoods.
Science 351, 1454–1458 (2016).

41. E. V. Rothenberg, J. Ungerb€ack, A. Champhekar, Forging T-lymphocyte identity: Intersecting
networks of transcriptional control. Adv. Immunol. 129, 109–174 (2016).

42. L. Haghverdi, F. Buettner, F. J. Theis, Diffusion maps for high-dimensional single-cell analysis of
differentiation data. Bioinformatics 31, 2989–2998 (2015).

43. M. Mingueneau et al.; Immunological Genome Consortium, The transcriptional landscape of αβ T
cell differentiation. Nat. Immunol. 14, 619–632 (2013).

44. X. Zhang et al., Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant
hematopoiesis. Blood 135, 845–856 (2020).

45. F. Wang et al., Targeted inhibition of mutant IDH2 in leukemia cells induces cellular
differentiation. Science 340, 622–626 (2013).

46. Y. Gocho et al., Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling
and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nat. Can. 2, 284–299 (2021).

47. T. B. Alexander et al., The genetic basis and cell of origin of mixed phenotype acute leukaemia.
Nature 562, 373–379 (2018).

48. D. Aran, Z. Hu, A. J. Butte, xCell: Digitally portraying the tissue cellular heterogeneity landscape.
Genome Biol. 18, 220 (2017).

49. S. W. Ng et al., A 17-gene stemness score for rapid determination of risk in acute leukaemia.
Nature 540, 433–437 (2016).

10 of 10 https://doi.org/10.1073/pnas.2120787119 pnas.org


