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Abstract 37 

Background: Air pollution is a ubiquitous neurotoxicant associated with alterations in structural 38 

connectivity. Good habitual sleep may be an important protective lifestyle factor due to its 39 

involvement in the brain waste clearance and its bidirectional relationship with immune function. 40 

Wearable multisensory devices may provide more objective measures of sleep quantity and 41 

quality. We investigated whether sleep duration and efficiency moderated the relationship 42 

between prenatal and childhood pollutant exposure and whole-brain white matter 43 

microstructural integrity at ages 10-13 years.  44 

 45 

Methods: We used multi-shell diffusion-weighted imaging data collected on 3T MRI scanners 46 

and objective sleep data collected with Fitbit Charge 2 from the 2-year follow-up visit for 2178 47 

subjects in the Adolescent Brain Cognitive Development Study®. White matter tracts were 48 

identified using a probabilistic atlas. Restriction spectrum imaging was performed to extract 49 

restricted normalized isotropic (RNI) and directional (RND) signal fraction parameters for 50 

all white matter tracts, then averaged to calculate global measures. Sleep duration was 51 

calculated by summing the time spent in each sleep stage; sleep efficiency was calculated by 52 

dividing sleep duration by time spent in bed. Using an ensemble-based modeling approach, air 53 

pollution concentrations of PM2.5, NO2, and O3 were assigned to each child’s residential 54 

addresses during the prenatal period (9-month average before birthdate) as well as at ages 9-55 

10 years. Multi-pollutant linear mixed effects models assessed the associations between global 56 

RNI and RND and sleep-by-pollutant interactions, adjusting for appropriate covariates.  57 

 58 

Results: Sleep duration interacted with childhood NO2 exposure and sleep efficiency interacted 59 

with prenatal O3 exposure to affect RND at ages 10-13 years. Longer sleep duration and higher 60 

sleep efficiency in the context of higher pollutant exposure was associated with lower RND 61 
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compared to those with similar pollutant exposure but shorter sleep duration and lower sleep 62 

efficiency.  63 

 64 

Conclusions: Low-level air pollution poses a risk to brain health in youth, and healthy sleep 65 

duration and efficiency may increase resilience to its harmful effects on white matter 66 

microstructural integrity. Future studies should evaluate the generalizability of these results in 67 

more diverse cohorts as well as utilize longitudinal data to understand how sleep may impact 68 

brain health trajectories in the context of pollution over time.  69 

 70 
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Introduction  71 

Ambient air pollutants are ubiquitous toxicants that pose a known risk to human health, and they 72 

have increasingly been linked to alterations in brain and mental health outcomes across the 73 

lifespan (1–4). The World Health Organization (WHO) and the United States Environmental 74 

Protection Agency (U.S. EPA) track numerous criteria pollutants, among them particulate matter 75 

with diameter <2.5 μm (PM2.5), nitrogen dioxide (NO2), and ground-level ozone (O3) (5). PM2.5 76 

and NO2 are products of combustion of gasoline, oil, diesel fuel, coal, or wood, while ground-77 

level O3 is produced via photooxidation of volatile organic compounds and other precursors by 78 

ultraviolet sunlight (6–8). When inhaled, all three pollutants may interact with the lung alveoli to 79 

induce an innate immune response, resulting in systemic circulation of cytokines, increased 80 

oxidative stress, and the weakening of tissue barriers such as the nasal epithelium, blood-brain 81 

barrier (BBB), and the blood-placental barrier (9–11). It is thought that children are particularly 82 

susceptible to air pollution-related harm because they have higher respiratory rates, higher rates 83 

of neurodevelopmental change, and increased time spent outside compared to adults (12,13). 84 

Timing of exposure (i.e., prenatal versus childhood) as well as individual factors like sex may 85 

contribute to differential mechanisms by which air pollution increases risk for various diseases 86 

or disorders (1,14,15). 87 

The brain connectome is defined as the spatial map of neural connections that underlie 88 

all motor, cognitive, emotional, and behavioral functions (16). Structural connectivity is 89 

characterized by white matter microstructural integrity of tracts connecting various brain regions. 90 

Air pollution exposure during development has increasingly been associated with changes in 91 

structural connectivity, both cross-sectionally and over time (2). Using data from the nationwide 92 

Adolescent Brain and Cognitive Development (ABCD) Study in the United States, our group has 93 

led multiple studies investigating the link between pollutant exposure and white matter 94 

microstructural integrity as measured using restriction spectrum imaging (RSI), an advanced 95 
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multi-compartment diffusion model that can differentiate between extracellular and intracellular 96 

directional and isotropic diffusion (17–19). The first cross-sectional analysis found a positive 97 

association between childhood PM2.5 exposure and intracellular, restricted isotropic diffusion 98 

(RNI) at ages 9-10 years old, suggestive of a change in glial cell morphology or quantity which 99 

we hypothesized may reflect neuroinflammation. Next, we conducted a longitudinal study that 100 

included childhood exposure to three criteria pollutants (i.e., annual average daily PM2.5, daily 101 

NO2, daily 8-hour maximum O3) and found that higher childhood NO2 exposure at ages 9-10 102 

years was associated with attenuated longitudinal increases of RNI throughout the brain in 103 

female youth from ages 9-13 years-old (19).  In contrast, we found higher childhood O3 104 

exposure had similar effects on RNI in both sexes from ages 9-13 years, albeit more strongly in 105 

males (19). In a follow-up sex-stratified multivariate cross-sectional analysis at ages 10-13 106 

years, we expanded this research to also include prenatal exposure to PM2.5, NO2, and O3, 107 

alongside childhood exposure on white matter microstructure (18). We found prenatal and 108 

childhood exposure positively correlated with RNI as well as intracellular, restricted directional 109 

(RND) diffusion in white matter in female youth, but negatively correlated with the same metrics 110 

in male youth, with the impacted tracts varying by sex (18). Additionally, using diffusion tensor 111 

imaging (DTI) data from the Generation R study, a large Netherlands-based birth cohort, 112 

researchers found that both prenatal and childhood (0-4 years-old) exposure to PM2.5 and its 113 

components, NO2, and nitrogen oxides (NOX) were linked to lower fractional anisotropy (FA) and 114 

higher mean diffusivity (MD) throughout the brain at ages 9-12 years (20,21). Recent work in the 115 

Generation R cohort examined the longitudinal associations between prenatal and childhood 116 

exposure to multiple pollutants and white matter DTI measures in children aged 9-17 years 117 

(median age 9.9 years) over two time points (22). They found that prenatal exposure to PM2.5 118 

and childhood exposure to PM (size fractions 10, 2.5, 2.5-10 ug/m3) and NOX was related to 119 

lower global FA. Additionally, prenatal exposure to silicon (a component of PM2.5) and the 120 

oxidative potential of PM2.5 as well as childhood exposure of PM2.5 was associated with 121 
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accelerated decreases of MD over time.  In another DTI study, Peterson and colleagues (23) 122 

found that exposure to higher PM2.5 during gestation was linked to a higher average diffusion 123 

coefficient in large posterior white matter fiber bundles – indicative of reduced myelin and/or 124 

fiber density/coherence. However, pollutant exposure was not associated with white matter FA 125 

in youth aged 6-14 years. This suggests that increased pollutant exposure during various 126 

windows of pre- and postnatal development are cross-sectionally associated with reduced white 127 

matter microstructural integrity in late childhood to early adolescence, but both accelerated (i.e., 128 

faster MD decreases (22) and faster RND increases (19)) and attenuated (i.e., slower RNI 129 

increases (19)) white matter microstructural development over time, depending on the diffusion 130 

metric utilized. Considering this compelling evidence that air pollution during vulnerable pre- and 131 

postnatal windows of development may alter brain connectivity, as well as studies that suggest 132 

air pollution is linked to poor mental health outcomes and neurodevelopmental disorders (24), it 133 

is important to understand if individual differences in lifestyle factors may contribute to resilience 134 

in the face of harmful environmental exposures.  135 

Potential protective factors that may moderate air pollution’s negative effects on brain 136 

outcomes include quantity and quality of sleep. Sleep is well-known to be highly correlated with 137 

the immune system in a bidirectional manner to maintain the body’s homeostasis and support 138 

cognitive and emotional functions important for everyday life (25). When one system is 139 

dysregulated, the negative effects can reverberate, affecting multiple biological systems and 140 

outcomes including the brain. Animal studies have found that cytokines and prostaglandins play 141 

a crucial role in regulating sleep-wake cycles (25). In fact, disruptions in prostaglandin levels 142 

have been associated with sleep disturbances such as decreased efficiency and increased 143 

overnight awakenings, as well as decreased slow-wave sleep (25). Though the exact 144 

mechanisms are not well understood, sufficient sleep has been shown to restore normal levels 145 

of upregulated immune cell populations and improve adaptive immune responses (25). While 146 
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much remains to be discovered in sleep-immune crosstalk, the current literature robustly 147 

supports the notion that sleep is integral in proper immune function and overall health and 148 

wellbeing. As air pollution is known to induce aberrant systemic immune activity with potential to 149 

induce neuroinflammation (1,26), sleep’s role in immune function may provide a pathway for 150 

sleep quantity and quality to protect the brain against the neurotoxic effects of air pollution 151 

exposure.  To this end, in the first study of its kind, sleep quality was recently shown to mitigate 152 

the negative effects of air pollution on biological aging in a stepwise manner in an adult human 153 

sample from the UK Biobank, such that accelerations in biological aging associated with air 154 

pollution exposure were significantly slowed by higher sleep efficiency (27). Yet, similar 155 

questions have not yet been explored in adolescent populations or pertaining to brain health 156 

specifically.  157 

 Leveraging data from 2178 subjects enrolled in the ABCD Study, the current cross-158 

sectional study aimed to examine the potential moderating effect of sleep duration and 159 

efficiency measured with a wrist-worn commercial device (Fitbit Charge 2) on the relationship 160 

between pollutant exposure during two developmental windows (i.e., prenatal and childhood) 161 

and white matter microstructural integrity in youths aged 10-13 years. Additionally, due to sex-162 

specific effects in environmental neurotoxicity (28), brain development (29), and measures of 163 

sleep health (30), we also investigated potential sex differences in how sleep may mitigate the 164 

negative effects of air pollution on structural brain connectivity. Because of potential opposing 165 

effects of air pollution and sleep on biological functions, such as immune health, we 166 

hypothesized that longer sleep duration as well as better sleep efficiency would diminish the 167 

negative effects of air pollution exposure on global white matter microstructural integrity in 168 

adolescence. The results discussed here suggest that sleep may protect young brains against 169 

the neurotoxic effects of air pollution.  170 
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Methods  171 

Study Population 172 

The ABCD Study® is a large and regionally diverse study of neurodevelopment in youth from 21 173 

communities across the United States. Between the years 2016 to 2018, 11,876 children 174 

between the ages of 9-10 years were enrolled, with plans to follow them annually over the 175 

course of 10 years into young adulthood (31). An overview of detailed recruitment procedures 176 

have been previously described (32). The ABCD Study’s inclusion criteria included age (9-10 177 

years old at initial visit) and English language proficiency. Exclusion criteria were as follows: 178 

major medical or neurological conditions, history of traumatic brain injury, diagnosis of 179 

schizophrenia, moderate/severe autism spectrum disorder, intellectual disability, 180 

alcohol/substance use disorder, premature birth (gestational age <28 weeks), low birthweight 181 

(<1200 g), and contraindications to magnetic resonance imaging (MRI) scanning. The ABCD 182 

Study obtained approval for all study procedures from the University of California, San Diego 183 

centralized institutional review board (IRB# 160091). Subsequently, each study site was also 184 

required to obtain approval from their respective institutional review boards. All parents or 185 

caregivers provided written informed consent and children provided written assent. 186 

Data used in the current analyses were obtained from the ABCD’s 5.0 Data Release 187 

(33). 2178 subjects from 21 sites across the U.S. were included (Supplemental Figure 2). Due 188 

to the availability of wrist wearable data from the Fitbit Charge 2 at the 2-year follow-up visit 189 

only, we used cross-sectional wrist wearable and neuroimaging data from the 2-year follow-up 190 

visit when subjects were aged 10-13 years. All subjects had air pollution concentration 191 

estimates from the prenatal and childhood (ages 9-10 years, baseline visit) periods, as well as 192 

high quality MRI scans without incidental findings of clinical significance and wrist wearable data 193 

collected within the protocol period (see below for quality control details). MRI scans were 194 
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collected on Siemens Prisma, Philips, or GE 750 3T MRI scanners using harmonized 195 

acquisition procedures specific to the ABCD Study, as previously described by Casey et al. (34). 196 

Importantly, the final sample used here excluded participants with neuroimaging and wrist 197 

wearable data collected after  March 1, 2020, so as to remove any potential confounding effects 198 

of the COVID-19 pandemic, an event that significantly disrupted normal routines and increased 199 

perceived stress (35). Please see Table 1 for detailed cohort characteristics.  200 

Ambient Air Pollution Estimates 201 

Geocoded information about participants’ residential addresses was used to define the locations 202 

where prenatal and one-year childhood exposures to PM2.5, NO2, and O3 were estimated (36). 203 

Primary residential addresses at study enrollment (i.e., when the child was 9-10 years) were 204 

collected in-person from the participant’s caregiver during the study visit between October 2016 205 

to October 2018. At the 2-year follow-up visit, additional previous residential addresses were 206 

collected retrospectively via caregiver report. All residential addresses were geocoded by the 207 

ABCD consortium’s Data Analytics Information and Resource Center (DAIRC) (36). Daily 208 

ambient air pollution concentration estimates for PM2.5, NO2, and 8-hour maximum O3 were then 209 

estimated for the entire continental U.S. as previously described (36). Briefly, hybrid 210 

spatiotemporal models were leveraged to first derive daily air pollution estimates at a 1-km2 211 

resolution, utilizing satellite remote sensing, land-use regression, and chemical transport models 212 

(36–38). Daily estimates were subsequently averaged over the 2016 calendar year, 213 

corresponding with participant study enrollment when children were aged 9-10 years. One-year 214 

annual average concentrations during childhood were then assigned to primary residential 215 

addresses for each participant. To estimate prenatal exposure, daily exposure estimates for 9 216 

months of pregnancy based on the child’s birthdate [birth years 2005-2009] we averaged and 217 

assigned to the address that corresponded to the child’s birth year. If multiple addresses 218 

overlapped with the child’s birthdate, the prenatal average exposure values for each residence 219 
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were weighted by the reported percent of time spent at that residence, after which the sum of 220 

these weighted exposure averages was divided by the sum of all reported percentages. To 221 

reduce potential misclassification bias, subjects were excluded from the analyses if the 222 

percentage of time reported across the multiple addresses overlapping with the child’s birthdate 223 

totaled below 90% or above 110%. Quality-controlled prospective residential addresses (i.e., at 224 

time 1- or 2-year follow-up) are not currently available within the ABCD dataset. Thus, we 225 

assumed the spatial contrast remained constant between the study enrollment period and the 226 

annual 2-year follow-up visit, as demonstrated using these ensemble-based models from 2000 227 

to 2016 (37–39). In our final models, we also covaried for those that had moved locations since 228 

the baseline visit. Lastly, standardized pollutant values were obtained by subtracting the mean 229 

and dividing by 5 for each pollutant. 230 

Wearable Technology Measures of Sleep 231 

Given that subjective measures of sleep quantity and quality can be biased by self-reporter 232 

error, objective measurement of sleep with a wearable device represents a non-invasive way to 233 

estimate sleep parameters more accurately. Polysomnography, including electroencephalogram 234 

(EEG), electro-oculogram, electromyogram, electrocardiogram, pulse oximetry, and 235 

airflow/respiratory effort, remains the gold standard in sleep research for objectively measured 236 

sleep, but a recent study indicated that there was substantial agreement between Fitbit and 237 

home-based EEG methods in measuring total sleep duration (26). Thus, we examined objective 238 

measures of sleep, collected from a Fitbit Charge 2 device. Adolescents wore the device for 239 

three consecutive weeks starting after their annual visit at the 2-year follow-up (40). A valid 240 

week was defined as at least 4 days of sleep data including at least one weekend day (40). 241 

Subjects were included if they had at least one valid week collected within the protocol period. 242 

Parameters of interest included total sleep duration (hours) and sleep efficiency (percent). Total 243 

sleep duration was calculated by summing time spent in light, deep, and REM stages, to 244 
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account for overnight awakenings. Sleep efficiency was calculated by dividing sleep duration by 245 

time in bed. Time in bed was defined as the difference between the time of day the participant 246 

got out of bed in the morning and the time of night they went to bed the night before, but were 247 

not necessarily asleep, as determined by Fitbit. Weekly weighted averages of sleep duration 248 

and efficiency were calculated and used in the final models. 249 

Restriction Spectrum Imaging (RSI) 250 

Multi-shell diffusion-weighted images were acquired using multiband echo-planar 251 

imaging (41,42) with slice acceleration factor 3 and a 1.7 mm3 resolution, alongside a fieldmap 252 

scan for B0 distortion correction. Diffusion weights included seven b=0 frames and 96 total 253 

diffusion directions at 4 b-values, with 6 at b�=�500�s/mm2, 15 at b�=�1000�s/mm2, 15 at 254 

b�=�2000�s/mm2, and 60 at b�=�3000�s/mm2 (43). Following distortion, bias field, and 255 

motion correction, manual and automated quality control were conducted on all images (43). 256 

Using this multi-shell sequence, RSI allows for biophysical modeling of both intra- and 257 

extracellular compartments of tissue within the brain (44). Selected RSI model outputs are 258 

unitless on a scale of 0-1 and included both restricted (intracellular) normalized isotropic (RNI) 259 

and directional (RND) signal fractions of white matter fiber tract regions of interest (ROIs) 260 

created with AtlasTrack (45). RNI measures intracellular diffusion in all directions and likely 261 

represents diffusion within support cells or other round structures, while RND measures 262 

intracellular diffusion in a single direction and likely represents diffusion along an axon or other 263 

elongated process (44,46). Brain images were included if deemed absent of clinically significant 264 

incidental findings and passed all ABCD quality-control parameters. Given our previous whole 265 

brain findings between air pollution and structural connectivity (18,19), parameters of interest 266 

included global RND and global RNI, averaged across all AtlasTrack fibers. 267 

Confounders and Covariates 268 
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Time-invariant covariates were taken from enrollment at the baseline visit, and included race 269 

and ethnicity (Asian, Hispanic, non-Hispanic Black, non-Hispanic White [reference group], or 270 

Multi-Racial/Other), total household income in United States dollars (USD) (≥100K, 100-50K, 271 

<50K [reference group], or Don’t Know/Refuse to Answer), and highest household education 272 

(Post-Graduate, Bachelor, Some College, High School Diploma/GED, or <High School Diploma 273 

[reference group]). Race/ethnicity and socioeconomic factors were included because pollution 274 

levels are higher in minority communities and those from disadvantaged social status 275 

backgrounds (47). We also included the participant’s age (months), sex assigned at birth (male, 276 

female), and pubertal development stage (PDS; 1-5, consistent with Tanner-like categorization 277 

(48)) as subject-specific precision variables. MRI-specific precision variables included scanner 278 

manufacturer (Siemens, Philips, GE [reference group]) to account for differences in both 279 

scanner hardware and software, and average framewise displacement (mm) to account for 280 

head motion. Lastly, we covaried for season of visit (Fall [reference group], Winter, Spring, 281 

Summer), given the seasonality in pollutant exposure concentrations, as well as whether 282 

participants moved in between the 2-year follow-up visit and the initial visit when childhood 283 

pollutant concentrations were measured. Supplemental Table 1 shows the comparison between 284 

the characteristics of the current study sample and the larger ABCD Study cohort. 285 

Statistical Analyses 286 

We used hierarchical linear mixed-effect models, as implemented in lme4::lmer() (49) in R 287 

statistical software (Version 4.1.2.) (50) to account for the multi-level data structure, including 288 

random effects of family nested within study sites. Given our previous findings showing notable 289 

sex-specific effects in air pollution and brain outcomes (18,19), we examined sex differences in 290 

the moderating effect of total sleep duration (hours) on the relationship between exposure to 291 

pollutants (prenatal and childhood PM2.5, NO2, and O3) and brain outcomes (global RNI and 292 

RND) with a three-way pollutant-by-sleep-by-sex interaction term (which included three 293 
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additional two-way interaction terms [pollutant-by-sleep, sex-by-sleep, pollutant-by-sex]). For 294 

model parsimony and ease of interpretation, the highest order interaction term (i.e., three-way 295 

pollutant-by-sleep-by-sex interaction term) was dropped if not significant at the level of p<0.05. 296 

Similar analyses were conducted for sleep efficiency (percent). For models demonstrating a 297 

significant relationship between the pollutant-by-sleep interaction term and global RNI or RND, 298 

we completed post-hoc analyses to determine if any specific tracts were primarily affected.  299 

To account for co-exposure of the three criteria pollutants at two developmental 300 

windows, we controlled for the other pollutants not included in the interaction terms of interest, 301 

in addition to all covariates discussed above. Upon checking model assumptions, we found a 302 

violation of the heteroscedasticity assumption due to the inclusion of siblings from the same 303 

family. Therefore, we applied robust variance estimations (RVE) to all models to obtain reliable 304 

standard errors and test statistics, ensuring the robustness of our findings. This allowed for the 305 

preservation of the hierarchical data structure with fidelity to ABCD’s original study design. 306 

Given our hypotheses, we did not correct for multiple comparisons for the two outcomes of 307 

interest (i.e., global RNI and RND); however, a false discovery rate (FDR) adjustment was 308 

performed on post-hoc analyses examining each tract separately. For the models with 309 

significant pollutant-by-sleep interaction terms, we further probed the interaction by performing 310 

pairwise tests using the emmeans::emmeans() function in R (51). 311 

 312 

Results  313 

We analyzed 2178 unique ABCD Study participants (45.7% female) from 21 sites throughout 314 

the U.S. to determine if sleep duration and efficiency moderated the relationship between 315 

prenatal and childhood exposure to three criteria pollutants (PM2.5, NO2, and O3) and white 316 

matter microstructural integrity in youths aged 10-13 years. Prenatal exposure estimates were 317 

higher than childhood exposure estimates for PM2.5 and NO2, but not for O3 (Table 1). Spearman 318 
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correlations between pollutants from both developmental windows can be found in 319 

Supplemental Table 1. Overall, PM2.5 and O3 were negatively correlated (�� ranges from -0.07 to 320 

-0.15), while PM2.5 and NO2 (�� ranged from 0.16 to 0.31) as well as NO2 and O3 (�� ranges from 321 

0.04 to 0.15) were positively correlated (Supplemental Figure 1). Additionally, sleep duration 322 

and sleep efficiency were weakly positively correlated (�� = 0.06) (Supplementary Figure 1). Of 323 

note, from a clinical standpoint, average sleep duration is low, with an average of 7.51 hours per 324 

night ( t�=� -109.61 (µ�=�9), df�=� 2177, p�=�0) (52). Average sleep efficiency is normal at 325 

87% in our sample, with ≥85% sleep efficiency deemed acceptable across all age groups (53). 326 

Across all models, the highest order interaction term (e.g., three-way pollutant-by-sleep-327 

by-sex interaction term) did not demonstrate a significant relationship with any brain outcome 328 

(global RND and RNI) and thus was dropped for model parsimony and ease of interpretation. 329 

The lack of significance here indicates that there were no observed sex differences in how sleep 330 

metrics moderated the relationship between air pollution exposure and global white matter 331 

microstructural integrity. The following results are from simplified models. 332 

Moderating effect of total sleep duration on the association between air pollutants and structural 333 

brain connectivity at ages 10-13 years 334 

Total sleep duration moderated the association between childhood NO2 exposure and global 335 

RND (� = -0.001, p = 0.006) (Table 2, Figure 1). Post-hoc pairwise tests demonstrated that 336 

there were no statistically significant associations between childhood NO2 and RND at 6, 7, or 8 337 

hours of sleep duration; however, pairwise contrasts showed that sleep duration and childhood 338 

NO2 exposure significantly interacted to affect global RND, such that a cross-over effect was 339 

observed (Figure 1) and the slopes per level of sleep duration were significantly different from 340 

each other (� = 0.03), but not from zero (Supplemental Table 2). Post-hoc regional analyses of 341 
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each separate tract revealed this association was strongest for the corpus callosum (� = -0.002, 342 

����  = 0.0006) and right uncinate fasciculus (� = -0.001, ����= 0.003) (Supplemental Table 4).  343 

There were no other statistically significant interactions between other air pollutant 344 

exposures and sleep duration on global RND or RNI. There was a significant main effect 345 

between prenatal PM2.5 exposure and global RND (� = 0.02, � = 0.03), but no other significant 346 

main effects of pollutants or sleep duration on global RNI or RND. All results can be found in 347 

Table 2. 348 

Moderating effect of sleep efficiency on the association between air pollutants and structural 349 

brain connectivity at ages 10-13 years 350 

Sleep efficiency moderated the association between prenatal O3 and global RND (� = -0.03, � = 351 

0.03) (Table 3, Figure 2). Post-hoc pairwise tests demonstrated that the relationship between 352 

prenatal O3 exposure and global RND was positive and statistically significant at the first 353 

quantile (86%) and median sleep efficiency levels (87%), with the slope diminishing as sleep 354 

efficiency rose; at the third quantile of sleep efficiency (88%), there was no relationship between 355 

prenatal O3 exposure and global RND (Supplemental Table 3). All pairwise contrasts showed 356 

statistically significant differences in trends at different levels of sleep efficiency, with stronger 357 

trends at lower levels of sleep efficiency (86%, 87%) (Supplemental Table 3). This indicates that 358 

higher sleep efficiency reduced the association between prenatal O3 exposure and RND. Post-359 

hoc regional analyses of each separate tract revealed this association was strongest for the 360 

right corticospinal tract (� = -0.04, ���� = 0.009) (Supplemental Table 5).  361 

There were no other statistically significant interaction effects seen between any other 362 

exposures and sleep efficiency on global RND. Lastly, there were no statistically significant 363 
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main effects of pollutant or sleep efficiency on global RNI or RND. All results can be found in 364 

Table 3. 365 

Discussion 366 

To our knowledge, this is the first study to investigate whether metrics of habitual sleep may 367 

moderate the association between air pollution exposure and white matter microstructure in 368 

adolescents. In testing the pollutant-by-sleep interaction terms, we found that sleep duration 369 

interacted with childhood NO2 exposure and sleep efficiency interacted with prenatal O3 370 

exposure to affect global white matter intracellular directional diffusion at ages 10-13 years. We 371 

demonstrated that there were no significant effects of childhood NO2 exposure on global 372 

intracellular directional diffusion at the specified levels of sleep duration (i.e., slopes in Figure 1a 373 

were not significantly different from zero at 6, 7, and 8 hours of sleep). However, the 374 

significance of the interaction suggests a pattern of association between sleep duration and 375 

global intracellular directional diffusion may exist but at different durations of sleep (i.e., less 376 

than 6 hours or more than 8 hours). We additionally found that the positive relationship between 377 

prenatal O3 exposure and global white matter intracellular directional diffusion remained 378 

significant in those with lower sleep efficiency (i.e., 85%, 87%) but diminished as sleep 379 

efficiency increased. This suggests that higher sleep efficiency may buffer the brain’s white 380 

matter against the effects of prenatal O3 exposure.  381 

Using RSI, intracellular directional diffusion in white matter likely represents diffusion 382 

within an axon – higher values may represent increased axon quantity, caliber, density, or 383 

myelination (44,46). Previous research has suggested air pollution in the prenatal period as well 384 

as later in childhood may influence white matter brain connectivity (17–21,23). Expanding upon 385 

these findings, in the current study, we found that those with longer sleep duration and higher 386 

sleep efficiency had lower global intra-axonal diffusion when exposed to certain noxious 387 
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gaseous pollutants in the prenatal and childhood developmental periods. Regional analyses 388 

revealed that distinct commissural, association, and projection tracts (i.e., corpus callosum, 389 

uncinate fasciculus, and corticospinal tract) showed the strongest associations. Both the 390 

corticospinal tract and corpus callosum are vital for sensorimotor function (54,55). The uncinate 391 

fasciculus connects the amygdala and other parts of the temporal lobe to the medial 392 

orbitofrontal cortex, and while its functions are not entirely clear, it may be involved in emotional 393 

processing (56,57), behavioral inhibition (58), and impaired object naming (59). Alterations to 394 

the developmental trajectories of these tracts, either by attenuating or accelerating maturation, 395 

may impair learning and subsequent cognitive and emotional development (60,61).  396 

Childhood NO2 exposure may cause neurotoxicity via the acute or chronic systemic 397 

inflammation it induces, beginning at the level of the lung alveoli (1,26). Upon inhalation, an 398 

innate immune reaction occurs in the lungs, whereby immune cells signal an upregulation of 399 

pro-inflammatory cytokines and induce oxidative stress, with immune components then passing 400 

into systemic circulation (1,26). This inflammatory cascade can contribute to BBB breakdown, 401 

leading to neuroinflammation and metal dyshomeostasis (10). Additionally, NO2 has been 402 

shown to contribute to mitochondrial dysfunction, which may be important in the context of white 403 

matter changes as it has been linked to oligodendrocyte damage (62,63). While the childhood 404 

pollutant exposure window (ages 9-10 years) is not completely concurrent with the available 405 

sleep and imaging data (ages 10-13 years) used in this study, there is evidence to suggest that 406 

annual averages are relatively stable prior to the year 2016, with  more recent evidence from the 407 

U.S. EPA suggesting that concentrations remain relatively stable during the study period (2016 408 

– 2020) (37–39,64). Our results indicate a significant interaction between childhood NO2 409 

exposure and sleep duration, but it is not clear if this is beneficial to our brain outcome of 410 

interest given that the trends for the relationship between the pollutant and white matter 411 

microstructure were insignificant at the levels of sleep duration tested, as well as due to the 412 
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cross-sectional nature of this analysis. This is consistent with previous work from our group 413 

demonstrating that childhood NO2 exposure was not related to intracellular directional diffusion 414 

in white matter cross-sectionally at ages 9-10 years nor longitudinally over a two-year follow-up 415 

period (19). However, we did find that childhood NO2 was negatively correlated with white blood 416 

cell counts, and that white blood cells counts were associated with changes in white matter 417 

microstructure in male youth at ages 10-13 years-old (2-year follow-up visit) in the ABCD Study 418 

(18). This may be indicative of possible acute or chronic changes/deficits in immune reactivity 419 

associated with childhood NO2 exposure. Longer sleep duration may aid in immune support and 420 

mitigate some of the negative effects of NO2 exposure, or it could indicate the presence of 421 

depressive symptomatology which may compound the pollutant’s toxic effects.  422 

 423 

Here, we also find prenatal O3 exposure is related to higher white matter RND. Though 424 

exposure is from a different developmental window, this is consistent with previous work from 425 

our group using the ABCD Study dataset demonstrating that while there was a negative 426 

correlation between childhood O3 exposure and RND at age 9 in both sexes, higher childhood 427 

O3 exposure was associated with an accelerated increase in RND over time compared to those 428 

with less than average exposure (19). Given the prenatal exposure window in this current study, 429 

a plausible neurotoxic mechanism may be maternal oxidative stress and inflammation (both 430 

systemic and placental) (65). Inflammation and immune activation during pregnancy as a result 431 

of air pollution exposure has been linked to the onset of some neurodevelopmental disorders 432 

(i.e., autism spectrum disorder) (1,66), which have also been associated with hypermyelination 433 

in childhood (67,68). While the youth in this sample are unlikely have these neurodevelopmental 434 

phenotypes due to exclusion criteria at enrollment, it is possible that prenatal exposure to O3 435 

contributes to hypermyelination at a subclinical level. A potential mechanism by which sleep 436 

efficiency may improve brain outcomes in the context of higher prenatal exposure to O3 includes 437 

through activity of neurotrophins like nerve growth factor (NGF) and brain-derived neurotrophic 438 
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factor (BDNF). Prenatal exposure to O3 has been linked to decreased NGF in the hippocampus 439 

and increased BDNF in the striatum in a rodent model (69). As NGF has been shown to inhibit 440 

myelination in the CNS by oligodendrocytes (70) and BDNF has been shown to enhance 441 

myelination (71), prenatal exposure to O3 specifically may lead to hypermyelination in youth. 442 

The relationships between these neurotrophic factors and sleep are complex, but poor sleep 443 

has been linked to lower serum NGF in adolescents (72); thus, better sleep efficiency may 444 

increase NGF levels, potentially buffering against the effects of prenatal O3 on NGF and the 445 

resultant hypermyelination. In other words, higher sleep efficiency may result in higher NGF 446 

levels, thus aiding in the inhibition of aberrant CNS myelination in response to prenatal O3 447 

exposure. However, additional work with multiple time points and markers of neurotrophic levels 448 

in the brain will be necessary to confirm these speculations.  449 

There are several strengths and limitations associated in the current study. The question 450 

at hand, whether sleep (duration and efficiency) can modify the effects of ambient air pollution 451 

on structural brain connectivity, is novel and ultimately may help determine if sleep interventions 452 

could partially mitigate air pollution’s neurological effects in youth. Instead of using self-report 453 

questionnaire data, we used objective wearable-based measures of sleep duration and 454 

efficiency, reducing self-report bias (77). However, there are limitations to objective sleep 455 

measures from wearables like Fitbit Charge 2, such as subject compliance with protocol and 456 

inaccurate estimation of sleep duration and efficiency by Fitbit devices compared to 457 

polysomnography (78). Additionally, while we have pollutant concentration estimates at two 458 

different windows of developmental vulnerability, allowing us to characterize some differences in 459 

timing of exposure, there is currently no data available for pollutant concentrations concurrent 460 

with both the neuroimaging and sleep data when the children are ages 10-13 years. Future 461 

releases of ABCD Study datasets will eventually resolve this, and the results would be 462 

strengthened by examining air pollutant concentrations at this time point in addition to the two 463 

already included here. Additional limitations are those inherent to neuroimaging data, namely 464 
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motion artifacts, which we accounted for by using only data that passed stringent quality control, 465 

had no clinically significant incidental findings, and by controlling for head motion within our 466 

models. Perhaps the biggest limitation to the current study is its cross-sectional nature - we only 467 

capture a snapshot of how sleep interacts with pollutant neurotoxicity, and future longitudinal 468 

studies will be able to more fully characterize how sleep affects brain developmental trajectories 469 

as they pertain to pollutant exposures. Additionally, while we show sleep metrics as moderating 470 

factors, poor sleep outcomes have also been associated with air pollution exposure (73) and 471 

may mediate the relationship between pollutants and brain outcomes. For instance, air pollution 472 

could feasibly impair brain waste clearance by inducing reactive astrogliosis, resulting in the 473 

swelling of astrocytic endfeet and impaired waste clearance through the perivascular spaces 474 

(74–76). Future studies are needed to disentangle these relationships, and longitudinal data will 475 

be especially important in determining how sleep may improve long-term resilience to 476 

neurotoxic pollutants. Lastly, the sample used here is large and regionally diverse, but not 477 

representative of the U.S. population or the larger ABCD Study cohort (79,80). Generally, the 478 

ABCD Study has an over-representation of subjects from wealthier and more educated 479 

backgrounds and an under-representation of Black and Asian participants. Additionally, 480 

Mroczek and colleagues (81) have voiced concerns regarding the overuse of publicly available 481 

datasets, in that multiple studies published using the same dataset may inflate the literature and 482 

contribute to issues of generalizability by perpetuating bias associated with sample nuances.  483 

Given this, these findings require validation in other diverse study populations. While the 484 

analysis provides valuable insights into the relationship between prenatal and childhood 485 

pollution exposure and brain outcomes, it is important to note that the study remains 486 

correlational in nature. Although controlling for demographic factors strengthens the findings by 487 

reducing potential confounding, the observational design of the study limits our ability to make 488 

definitive causal claims. To draw stronger causal inferences, further research employing more 489 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2025. ; https://doi.org/10.1101/2025.02.13.638133doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.13.638133
http://creativecommons.org/licenses/by-nc-nd/4.0/


rigorous methods, such as randomized controlled trials or advanced causal inference 490 

techniques, will be necessary. 491 

In conclusion, the current study demonstrates evidence that objective measures of sleep 492 

(i.e., duration and efficiency) interact with pollutant concentrations at two important windows of 493 

development to influence white matter microstructural integrity, despite the relatively low levels 494 

of pollutant exposure. Given sleep’s potential role in protecting young brains from neurotoxic air 495 

pollution in the face of a changing climate, encouraging healthy sleeping behaviors may help 496 

mitigate some of the negative neurotoxic effects of air pollution exposure in youth, thereby 497 

potentially increasing resilience to downstream behavioral outcomes.   498 
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Figure Captions: 

 

Figure 1. A) Significant interaction between childhood NO2 exposure and sleep duration on global intracellular 

directional diffusion (RND). Childhood NO2 is standardized, with 0 equal to the mean in our sample (18.01 

ppb), and 1 unit representing a 5-ppb change. Sleep duration is presented in hours. B) Visualization of the 

individual tracts affected by the pollutant-by-sleep interaction term in the post-hoc regional analyses. 

Abbreviations: parts per billion (ppb), intracellular directional diffusion (RND), standardized (std), corpus 

callosum (CC), uncinate fasciculus (Unc), right (R), left (L). 

 

Figure 2. A) Significant interaction between prenatal O3 exposure and sleep efficiency on global intracellular 

directional diffusion (RND). Prenatal O3 is standardized, with 0 equal to the mean in our sample (40.06 ppb), 

and 1 unit representing a 5-ppb change. Sleep efficiency is presented in percentage. Red asterisks represent 

statistically significant slopes. B) Visualization of the individual tract affected by the pollutant-by-sleep 

interaction term in the post-hoc regional analyses. Abbreviations: parts per billion (ppb), intracellular directional 

diffusion (RND), standardized (std), corticospinal tract (CST), right (R), left (L). 
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Tables:  
 
Table 1. Cohort demographic and socioeconomic characteristics, pollutant levels, and sleep metrics. 
 

Cohort Characteristics 

Total N 2178 
Sex [F], N (%) 995 (45.7%) 
Mean Age [months], 
(SD) 143.12 (7.72) 

Pubertal Development Scale, N (%) 

1 (pre-pubertal) 534 (24.5%) 
2 (early puberty) 550 (25.3%) 
3 (mid-puberty) 734 (33.7%) 
4 (late puberty) 340 (15.6%) 
5 (adult-like) 20 (0.9%) 

Race/Ethnicity, N (%) 

Non-Hispanic White 1424 (65.4%) 
Non-Hispanic Black 144 (6.6%) 
Hispanic 367 (16.8%) 
Non-Hispanic Asian* 38 (1.7%) 

Multi-Racial/Other*♰ 205 (9.4%) 

Highest Household Education, N (%) 

Post Graduate Degree 887 (40.7%) 
Bachelor 660 (30.3%) 
Some College 480 (22.1%) 
HS Diploma/GED 111 (5.1%) 
< HS Diploma 40 (1.8%) 

Overall Income (USD), N (%) 

≥100K 1057 (48.5%) 
≥50K & <100K 624 (28.7%) 
<50K 384 (17.6%) 
Don't Know/Refuse 113 (5.2%) 

Mean Pollutant Levels (SD) 

Prenatal PM2.5, µg/m3 10.78 (2.42) 

Childhood PM2.5, µg/m3 7.31 (1.58) 

Prenatal NO2, ppb 25.59 (10.18) 

Childhood NO2, ppb 18.01 (5.98) 

Prenatal O3, ppb 40.06 (4.69) 
Childhood O3, ppb 41.37 (4.29) 
Mean Fitbit Charge 2 Sleep Variables (SD) 

Sleep Duration (hours) 7.51 (0.64) 
Sleep Efficiency (%) 0.87 (0.02) 
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Table 2. Results from multi-pollutant models examining how sleep duration interacts with pollutants to affect brain connectivity, including 

unstandardized betas, standard error (SE), 95% confidence intervals (CI), and p-values. Significant models are bolded (p < 0.05). Models were 

adjusted for pollutants not included in the interaction term, demographic and socioeconomic variables for each child, and precision MRI variables 

(see Methods). Abbreviations: intracellular isotropic diffusion (RNI), intracellular directional diffusion (RND), standardized (std), standard error (SE), 

confidence interval (CI). 

Parameter 
Global RNI Global RND 

Coefficient SE 95% CI p Coefficient SE 95% CI p 

P
re

na
ta

l  

PM2.5 (std) 0.0056 0.0047 -0.0036, 0.0149 0.231 0.0155 0.0073 0.0012, 0.0297 0.033 

Sleep Duration -0.0002 0.0004 -0.0009, 0.0006 0.649 0.0005 0.0005 -0.0005, 0.0015 0.373 

PM2.5 (std) x Sleep Duration -0.0007 0.0006 -0.0019, 0.0006 0.295 -0.0018 0.001 -0.0037, 0 0.053 

NO2 (std) -0.0011 0.0013 -0.0036, 0.0014 0.398 0.0013 0.001 -0.0007, 0.0034 0.205 

Sleep Duration -0.0002 0.0004 -0.001, 0.0006 0.636 0.0004 0.0005 -0.0005, 0.0013 0.363 

NO2 (std) x Sleep Duration 0.0001 0.0002 -0.0002, 0.0004 0.521 -0.0002 0.0001 -0.0005, 0.0001 0.166 

O3 (std) -0.0009 0.0032 -0.0071, 0.0053 0.778 -0.0018 0.0045 -0.0107, 0.0071 0.698 

Sleep Duration -0.0002 0.0004 -0.001, 0.0006 0.646 0.0004 0.0005 -0.0005, 0.0013 0.351 

O3 (std) x Sleep Duration 0.0002 0.0004 -0.0006, 0.001 0.670 0.0004 0.0006 -0.0008, 0.0015 0.550 

C
hi

ld
ho

od
 

PM2.5 (std) 0.0044 0.0096 -0.0143, 0.0232 0.643 0.015 0.0132 -0.011, 0.0409 0.258 

Sleep Duration -0.0002 0.0004 -0.001, 0.0006 0.641 0.0005 0.0005 -0.0005, 0.0015 0.365 

PM2.5 (std) x Sleep Duration -0.0004 0.0013 -0.0029, 0.0022 0.775 -0.002 0.0017 -0.0053, 0.0013 0.240 

NO2 (std) 0.0013 0.0013 -0.0012, 0.0038 0.317 0.0058 0.0023 0.0013, 0.0103 0.011 

Sleep Duration -0.0002 0.0004 -0.001, 0.0006 0.631 0.0004 0.0005 -0.0005, 0.0014 0.371 

NO2 (std) x Sleep Duration -0.0002 0.0002 -0.0005, 0.0002 0.325 -0.0008 0.0003 -0.0013, -0.0002 0.006 

O3 (std) -0.0017 0.0037 -0.009, 0.0056 0.651 -0.0045 0.0053 -0.0149, 0.0059 0.399 

Sleep Duration -0.0002 0.0004 -0.001, 0.0006 0.648 0.0004 0.0005 -0.0006, 0.0014 0.388 

O3 (std) x Sleep Duration 0.0002 0.0005 -0.0008, 0.0012 0.753 0.0005 0.0007 -0.0009, 0.0019 0.503 
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Table 3. Results from multi-pollutant models examining how sleep efficiency interacts with pollutants to affect brain connectivity, including 

unstandardized betas, standard error (SE), 95% confidence intervals (CI), and p-values. Significant models are bolded (p < 0.05). Models were 

adjusted for pollutants not included in the interaction term, demographic and socioeconomic variables for each child, and precision MRI variables 

(see Methods). Abbreviations: intracellular isotropic diffusion (RNI), intracellular directional diffusion (RND), standardized (std), standard error (SE), 

confidence interval (CI). 

Parameter 
Global RNI Global RND 

Coefficient SE 95% CI p Coefficient SE 95% CI p 

P
re

na
ta

l  

PM2.5 (std) 0.0107 0.0197 -0.0279, 0.0494 0.586 0.0114 0.0258 -0.0393, 0.062 0.659 

Sleep Efficiency -0.005 0.012 -0.0286, 0.0186 0.679 0.0044 0.013 -0.021, 0.0299 0.733 

PM2.5 (std) x Sleep Efficiency -0.0116 0.0231 -0.0569, 0.0338 0.617 -0.0114 0.03 -0.0703, 0.0475 0.705 

NO2 (std) 0.0056 0.0055 -0.0051, 0.0163 0.307 0.0046 0.0058 -0.0067, 0.0159 0.425 

Sleep Efficiency -0.0066 0.0126 -0.0312, 0.0181 0.602 0.0031 0.0135 -0.0234, 0.0297 0.817 

NO2 (std) x Sleep Efficiency -0.0068 0.0062 -0.0189, 0.0054 0.274 -0.0054 0.0064 -0.0179, 0.0071 0.398 

O3 (std) 0.0076 0.0156 -0.0231, 0.0382 0.628 0.0261 0.0118 0.0031, 0.0492 0.026 

Sleep Efficiency -0.0054 0.0123 -0.0296, 0.0188 0.662 0.0038 0.011 -0.0177, 0.0254 0.727 

O3 (std) x Sleep Efficiency -0.0082 0.018 -0.0435, 0.027 0.647 -0.029 0.0135 -0.0554, -0.0026 0.032 

C
hi

ld
ho

od
 

PM2.5 (std) 0.022 0.0278 -0.0326, 0.0766 0.430 0.0494 0.0413 -0.0317, 0.1305 0.232 

Sleep Efficiency -0.0048 0.0122 -0.0286, 0.019 0.692 0.0055 0.0119 -0.0178, 0.0288 0.642 

PM2.5 (std) x Sleep Efficiency -0.0233 0.0321 -0.0863, 0.0397 0.468 -0.0567 0.0467 -0.1484, 0.0349 0.225 

NO2 (std) 0.0051 0.0081 -0.0109, 0.021 0.533 0.0137 0.0119 -0.0098, 0.0371 0.253 

Sleep Efficiency -0.006 0.0121 -0.0298, 0.0177 0.618 0.0023 0.014 -0.0253, 0.0298 0.873 

NO2 (std) x Sleep Efficiency -0.0058 0.0094 -0.0242, 0.0126 0.537 -0.0159 0.0138 -0.0429, 0.0112 0.251 

O3 (std) -0.0003 0.0133 -0.0264, 0.0258 0.985 -0.0209 0.0144 -0.0491, 0.0073 0.146 

Sleep Efficiency -0.0054 0.0126 -0.03, 0.0193 0.668 0.0061 0.0112 -0.0158, 0.0281 0.585 

O3 (std) x Sleep Efficiency -0.0003 0.0152 -0.0301, 0.0296 0.987 0.0231 0.0166 -0.0094, 0.0556 0.163 
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